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Abstract— Different from classical artificial neural network
which processes digital data, the spiking neural network (SNN)
processes spike trains, and hence can bring new advantages to
the information processing. Indeed, its event-driven property
helps to capture the rich dynamics the neurons have within the
brain, and the sparsity of collected spikes helps reducing com-
putational power. Besides, the nonlinear behavior of neurons
offers easier solutions for non-linearity problems than classi-
cal methods and is well suited to stochastic resonance-based
systems. An analog SNN composed of 86 electronic neurons
(eNeuron) and 1238 synapses interacting through two hidden
layers is proposed. It is made from two different types of eNeu-
rons based on different versions of Leaky integrate-and-fire
(LIF) or Morris-Lecar (ML) models. The proposed neural net-
work, coupling deep learning and ultra-low power, is trained
using a common machine learning system (TensorFlow) for the
MNIST. LIF eNeurons implementations present some limita-
tions in terms of dynamic range, while, considering different
activation functions, ML eNeurons achieve robust accuracy
which is approximately of 0.82.

Index Terms— neuromorphic computing, spiking neural
network, deep learning, MNIST

I. INTRODUCTION

Big data has been for many years the cornerstone of ma-
chine learning in data science field. Such data acquisition
is made on energy limited systems such as edge devices,
Internet-of-Things (IoT), and later uploaded on the Cloud.
It is on the Cloud, where classic Artificial Intelligence (AI)
does its best treating such as big data at the expense of dozens
of kW. Moreover, uploading such a big data has unaffordable
cost of around dozens of µJ per bit for most IoT devices run-
ning from 16 to 64 bits applications. Such IoT devices are
often powered by Lithium-ion batteries charged with a hun-
dred Ampere-per-hour energy. The challenge in smart IoT is
achieving a sub nano-Joule per sample while running edge-
AI tasks to minimize the data transmitted to the Cloud. A
smart IoT device then becomes a neuromorphic computing
device capable of mimicking biological systems in order to
achieve a better energy efficiency (Ee f f ) than digital systems
when performing certain cognitive tasks [1].

Feed-forward neural networks (FNN) presents interneuron
connections with a linear scaling controlled by the weight
coefficients (synapses). FNNs have been dominant in soft-
ware AI research aiming at deep learning capabilities with
interested mathematical network properties [2]. Previous
study of mathematical FNNs reveals necessary conditions
for deep learning using spiking neural networks (SNN). SNN
hardware aims to emulate biological systems in artificial
neurons and synapses (electronic circuitry). They have of-
ten been proposed in FPGAs [3] and GPUs [4] due to its

advantages of reconfigurability, reusability and reduced im-
plementation costs. Analog systems are often chosen as they
can faithfully mimic biological systems in artificial neurons
and synapses. Figure 1 illustrates a model often used for
spiking eNeurons and synapse for analog implementations.
Analog eNeurons have presented the best energy consump-
tion per unit of information (Ee f f in J/spike) and a compet-
itive area trade-off. Besides, a mixed circuit approach has
been explored for a better trade-off [5].

Σ h Synapse
iex ƒspike isyn

g

Fig. 1: Model spiking eNeuron and synapse. A neuron con-
verts a current input to a spiking frequency fspike. Synapse
converts a spiking input to an output current.

A previous paper [6] has founded a study of deep neural
network feasibility using ultra-low-power eNeuron. There,
previous published electronic neurons (eNeurons) using the
(Leaky) Integrate-and-Fire (LIF) [7, 8], and Morris Lecar
(ML) simplified (simp.) or biomimetic (bio.) [9, 10] models
have been redesigned using in-house BiCMOS 55 nm tech-
nology from ST Microelectronics.While mathematical prop-
erties of analog spiking neural networks are rarely a prior-
ity, energy efficiency (Ee f f , in fJ/spike) of advanced software
neural network architectures is rarely studied [11]. The tools
used for software neural networks could be more useful in
implementing deep learning for analog neural networks such
as [12]. Thus, this paper proposes to bridge the gap between
software AI and analog neural network research subjects.
Further study of mathematical FNNs revealed set necessary
conditions for deep learning using spiking neural networks.
Thus, deep learning and energy efficiency are mutually ex-
clusive if those neuromorphic components are used [6].

This paper innovates with a framework capable of eval-
uating analog SNN training and inference. Accurate ana-
log SNN, illustrated in this work, is composed of 86 eNeu-
rons and 1238 synapses with two hidden layers. This neural
network is trained by taking advantage of the widely used
machine learning framework Tensorflow [13]. It operates
at large scale and in heterogeneous environment while sup-
porting a variety of training and optimization algorithms. In
this case, Adam optimization is chosen to obtain an efficient
and scalable neural network [14]. The proposed analog SNN
synthesis framework is illustrated for LIF, simp. and bio.
ML eNeurons. Novel synthesis framework has highlighted
the trade off revealed in [6]. Moreover, this work supplies an
algorithm guiding designers into deep learning and energy-
efficient analog SNN using MNIST.
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This paper is organized as follows. Section II. reviews lit-
erature from learning and inference point of view for neural
networks implemented in either software or hardware, while
presenting common building blocks used in analog SNN.
Section III. proposes a neural network synthesis framework
considering the MNIST to achieve a general solution for
SNN implementation on analog hardware. Section IV. il-
lustrates the post-layout simulation (PLS) results of the pro-
posed technique for analog SNN training and inference. Fi-
nally, conclusions are drawn towards deep learning neural
networks using ultra-low power eNeurons.

II. BACKGROUND

Literature review is presented firstly from training and in-
ference point of view for neural networks implemented in
either software or hardware (i.e. digital design) in Subsec.
II.A.. Secondly, state-of-the-art of common building blocks
used in analog spiking neural networks is revised in Subsec.
II.B. and Subsec II.C.. Comparisons in terms of often pre-
sented figures of merit (FoM) in eNeurons and synapses are
detailed.

A. Neural Network training on MNIST

Machine learning has gained significant interest facing
the tremendous increase of data collection in recent years.
Researchers have focused on building learning algorithms
to improve performances in a wide variety of applications
from engineering sciences to the social network and secu-
rity [15]. Neuromorphic architectures appears to be the most
appropriate platform to implement machine learning algo-
rithms due to their capability to learn and process as biolog-
ical brain [11]. Diverse learning algorithms and models are
demonstrated in literature. Designs of neuron, synapse and
neural network models have an impact on the choice of the
algorithm. Some training is implemented off chip and later
transferred to a neural network, while others are based on the
real-time learning mechanisms [1].

