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Abstract. In biological systems, the joints are actuated antagonisti-
cally by muscles that can be moved coherently to achieve the desired
displacement and co-activated with appropriate forces to increase the
joint stiffness. Taking inspiration from this, there is an interest to de-
velop bio-inspired robots that are suitable for both low-stiffness and
high-stiffness tasks. Mechanisms actuated by antagonist cables can be
a reasonable approximation of biological joints. A study on the anti-
parallelogram mechanism showed that the antagonistic forces (> 0) have
a positive influence on its stiffness, similar to the biological joints. In this
work, more general symmetric four-bar mechanisms with crossed/regular
limbs, larger/smaller top and base bars are investigated for this property.
Totally, six different types of mechanisms were identified and the limits
of movement were determined in each case. Inside these limits, it was
found through numerical simulations that the cable forces have a posi-
tive (resp. negative) influence on the stiffness of the mechanism when its
limbs are crossed (resp. regular). This shows that the symmetric four-
bar mechanisms with crossed limbs are suitable for building bio-inspired
joints/robots, while their counterparts cannot serve this purpose. Among
these, the anti-parallelogram mechanism offers the largest orientation
range of ] − π, π[ for the top bar w.r.t. its base and is thus the best
choice.

Keywords: four-bar mechanism · antagonistic actuation · cable-driven
· stiffness

1 Introduction

There has always been an interest in developing robotic arms that are fast,
accurate, repeatable, and energy efficient, for industrial applications. But, in the
recent past, research on robotic arms with more sophisticated capabilities such as
stiffness modulation, deployability, safe interaction with environment, have been
gaining prominence [1],[2]. An important source of inspiration for developing
such robots stems from the nature/biological systems, e.g., human arm in [3],
giraffe’s neck in [4], elephant’s trunk in [5].
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One of the key differences between the conventional robots and biological
systems lies in their joints. While most of the robots are made up of revolute
or prismatic joints, the biological systems hardly contain any of them. Instead,
their joints are composed of complex surfaces in contact with one another. Some
works have been dedicated exclusively to the study of kinematics such joints,
e.g., human knee in [6], vertebrae of a bird’s neck in [7]. A review on the animal
joints and their approximation with linkage mechanisms can be found in [8].

Another interesting feature of biological joints is their actuation. Unlike con-
ventional robots with linear or rotary actuators, they are actuated antagonisti-
cally by muscles. Normally, one set of muscle(s) contract while their antagonistic
counterparts relax and vice versa, to achieve the desired joint movement. But,
under special circumstances, both sets of muscles contract simultaneously to in-
crease the stiffness of the joint. This phenomenon is referred to as co-activation
of muscles in biological systems [9].

This interesting actuation scheme has been adopted in variable stiffness actu-
ators, where a pulley is used as the joint and two cables with in-series non-linear
springs are used for antagonistic actuation [10]. The two cables are pulled si-
multaneously as in muscle co-activation, to enhance the stiffness of this joint.
However, it must be emphasized that this is possible for the pulley joint only in
the presence of non-linear springs [10].

There are other joints where stiffness modulation can be achieved without
in-series springs, by only varying the cable forces, see e.g., the tensegrity-inspired
joints presented in [11]. It was found that with the increase in antagonistic cable
forces, the revolute joint experiences a drop in stiffness, which was a counter-
intuitive result [11]. The same behavior was also reported for a 2R joint with
offsets that represents one circle pure rolling over another [12]. In contrast, for
an anti-parallelogram joint, that is equivalent to one ellipse pure rolling over
another, the antagonistic actuation has a positive influence on the joint stiff-
ness [11], just as in the biological joints. Thus, drawing inspiration from the
anti-parallelogram mechanism, the goal of this work is to find all the four-bar
mechanisms with symmetric limbs, that exhibit an increase in stiffness with
antagonistic actuation by cables.

The remaining paper is organized as follows: the description of mechanism
and cable arrangement is presented in Section 2. The kinematic and static models
are discussed in Sections 3 and 4, respectively. The effect of antagonistic forces on
the stiffness of various symmetric four-bar mechanisms are studied in Section 5.
Finally, the conclusions are presented in Section 6.

2 Description of the symmetric four-bar mechanism

The schematics of four-bar mechanisms with symmetric limbs of length l, and
a top bar of length b is shown are Fig. 1. The two pivots fixed to the ground
are set at locations B1(0, 0) and B2(b0, 0), where b0 is a parameter that can
be varied to produce different four-bar mechanisms. Notably, b0 < 0 produces
mechanisms with crossed limbs, while b0 > 0 produces mechanisms with regular
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(a) b0 < 0 (b) b0 > 0

Fig. 1: Schematic diagram of four-bar mechanisms with symmetric limbs that are
crossed when b0 < 0 (left) and regular when b0 > 0 (right). The two actuating
cables are shown in dashed lines.

(non-crossed) limbs as illustrated in Figs. 1a and 1b, respectively. The special
cases of anti-parallelogram and parallelogram mechanisms are obtained when
b0 = −b and b0 = b, respectively. However, the case b0 = 0 degenerates the
four-bar to a revolute joint and will not be considered in this work. For all the
mechanisms, it is necessary that the geometric condition

(
l > |b−b0|

2

)
be satisfied

for its assembly.