One commonly used dataset for testing in machine learn-
ing field is the Modified National Institute of Standard
and Technology dataset (MNIST) [16]. MNIST is a large
database of square 28*28-pixel gray-scaled picture of hand-
written digits (from 0 to 9). The MNIST database contains
a total of 70,000 instances, where 60,000 are usually used
for training and the remainder are used for inference. During
training step, images are fed to neural network architecture
and synaptic weights are updated. During inference step,
images are fed to a trained network to assess its accuracy in
data recognition. Many learning algorithms are made from
the standard MNIST benchmark optimal design networks ca-
pable of treating data recognition of handwritten digits and
image processing systems.

Convolutional neural networks (CNNs) are the most well
known and widely used techniques for the MNIST [15]. Wan
et al. [17] have used CNNs using methods such as dropout
training and reported accuracy as high as 99.79% with data
augmentation. A topology called HyperNEAT is applied to
the MNIST in [18], to support the evolution of CNNs by
adding new substrate capable of representing this type of
network. Their work led to the accuracy of 92.1%. Bal-
dominos et al. [19] achieves the accuracy of 99.63% using

grammatical evolution. Many other works in the modern
machine learning algorithms present very high accuracy pro-
posals [15]. However, none of them prove a plausible imple-
mentation in hardware.

The large-scale neuromorphic systems have presented
chip designs in digital [1]. A spiking backpropagation al-
gorithm based on synfire-gated dynamic information is im-
plemented in Loihi neuromorphic processor [20]. Loihi’s
network is composed of 810 neurons with two hidden lay-
ers. It achieves the accuracy of 95.7% after 60 epochs on the
MNIST. Processing a single sample consumes 0.592 mJ of
energy on neuromorphic cores.

Esser et al. [21] demonstrates the accuracy of 92.7% for
a trained network using the backpropagation operating in a
probabilistic domain. The network runs on the TrueNorth
digital chip using the MNIST. The proposed network has 5
cores distributed in 2 layers, which corresponds to 512 neu-
rons. The lowest energy obtained is 0.268 µJ per classifica-
tion. While digital neuromorphic systems achieve high accu-
racy when training and testing neural networks, their power
consumption is still huge in comparison with the biological
neural systems.

In contrast to digital neuromorphic systems, analog solu-
tions have saved significant power, thanks to their capability
to faithfully mimic biological neural systems. Danneville et
al. [12] have proposed an SNN architecture made of 40 ana-
log neurons and 108 plastic synapses. Danneville’s system
is used to allow the classification of oriented edges. Its sili-
con core area is 0.025 µm2 and its overall power consump-
tion is 5 nW. The learning is achieved using the spike time-
dependent plasticity (STDP). STDP is a process for which
the weight of the synapse between a pre-neuron and a post-
neuron is updated based on the relative time between pre-
neuron and post-neuron spikes.

To the best of our knowledge, training and testing a net-
work using MNIST in an analog neuromorphic implementa-
tion are not addressed in the state-of-the-art. An analog SNN
synthesis framework is proposed in Sec. III..

B. Analog Spiking Neural Network: Electronic Neurons

Neuromorphic hardware aims to faithfully mimic biolog-
ical systems in electronic neurons (illustrated in Fig. 2)
and synapses (illustrated in Fig. 3). Electronic eNeurons
(eNeurons) are electronic implementations for a mathemat-
ical model of a biological neuron. The eNeuron model sets
the degrees of complexity and biological accuracy as ex-
plained in [11]. Many popular models have been widely used
as they offer different trade-offs among energy efficiency
(i.e. Ee f f in J/spike) and computational capabilities. The
simplicity of McCulloch-Pitts eNeurons makes them dom-
inant in software implementations, as they only use an ac-
tivation function to associate an output to the sum of their
inputs.

More biologically inspired models mimic the spiking be-
havior of biological neurons, which are suitable for an ana-
log spiking network implementation. Among them, LIF, and
ML models stand out due to their widespread adoption in
the literature. LIF eNeurons have a spiking behavior at low
complexity by modeling the charge and the discharge of the
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Fig. 2: Schematic illustration of eNeuron circuits studied. (a) LIF model proposed in [7]. (b) simp. ML model proposed in [9].
(c) bio. ML model proposed in [10]

membrane of a neuron. The LIF eNeuron follows a mathe-
matical model described in the literature as

Vm =
1

Cm

∫
iex

(
e

VDD−Vm
ηφt − e

−2Vm
ηφt

)
dt, (1)

where Vm is the spiking voltage signal; iex is the input exci-
tation current; VDD is the eNeuron supply voltage; η is the
subthreshold slope; φt is the thermal voltage (kbT/q). A de-
tailed modeling is presented in [22].

Figure 2(a) illustrates a LIF eNeuron proposed by Dan-
neville et al., which is an Axon-Hillock topology [7]. By us-
ing parasitic capacitors as the membrane capacitance, Dan-
neville’s eNeuron achieved both low energy consumption
and low silicon area, which could lead to the design being
used in SNNs. Recently, Besrour et al. have also proposed a
low power LIF eNeuron in 28 nm CMOS technology in [8].
Besrour’s proposal achieved a better area and fspike trade-off
in comparison to Danneville’s for a total 1.2 fJ/spike energy
efficiency.

The ML model provides behavior closer to biological neu-
rons by using multiple complex non-linear differential equa-
tions. ML eNeurons have a mathematical model described
in the literature, being a non-linear function

Vm =−VDD · tanh
(

GL ·∑ iex

ηφt
+

1
2

ln
(

GN

GP

))
, (2)

where GL is the equivalent conductance between eNeuron
membrane and ground; GN/GP is the transistors’ aspect ratio
(NMOS conductance over PMOS conductance). A detailed
modeling is presented in [9].

ML eNeurons have recently been used to implement arti-
ficial neural networks, achieving tasks such as edge recogni-
tion [12] and audio signal processing [10]. Two common
concerns in such edge computing applications are circuit
area and energy efficiency, which is often used as a figure of
merit. State-of-the-art eNeurons [10, 12] are most efficient,
when they operate at high fspike, and they become increas-
ingly energy-inefficient as fspike lowers.

Sourikopoulos et al. have proposed a simp. ML eNeu-
ron illustrated in Fig. 2(b). By minimizing supply voltage
and membrane capacitance, the authors achieved both low
power consumption and high fspike [9]. As a step towards
SNNs, Ferreira et al. have implemented a neuromorphic ana-
log spiking modulator, which translated a sample input into
a spiking output [10]. Figure 2(c) illustrates the bio. ML
eNeuron, first proposed in [9] and later improved in [10] in
terms of area and fspike. Recently, Takaloo et al. have studied
the simp. ML eNeuron and proposed a design optimization

in [23]. State-of-the-art ML eNeuron implementations no-
tably make use of subthreshold transistors to reduce area and
power consumption [9, 10, 23].

Literature results highlight the wide variety of perfor-
mance in different ranges of fspike, using different technolo-
gies. Thus, the use of the same technology and simulator for
eNeurons will prevent the result from being skewed by tech-
nology improvements. For this reason, eNeurons depicted in
Fig. 2 shall be implemented with in-house tools, see details
in [6]. Literature of eNeurons is summarized in Tab. I

TABLE I.: Energy efficiency comparison of state of the art
circuits

Ref. Model Techn. Area fspike Ee f f
(nm) (µm2) (kHz) (fJ/spike)

[9] bio. 65 200 1.2 78.3
ML

[10] bio. 55 98.6 400 1.95
(idem) ML

[7] LIF 65 31 15.6 2.00
[8] LIF 28 34 343 1.2
[6] LIF 55 28.4 130 1.2

(idem)
[9] simp. 65 35 25 4

ML
[6] simp. 55 61.7 243 1.8

(idem) ML

C. Analog Spiking Neural Network: Electronic
Synapses

Electronic synapse is a key component in spiking neural
networks, since neuron input (the post-synaptic signal) and
output (the pre-synaptic signal) do not have the same dimen-
sions. It is thus necessary to link neurons using synapses,
which convert spiking information in isyn post-synaptic sig-
nal. The following spiking neurons take the current isyn as
an input and deliver an output frequency fspike modulated by
the synaptic weight.

Figure 3(a) illustrates the differential pair integrator (DPI)
synapse proposed by Bartolozzi and Indiveri in [24]. The
DPI synapse generates the post-synaptic current isyn from
differential pair unbalance, which is modulated by the bias
current available from VPre pre-synaptic signal and VW con-
trolling the synaptic weight. By using transistors operat-
ing in subthreshold, the proposed differential pair integrator

Digital Object Identifier 10.29292/jics.v18i1.3

marisferreir_pie
Droite 

marisferreir_pie
Zone de texte 



4 Soupizet et al.: Analog Spiking Neural Network Synthesis for MNIST

isyn

VPre

VDD

VSS

VW

Vτ

Vthr

(a)

isyn

VPre

VPre

VW

VDD

(b)

syni

Vout

VPre

VW

Vout

(c)

VPre
C

VDD

VSSVSS

MNTrans

MPR

MP1

VSS

MP3

VDD

isyn

MP2

(d)

Fig. 3: Schematic illustration of synapse circuits studied. (a) DPI Synapse originally proposed in [24]. (b) Transconductor-
based simple synapse. (c) ULP Synapse originally proposed in [12]. (d) Compact Synapse originally proposed in [6].

synapse response is

isyn(t) = I0 · e
VPre(t)−VDD

ηφt , (3)

where I0 is the leakage current; VPre is the pre-synaptic sig-
nal; isyn is the post-synaptic signal. This model fits closer
to the Destexhe mathematical model for synapses [25]. It is
remarkable that the mean current output of the synapse is a
linear function of the pre-synaptic fspike [24].

In order to build an SNN, Danneville et al. have pre-
sented two synapses in [12]. Figure 3(b) illustrates the usage
of inverters along with a cascode amplifier to generate the
isyn. There, the cascode bias voltage VW controls the synaptic
weight as it modulates the cascode transconductance. Figure
3(c) illustrates a synapse composed of an RC filter with two
additional inverters. Those inverters extend the duration of
the pre-synaptic pulse to produce a longer post-synaptic cur-
rent pulse. The transconductance is thus controlled by step
voltage pulse generated by the output of the inverters having
an amplitude of 2 ·VDD. Danneville’s proposal uses PMOS
transistors in deep subthreshold, which leads to an ultra-low
power consumption as low as the picoWatt [12].

As a step towards deep learning, Azghadi et al. have used
memristors to replicate synaptic plasticity [26]. This trans-
lated into learning properties and more complex behavior,
among which non-linearity of the synapse. However, mem-
ristors suffer greatly from noise, an issue amplified by the
high density of memristors required for deep learning neural
networks. Due to atomic-level random defects and variabil-
ity in modulation process, memristor characteristics are the
main causes of learning accuracy loss in ANNs [27].

The aforementioned synapses have served as an inspira-
tion in previous work [6]. Figure 3(d) illustrates the com-
pact synapse from [6], which is composed of an RC filter,
followed by a transconductor and a current mirror. The pro-
posed synapse shall attempt to balance advantages and draw-
backs between Destexhe mathematical model agreement,
ultra-low power, and plasticity. Plasticity is found in the cur-
rent mirror architecture from [24], where current-mirror gain
is a weighted bias signal. Ultra-low power is observed in the
choice of passive RC filter similar as [12]. However, one
can observe that eNeurons already have the two inverters as
introduced in [12], which can be reused for further power
consumption reduction.

Compared to the literature, the compact synapse loses in
reconfigurability as it does not rely on a tunable VW . This

28 × 28
(Input image)

Locally 
Connected

Locally 
Connected

Dense

7 × 7 3 × 3 × 3
10

(Output)

Fig. 4: Illustration of the neural network architecture.

loss prevents an online NN learning and force the designer
to opt for an offline learning. A NN trained for the MNIST
will produce synaptic weights. Such a drawback is largely
compensated by the fact that current-mirror gain (i.e., the
proposed synapse weight) can be designed to be immune to
process variability. Process variability robustness is manda-
tory in an integrated solution.

Considering a synapse relying on VW tuning, process
variability robustness might only be achieved by a power-
consuming analog-to-digital converter controlling (within
online learning) the synaptic weight VW , or by the availabil-
ity of an external pin. Both solutions are impractical con-
sidering the required routing for few hundreds of synapses.
For this reason, the authors opt for an offline training using
MNIST, following an analog spiking neural inference using
the obtained synaptic weights to design the current mirror
illustrated in Fig. 3(d).

III. NEURAL NETWORK SYNTHESIS FRAMEWORK

Aiming at a hardware implementation, electronic circuit
constraints must be considered in neural network synthesis.
Figure 4 illustrates the proposed neural network synthesis
framework. The neural network is trained using 60,000 in-
stances from the MNIST and inferred with 10,000 different
instances. Synthesized neural networks shall take as an input
layer a 28*28-pixel grayscale picture of a handwritten digit
(from 0 to 9) and shall have on its output layer 10 eNeurons,
which correspond to the 10 possible digits. As shown in Fig.
4, two hidden layers are located between the input and the
output of the neural network.

The first hidden layer is a locally connected layer of 7*7
neurons. It represents the high-level features extracted from
the convolution operation applied on the 28*28 image us-
ing a kernel. The kernel is basically a filter applied progres-
sively to small regions of the image. For the first layer, the
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kernel has a size of 4*4 and has one output filter per neu-
ron. By this convolution operation, a dimension reduction is
achieved from a 28*28 image to a 7*7 layer. This allows to
greatly reduce the size of the data that has to be processed by
the following layers, while retaining useful information. In
addition to that, as the neurons are close to their inputs, this
choice allows an easier routing.

The second hidden layer is a locally connected layer of
3*3*3 eNeurons. It is obtained using another kernel of 2*2,
but with three output filters per neuron. This design is made
to extract more useful information, while maintaining a low
complexity on the network. Finally, the second hidden layer
and the output layer are densely connected. This means that
the output layer is a fully connected layer, where all eNeu-
rons from the second hidden layer are connected to the eNeu-
rons of the output layer. Thus, a global inference on the
drawn number is made in the output layer, using the local
data obtained from the second layer.

To develop this proposal, the mathematical properties of
the neural networks shall be considered. Firstly, Subsec.
III.A. describes the feasibility studies of the feed-forward
neural networks using analog spiking eNeurons. Transfer
functions of the eNeuron and synapse are thus presented
from software and hardware point of view. Secondly, Sub-
sec. III.B. explores the synthesis framework of the analog
spiking neural network based on the activation function and
weight analysis. Fitting functions used for the training and
the inference in the neural network are then explained.

A. Feasibility Analysis

To bridge the gap between software AI and analog neural
research, this subsection highlights the tools used for soft-
ware neural networks and links them with analog spiking
neural networks. Deep-learning feasibility in analog spiking
NNs is originally studied in previous work [6].

Feed-forward Neural Networks have been a common in-
terest in software-based NN literature. Figure 5 illustrates a
common FNN having an input and an output layer. An exam-
ple network is depicted in Fig. 5(a), displaying a pth hidden
layer (Np,i)i≤4. Neurons of a given layer only have the output
of the previous layer as an input. The output of a given layer
is thus only dependent on the output of the previous layer.

Let it be assumed that a neuron takes an input i and pro-
vides an output f . The relation between input and output
can be described with an activation function h, which pro-
vides the relation f = h(i) for a neuron. Given that in an
FNN, neurons are organized in layers (see Fig. 5), one may
describe the inputs and outputs of every neuron as vectors
for the layer as

I = (i1, i2, . . . , ip)
T

F = ( f1, f2, . . . , fp)
T = H(I), (4)

where capital letters are used for a matrix description of the
neural network. Furthermore, as the inputs of the neurons
are a linear combination of the outputs of the previous layer,
one can define a matrix Cp such that, with Fp as the out-
put of the pth layer, ∀ p ∈ [1,N], Fp = Hp(Cp ·Fp−1). As-
suming that Hp is linear, it can be expressed as the matrix
Hp = diag(hp1,hp2, ...,hpM), with M the number of neurons

in the layer. Fp can thus be expressed as a matrix product of
Fp−1, where Fp = HpCp ·Fp−1. This leads by induction to the
property of FNNs [28]

FN =
N

∏
p=1

HpCp · I1. (5)

The output FN of the FNN is given by a linear combina-
tion of the input I1 for the input layer. It is possible to find an
equivalent two layers FNN, as represented in Fig. 5(b). Hav-
ing a linear activation functions, it thus hinders FNN to have
the properties of a deep neural network, even with multiple
hidden layers.

While (5) and FNN properties are widely known in the
case of mathematical neural networks [2], this is not the case
of electronic spiking neural networks (eNN). Figure 6 illus-
trates a system model for an eNeuron (eNpk) connected to
a synapse array (Sp,ki)i≤4. eNpk represents the kth eNeu-
ron on the pth layer. As shown in the Fig.6, an eNeuron
eNpk takes as an input current iex, the sum of the current fed
(∑4

i=1 i(p−1),ik) in the node Vm. It outputs a spiking voltage
Vm having a tanh shape and in which the amplitude of iex is
coded in the fspike, i.e. spiking modulation. A function h
can thus be defined for the eNeuron such that fspike = h(iex).
Conversely, the synapse circuitry behaves as a frequency-
to-current converter, as it converts fspike pre-synaptic infor-
mation to a post-synaptic current isyn. From the isyn and
fspike relationship, a function g can be defined such that
isyn = g( fspike).

Considering a software-based NN model as Fig. 5(a) and
the eNN modeling from Fig. 6, one can study the feasibility
of eNN synthesis using literature formalism. The presence
of a synapse in eNN linking the neurons modifies the proof
in (5). To study the eNN feasibility, the kth eNeuron on the
pth layer will be referred to as eNpk, with the transfer func-
tion hpk, input ipk, and spiking frequency fpk. The synapse
connecting eNpk and eN(p+1)l (the pth eNeuron on the p+1th

layer) will be referred to as Sp,kl , with the transfer function
gp,kl , input fp,kl , output ip,kl . Let M be the number of neurons
in layer p.

Assuming the transfer functions of the synapses and neu-
rons are linear, i.e. for all p,k, l such that eNpk,eN(p+1)l ∈
eNN, one can find the constants kpk, bpk, wp,kl , and cp,kl such
that:

hpk(iex) = kpk · iex +bpk (6)
gp,kl( fspike) = wp,kl · fspike + cp,kl . (7)

The spiking frequency of eN(p+1)l is then

f(p+1)l = h(p+1)l

(
M

∑
k=1

ip,kl

)

f(p+1)l = k(p+1)l ·

(
M

∑
k=1

wp,kl · fpk + cp,kl

)
(8)

+b(p+1)l from (7). (9)

If this relationship is linear, which means that if one ex-
presses the spiking frequencies of a pth layer of eN as a vec-
tor, then matrices can be found such that

Fp = ( fp1, ..., fpM)T (10)
Fp = ApFp−1. (11)
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Fig. 5: Feed-Forward Neural Network (FNN) illustration, where (a) is a p hidden-layers software NN example and (b) is an
equivalent two-layer (input and output) NN. If linear activation functions are available, an NN with no hidden layer such as
(b) can be found with the same transfer function as any (a) NN.

i(p−1),1k ip,k1
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i(p−1),4k ip,k4

fspike

eNpk

Sp,k1

Sp,k2

Sp,k3

Sp,k4

Fig. 6: Analog spiking neuron and synapses models, which
can be synthesized using eNeuron and synapse described in
Subsec II.B. and Subsec II.C.

By induction, one may obtain

I1 = (i11, ..., i1p)
T

FN =
N

∏
p=1

Ap · I1. (12)

This proves that the previous result for software NN still
applies in the case of an eNN. If published eNeurons and
synapses have linear transfer functions, any multi-layer feed-
forward eNN is equivalent to a two-layer eNN.

For deep learning purposes, a non-linear activation func-
tion is needed. In literature, the non-linear functions
sigmoid, ReLU , and tanh are often used as activation func-
tions [2]. The non-linear sigmoid function can be related to
the eNeuron models (1) and (2) as proposed in the following
Subsec. II.B..

B. Synthesis Framework

Feasibility analysis is built on support arguments using
software-based neural networks studies. To illustrate the per-
formance trade-offs induced by the previous proof (12), it is
necessary to transform the transfer functions of the eNeuron
and synapse into an activation function and weight that are
usable in synthesis tools like TensorFlow [13]. Neverthe-
less, modeled activation function must reproduce the FoM
observed in the literature [7, 9, 10].

This paper proposes the synthesis framework illustrated
in the pseudocode shown in 1. The framework first requires
a structure construction for the neural network as illus-
trated in Fig. 4. One may choose a bias to be implemented
at the neuron’s input to assess the real-world impact of the
eNN feasibility proof depicted in the previous subsection.

First the bias for each neuron is fixed at 0 to limit the com-
plexity of the network (xmin = 0, no restriction). Later, to
enhance the energy efficiency (Ee f f ), a bias of 0.2 a.u. is pre-
ferred (xmin = 0.2, restricted area). A general solution might
need to add a current mirror to the proposed synapse having
both excitation and inhibition effects in neurons. However,
in this proposed technique, the weights are kept positive to
achieve only an excitation purpose as presented in Fig. 3(d).
The reason behind that is to avoid the mismatch of the trans-
fer functions of the inhibition and excitation synapses which
could severely impact accuracy of the hardware network.

The combined transfer function of the neuron and synapse
can be written as ip = h(g(ip−1)), where ip and ip−1 are the
excitation currents in Fp and Fp−1 hidden layers extracted
from PLS simulations of eNeuron and synapse models (see
Fig. 6 and the pseudocode 1). Assuming an ideal current
mirror, the function h can be written as the product of a non-
linear function and a constant current gain, leading to:

ip = hn(g(ip−1)) ·
(W/L)1

(W/L)2
, (13)

where (W/L)1
(W/L)2

is the current mirror gain obtained from MP1

and MP2 transistors depicted in Fig. 3(d). One may con-
clude that it is quite a realistic activation function as (13)
can be derived from post-layout simulations in [10] or even
measurements [7, 9]. Nevertheless, this physical modeling
is not suitable for eNN synthesis considering the procedure
described in Subsec. III.A..

The proposed synthesis framework learns on a normalized
activation function to improve training from literature tools
[13]. Thus, the previous equation can be rewritten as:

y =
(

hn(g(x))
maxx(hn(g(x)))

)
·
(
(W/L)1

(W/L)2
·maxx(hn(g(x)))

)
.

(14)
where y and x are the normalized excitation currents ip and
ip−1. The activation function f and the weights w can thus
be linked to the transfer functions and W/L ratios as

f (x) =
hn(g(x))

maxx(hn(g(x)))
and (15)

w =
(W/L)1

(W/L)2
·maxx(hn(g(x))). (16)

The relation (15) gives the activation function which is im-
plemented in the training framework. The relation (16)
allows for extracting the (W/L)i ratios from the weights
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Algorithm 1 eNN Synthesis Framework
1: Structure = [
2: locally_connected7*7(filters=1,kernel=(4,4),

strides=(4,4))
3: locally_connected3*3*3(filters=3,kernel=(2,2),

strides=(2,2))
4: dense(outputs=10)]
5: model_restriction (xmin, 0 || 0.2)
6: model = load_results (PLS_eNeuron, PLS_synapse)
7: [ip , ip−1] = model_eNeuron*model_synapse
8: [y,x] = normalized ([ip , ip−1])
9: polynomial_fit = polyFit ([ip ,ip−1], R2 ≈ 1.0,

order=12)
10: sigmoid_fit = sigmoidFit ([ip , ip−1] , R2 ≈ 0.9)
11: model_training=(structure,sigmoid_fit,

model_restriction)
12: for epoch = 1 to 100 do
13: tensor_weight = TensorFlow_learning

(model_training, MNIST, epoch)
14: accuracy_training = model_inference (ten-

sor_weight, model_training)
15: if accuracy_training ≥ 0.9 then
16: trained_weight = tensor_weight
17: else if epoch==100 then
18: trained_weight = tensor_weight
19: end if
20: end for
21: w̄ =trained_weight
22: σw = 0.01*trained_weight
23: statistic_model = normal_distribution (w̄t, σw)
24: accuracy_inference = MonteCarlo_inference

(statistic_model, structure, polynomial_fit,
model_restriction)

wi in the software neural network. However, there is
no access for such activation function (15) in TensorFlow.
Thus, two fits are made for each neuron, to create func-
tions usable for training and inference in software neural
networks. As described in the Algo. 1, the polynomial
fitting model (polynomial_fit) is used for inference
(accuracy_inference) after the eNN is already trained
(model_training) with sigmoid fit (sigmoid_fit,
second fitting).

The first fitting is a polynomial fit. This allows a very
close fit in the region where the function varies, while being
unvarying in the constant regions. This function must be a
very close fitting (r2 ≈ 1.0). However in this case, this poly-
nomial fit leads to issues during training due to the brutal
change of slope near 0.

The second fit is a generalized logistic function first intro-
duced in [29]. The generalized logistic function or curve is
an extension of the logistic or sigmoid functions, from this
point it shall be named sigmoid fit. The fitting function used
is

y(x) = A+
K −A

(C+Qe−Bx)1/ν
, (17)

where A, B, K, C, Q, ν are fitting constants. While the sig-
moid fit is less precise, it provides a function with a more

moderate slope. Thus, (17) is suggested to provide a close
enough fit (r2 ≈ 0.9), while still allowing the use of gradi-
ent descent training algorithms. The reason to that is that
sigmoid fit is C∞ everywhere which improves the tool’s con-
vergence.

A realistic activation needs a precise estimation of
the activation function f according to (15), and also to
consider the synaptic weight formulated in (16) as re-
alistic current mirror implementation (i.e. current mir-
ror mismatch). To this end, the inference shall include
the process variability of current mirror gain in (16).
Monte Carlo inference simulates trained eNN under
process variability (statistic_model). To this end, it is
proposed to turn the synaptic weights into statistic variables
following a normal distribution of w̄ = trained_weight
from training phase and a standard deviation of σw = 0.01 ·
trained_weight. This allows for assessing the conse-
quences of transistor variability considering current-mirror
mismatch while implementing the weights.

IV. SYNTHESIS ILLUSTRATION

A. Transistor-level eNeuron and Synapse Design

Using the BiCMOS 55 nm technology, a transistor-level
design is proposed for eNeurons in Fig. 2. Analog spiking
eNN synthesis shall be considered for a total of three syn-
thesis illustrations being: LIF, simplified ML (simp. ML),
and biomimetic ML (bio. ML). Table II summarizes the
eNeuron and compact synapse transistors’ sizing. Figure 7
illustrates the proposed layouts for eNeurons and compact
synapse. Found area consumption is as follows: LIF has
6.56×4.33 µm2 in Fig. 7(a); simp. ML has 8.21×7.52 µm2

in Fig. 7(b); bio. ML has 5.69× 17.33 µm2 in Fig. 7(c);
synapse has 6.60×7.55 µm2 in Fig. 7(d). Depicted layout is
presented in a high-quality vectorial image using [30], which
improves readability and reproducibility of presented results.

TABLE II.: Sizing of MN and MP transistors in W ×L (nm)
and in capacitance for C (fF) for the neurons

LIF model
MP1, MN1, MP2, MN2, MN3 135×65
C f 5.0

simp. ML model
MP1, MN1, MP2, MN2, MPNa, MNK 135×65
Cm 4.0 CK 8.0

bio. ML model
MP1 135×60 MN1 200×60
MP2 1200×60 MN2 135×60
MP3 200×60 MN3 135×60
MPNa 800×60 MNK 2000×60
Cm 5.5 C f 9.8
MPd 500×10,000 MNK′ 2000×60
C′

K 6.8 GL Leakage
Compact synapse

MPR 500×3000 MNTrans 135×480
MP1 270×60 MP2 324×60
C 11.9 MP3 1840×60
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(a)

(b)

(c)

(d)
Fig. 7: In-house proposed layouts for eNeurons under test: (a) LIF model having 6.56×4.33 µm2, (b) simp. ML model having
8.21×7.52 µm2, (c) bio. ML model having 5.69×17.33 µm2 . Compact synapse layout (d) having 6.60×7.55 µm2.

B. Post Layout Simulation Results

PLS are carried out using Spectre Virtuoso from BSIM4
models, which come from measured-based foundry mod-
els [31]. An iex parametric sweep is PLS simulated between
1 pA and 1 nA to extract the fspike response of the eNeu-
rons and its root-mean-square power consumption (PRMS).
At iex > 1 nA, fspike begins to fall due to circuit stability
due to subthreshold biasing (i.e. spiking oscillations stops).
Thus, the pointed iex range corresponds to the estimated dy-
namic of the eNeurons. Energy efficiency is calculated as
Ee f f = PRMS/ fspike. For PLS results, the synapse is used to
connect two eNeurons, thus assuring the correct operation of
the synapse. Figure 8 illustrates the obtained results.

B..1 eNeuron PLS results show that the relationship be-
tween iex and fspike is non-linear, with Ee f f significantly im-
proving on increased input current. As Ee f f is an important
concern when designing and using eNeurons, one may ex-
pect the eNeurons to be used in operating areas of high Ee f f .
Thus, a linear fit was realized for those areas in particular,
omitting the less efficient low-spiking frequencies. Having a
smaller range of operation, the LIF eNeuron is significantly
more non-linear than the other eNeurons. No satisfying lin-
ear fit could be found for the transfer function in Fig. 8(a),
for any significant iex range.

For the eNeuron designed from simp. and bio. ML mod-
els, a satisfying linear fit was found (r2 = 0.99) for iex > 200
pA. While the transfer functions are still non-linear in this
area, they can be closely approximated by a linear function.
The difference between the linear fits and real transfer func-
tions on average of 1.58% of spiking frequency for simp. ML
in Fig. 8(b), with the fit f (i) = 0.10× i+158.5, and 3.09%
for bio. ML in Fig. 8(c), with the fit f (i) = 0.28× i−14.0.

Results also show the Ee f f reduction over eNeuron iex
sweep. Figure 8(b) shows that the eNeuron becomes most
energy efficient above 100 pA, with Ee f f strongly degrading
for small iex. Figure 8(c) shows that the eNeuron becomes
energy efficient at iex > 200 pA. The eNeurons are expected
to be used in ranges above 100 pA and 200 pA respectively.

Aforementioned results highlight a trade-off between en-
ergy efficiency and deep-learning capabilities while using
state-of-the-art eNeurons. If a designer chooses to use the
full range frequency of the eNeurons, he will face poor Ee f f .
Instead, if one chooses to limit the operating range to higher
fspike, then the eNeurons will have a linear characteristic. In
this case, he will either be limited to the processing capabil-

ities of a shallow neural network, or have to use a non-linear
synapse. A designer might use the LIF eNeurons presented
in [7], which provide non-linearity at the expense of dynamic
range. This reasoning led the proposed technique to be im-
plemented either in xmin = 0 (no restriction) or xmin = 0.2
(restricted area).

B..2 Compact synapse PLS results exhibit the neces-
sary functions: output current grows with input spiking fre-
quency, and spiking injection loops are prevented. The exci-
tation current of the input neuron was swept from 0 to 1 nA,
to generate a sweep of the input spiking frequency of the
synapse. Figure 8(d) shows that the output current of the
synapse increases with the input frequency, which is con-
sistent with the expected behavior for an excitation synapse.
The frequency range explored is 0 to 450 kHz, which is the
output range of the bio. ML eNeuron, i.e. the larger dy-
namic range. While the output is non-linear, a linear fit can
be found for a specific input range. For fspike > 160 kHz , the
linear fit i( f ) = 1.63× f +769.2 was found with r2 > 0.99,
with an average difference between linearization and output
of 1.09%.

As a linear fit can be found for the synapse in areas of high
energy efficiency of the eNeurons, it will not introduce non-
linearity for networks functioning in those operating points.
This means that the transfer function between the outputs of
two layers will be a linear combination. This makes deep
learning and energy efficiency mutually exclusive if those
ultra-low power neuromorphic devices are used.

C. Activation Function Results

Presented PLS are complete but complex for a neural net-
work training. A monotone increasing of the post-synaptic
signal as a function of the pre-synaptic signal is required as
presented in [32]. Figure 9 shows the activation function
derived from the combination of the synapse and the differ-
ent neurons, described in the framework as normalized
function using arbitrary units (a.u.). It is considered the ex-
citation current ip−1 in the Fp hidden layer as a pre-synaptic
signal in x-axis and the excitation current ip in the Fp−1 hid-
den layer as a post-synaptic signal in y-axis. Represented in
black continuous line, normalized PLS results are presented
for LIF (see Fig. 9(a)), simp. ML(see Fig. 9(b)), and bio.
ML (see Fig. 9(c)) eNeurons.

As expected, one may notice that activation function are
highly non-linear. The first fit is a polynomial fit of degree
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Fig. 8: Post-Layout simulation results using BiCMOS 55nm technology. Black continuous line illustrates the fspike in kHz
over iex variation between 1 pA and 1 nA. Blue continuous line illustrates the Ee f f calculated from PRMS/ fspike in fJ/spike.
Red dashed line represents a linear fitting at high fspike and low Ee f f with r2 = 0.99. (a) LIF eNeuron FoM, where no linear
fitting is found. (b) Simp. ML eNeuron FoM, were a linear fit is obtained for iex ≥ 200 pA. (c) Bio. ML eNeuron FoM, were
a linear fit is obtained for iex ≥ 200 pA. (d) Compact synapse FoM, where a linear fit is obtained for fspike ≥ 160 kHz.

0.8 0.0 0.8 1.6 2.4 3.2
x (a. u. )

0.0
0.2
0.4
0.6
0.8
1.0

y
(a

.u
.)

(a)

0.8 0.0 0.8 1.6 2.4 3.2
x (a. u. )

0.0
0.2
0.4
0.6
0.8
1.0

y
(a

.u
.)

(b)

0.8 0.0 0.8 1.6 2.4 3.2
x (a. u. )

0.2

0.4

0.6

0.8

1.0

y
(a

.u
.)

(c)

PLS results
Polynomial fit
Sigmoid fit
Restriction

Fig. 9: Polynomial and sigmoid fit for the activation function of the studied synapse and neurons using arbitrary units (a.u.).
Black continuous line presents the PLS results. Blue dashed line represents the fitted sigmoid activation function. Red dashed
line represents a 12th order polynomial fitting, which is considered in this work as an realistic activation function. Green x-
axis bar highlights the dynamic range restriction where low Ee f f is found. Results are obtained for different eNeuron models:
(a) LIF, (b) simp. ML, (c) bio. ML.

12th. This allows for a very close fit in the region where the
function varies, while being constant in the constant regions.
This very close fit (r2 ≥ 0.999) leads to issues during training
due to the brutal change of slope near 0. However, it must
be used for inference while the eNN is already trained with
the sigmoid fit. Thus results will be closer to the behavior
of the hardware-based SNN using published eNeurons [6].
Red dashed lines represent the obtained polynomial fit for
the following LIF (see Fig. 9(a)), simp. ML(see Fig. 9(b)),
and bio. ML (see Fig. 9(c)) eNeurons.

The second fit using the generalized logistic function aims
fit less precise but it provides a function with a more mod-
erate slope. Blue dash-dotted lines represent the obtained
sigmoid fit for the following LIF (see Fig. 9(a)), simp. ML
(see Fig. 9(b)), and bio. ML (see Fig. 9(c)) eNeurons. LIF
sigmoid fit achieves a r2 ≥ 0.158, due to the disagreement
found for x ≥ 0.8 a.u. limiting LIF dynamic range. Sigmoid
fit for simp. and bio. ML models achieve r2 ≥ 0.995 and
r2 ≥ 0.985 respectively.

A designer, interested in minimizing Ee f f , may be driven
to seek an iex ≥ 200 pA (see Fig. 8). For this end, nor-
malized activation functions shall be considered for x ≥ 0.2
a.u. for polynomial and sigmoid fitting. Restricting the in-
put of the functions leads to a lower degree of non-linearity.
A green vertical bar highlights the low-power restriction im-
posed on the activation functions for LIF (see Fig. 9(a)),
simp. ML(see Fig. 9(b)), and bio. ML (see Fig. 9(c)) eNeu-
rons.

D. eNN Training

For each eNeuron, the neural network is trained for 100
epoch with the sigmoid activation function. The ideal sig-
moid response enables the use of TensorFlow and build a
machine learning application much faster for the MNIST.
Figure 10 illustrates the sigmoid learning in blue dashed-
dot line. Nevertheless, eNeuron response studied in Subsec.
III.C. is not an ideal sigmoid.

The sigmoid-trained architecture and synaptic weights are
then simulated using the polynomial activation function de-
picted in Fig. 9. Thus, eNN accuracy can be estimated using
more realistic components from Monte Carlo simulations.
Red dot markers in Fig. 10 illustrate the inference phase of
the trained eNN using the statistic_model.This result
assess the consequences of transistor variability considering
current-mirror mismatch while implementing the weights.

Moreover, a designer can be motivated for strong reduc-
tion of eNN energy efficiency and may choose to train the
neural network in the restricted area green-highlighted in
Fig. 9 where the lowest Ee f f is found. Restricted sigmoid
training is presented in dashed green line, while Monte Carlo
results considering the polynomial activation function are
shown using a green marker in Fig. 10. A green error bar
is preferred when Monte Carlo results reveals an accuracy
distribution bigger than the mathematical resolution (i.e. two
digits in this work).

Figure 10(a) highlights a significant accuracy improve-
ment until epoch 20 which slows down afterward for the LIF
eNeuron model. This results highlight that the LIF eNeuron
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Fig. 10: Accuracy asserted for neural network trained for 100 epoch. Blue continuous line presents the learning procedure using
sigmoid activation function. The red dot is the estimated accuracy when activation function is replaced by the polynomial
fitting obtained from PLS results. Blue dashed line represents the learning procedure using an restricted area of the sigmoid
activation function. Blue marker is the estimated accuracy when activation function is replaced by the polynomial fitting
while considering process variation. Results are obtained for different eNeuron models: (a) LIF, (b) simp. ML, (c) bio. ML.

has the fastest training convergence compared to the other
two eNeurons under test. The Monte Carlo simulation us-
ing the polynomial activation function (realistic activation
function) shows a decrease of 12% of the mean accuracy
(3 · σ ≤ 0.01) exhibiting a significant decrease in perfor-
mance for an integrated eNN solution. Restricted training
above 0.2 a.u. excitation is capable of improving average
Ee f f . The performance of such a low-power eNN with the
sigmoid fit improves erratically until epoch 100. This lack
of convergence, accuracy lower than 50%, is probably due
to the limited dynamic range of LIF eNeurons. Moreover,
using realistic activation function only highlights a perfor-
mance drop below randomness turning the eNN useless.

Figure 10(b) illustrates a significant accuracy improve-
ment until epoch 40 and reaching 0.9 at epoch 100 for simp.
ML eNeuron model. Besides, the realistic activation func-
tion simulation reveals a means accuracy decrease of 7% (ie.
µ = 0.83, 3 ·σ ≤ 0.01) . This is the best accuracy found in
this work. Restricted training above 0.2 a.u. excitation still
leads to training convergence to the accuracy of 0.9. How-
ever, the realistic activation function simulation highlights a
loss of accuracy of 16%, making the network significantly
less accurate.

Figure 10(c) illustrates a significant accuracy improve-
ment until epoch 40, then continues to improve slowly for
bio. ML eNeuron model. The difference of performance be-
tween the ideal sigmoid and the realistic activation function
simulation is only 3%, making the loss of accuracy minimal.
It is found that in the case of bio. ML eNeuron model, the
training using the sigmoid fit is more transferable to the poly-
nomial fit. The weights are thus closer to the realistic ones
than in the case of LIF eNeuron. Restricted training above
0.2 a.u. excitation improves more erratically up to 0.7 of ac-
curacy. However, the realistic activation function simulation
highlights an accuracy loss to a µ = 0.52 and a 3 ·σ = 0.12.

E. eNN Comparison and Discussion

This analysis concludes that LIF eNeuron implementa-
tion, due to the limited biological inspiration, presents an
important dynamic range limitation. Considering the poly-
nomial activation function depicted in Fig. 9, simp. and
bio. ML eNeurons achieve accuracy approximately of 0.82.
Moreover, Monte Carlo simulations also show that a mis-

match of 1% does not have a significant effect on eNN accu-
racy.

The mutually exclusive trade-off between the deep learn-
ing and ultra-low power is illustrated in the previous sub-
section by imposing a model restriction (xmin = 0.2). Thus,
a novel performance trade-off is revealed when limiting the
dynamic range of the neuron to reduce Ee f f . To achieve a
trained eNN with a low Ee f f , one must use a proper neural
network model considering the non-linear characteristics of
the activation function.

Table III highlights the trade-off between the area and the
total power consumption while considering active 86 eNeu-
rons and 1238 synapses. Total power is obtained from active
eNeuron PLS. The idle power consumption is calculated for
the condition no input in Ii layer (i.e. leakage current only).
Area is obtained from eNeuron and compact synapse area
(see Fig. 7 for details). Besides, presented estimation also
considers the area overhead on current mirror implementa-
tion, which depends on synapse weight.

The LIF eNeuron implementation achieved the lowest area
and power consumption. Both simpl. and bio. ML eNeuron
implementation achieved a total power twice bigger than the
LIF eNeuron one. The idle power consumption is around 140
nW among three proposed syntheses, as it is dominated by
the synapses idle power consumption. A similar conclusion
was previously found in [12], in which idle power consump-
tion per synapse were 30 pW while here it is 112 pW with a
much larger number of synthesized synapses.

V. CONCLUSIONS

To bridge the gap between software AI and analog neural
network, a framework with an algorithm guideline for energy
efficient analog SNN synthesis is proposed. It uses machine
learning TensorFlow to train and evaluate the accuracy of an
analog SNN composed of 86 eNeurons and 1238 synapses
with two hidden layers. MNIST is considered to achieve a
general solution for SNN implementation on analog hard-
ware. Results show that an SNN using ML eNeurons is more
accurate (0.82) than the one using LIF eNeurons (0.77) but
at the cost of higher-power consumption. Furthermore, re-
sults from Monte Carlo simulations show that a mismatch of
1% imposed on the synaptic weights, which are the critical
factor of training the neural network, does not significantly
affect the accuracy.
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TABLE III.: Estimated surface and power consumption for Synthesized eNN
LIF simp. ML bio. ML

Area (µm2) Total [idle] (nW) Area (µm2) Total [idle] (nW) Area (µm2) Total [idle] (nW)
86 eNeurons 2458 4.10 [1.36] 5313 11.63 [1.38] 8489 77.10 [7.96]

1238 Synapses 3291 251.8 [139.4] 3826 313.3 [139.4] 3640 510.0 [139.4]
Total 5749 255.9 [140.7] 9139 522.43 [140.8] 12130 587.9 [147.4]
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