This mechanism is actuated antagonistically with two cables C1, C2, con-
nected between the pivots (P1, B2) and (P2, B1), respectively, as indicated by
dashed lines in Fig. 1. The force imparted by the cable Ci is given by Fi ≥ 0
and its varying length in the mechanism is denoted by li, for i = 1, 2. The cables
are assumed to be massless and inelastic in this study.

The orientation of the top bar w.r.t. the base is denoted by α, while those
of the two limbs w.r.t. the base are given by ϕ, ψ, respectively (see Fig. 1).
The coordinate α is used to measure the range of movement of the mechanism.
The upper bound for α, denoted by αmax, can be found by rotating the top
bar from α = 0 in the counterclockwise direction until any of the three pivots
(B1, B2, P1, P2) become collinear. Physically, at this configuration, the wrench
imposed by one of the cables vanishes, and the static balance of the mechanism
cannot be maintained. Thus, the wrench-feasible range of movement for this
mechanism is given by α ∈]−αmax, αmax[, owing to the symmetry in architecture
and actuation scheme about α = 0.

However, the above representation is not valid for the parallelogram mecha-
nism (b0 = b), since α remains zero at all the configurations. This case will be
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treated separately in Section 5.1. But, for all other cases, further study will be
conducted inside α ∈]− αmax, αmax[.

3 Kinematic model of the mechanism

The loop-closure equation for the four-bar mechanism can be written as follows
(see Fig. 1):

−−−→
B1P1 +

−−−→
P1P2 −

−−−→
B2P2 −

−−−→
B1B2 =

−→
0 (1)

This can be expanded into:

l

(
cosψ
sinψ

)
+ b

(
cosα
sinα

)
− l

(
cosϕ
sinϕ

)
−
(
b0
0

)
=

(
0
0

)
(2)

Since the above equations are homogeneous in terms of the length parameter, it
can be normalized by setting b = 1, without any loss of generality. Considering α
as the known input, it is possible to find the remaining angles (ϕ, ψ) as a function
of α using the above equations (see e.g., [13], pp. 411-412). There are two possible
solutions (ϕ, ψ)1 and (ϕ, ψ)2, as presented below:

(ϕ, ψ)1 :=


cosϕ = µ sinα+cosα−b0

2l

sinϕ = sinα+µ(b0−cosα)
2l

cosψ = µ sinα−cosα+b0
2l

sinψ = µ(b0−cosα)−sinα
2l

(ϕ, ψ)2 :=


cosϕ = −µ sinα−cosα+b0

2l

sinϕ = −µ(b0−cosα)−sinα
2l

cosψ = −µ sinα+cosα−b0
2l

sinψ = − sinα+µ(b0−cosα)
2l

(3)

where µ =
√

4l2−b20−1+2b0 cosα

b20+1−2b0 cosα
. For a given α ∈]−αmax, αmax[, one of the above

solutions corresponds to the top bar P1P2 being above the base B1B2, while the
other corresponds to top bar being below the base. In this study, only the former
solution is of interest. Note that the specified joint limits α ∈] − αmax, αmax[
preclude the case where one end of the top bar is above, while the other one is
below.

By setting α = 0 in Eq. (3), it can be deduced from the resulting expressions
that the desired solution branch is given by (ϕ, ψ)2 when (b0 < 1) and by (ϕ, ψ)1
when (b0 > 1). Revoking the normalization w.r.t. b, the above conditions trans-
late into (b0 < b) and (b0 > b) in the two cases, respectively.

From Fig. 1, the cable lengths (in all cases) can be written as follows:{
Length of cable C1 =⇒ l1 := P1B2 =

√
l2 + b20 − 2lb0 cosψ

Length of cable C2 =⇒ l2 := P2B1 =
√
l2 + b20 + 2lb0 cosϕ

(4)

The lengths l1, l2 can be obtained as functions of α by substituting for cosψ
and cosϕ from Eq. (3), appropriately.
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4 Static model of the mechanism

The static model of four-bar mechanism in Fig. 1 can be developed starting from
its potential energy:

U = Ug + F1l1 + F2l2 (5)

where Ug represents the contribution of gravity and springs (if any), Fili with
i = 1, 2 represents the work potential of the actuating cables. Treating α as the
generalized coordinate in this study, differentiating U w.r.t. α and setting it to 0,
yields the static equilibrium equation:

dUg

dα
+ F1

dl1
dα

+ F2
dl2
dα

= 0 (6)

Further differentiation w.r.t. α yields the stiffness (K) of the mechanism:

K :=
d2Ug

dα2
+ F1

d2l1
dα2

+ F2
d2l2
dα2

(7)

Since the stiffness must be evaluated only when the equilibrium equation is
satisfied, one can solve for F2 from Eq. (6) and substitute into Eq. (7), to obtain:

K = γ1F1 + other terms (8)

where γ1 =
(

d2l1
dα2 +

(
−dl1/dα
dl2/dα

)
d2l2
dα2

)
. Similarly, it is also possible to solve for F2

from Eq. (6) and substitute in Eq. (7) to obtain the coefficient of F2 in K as
γ2 =

(
d2l2
dα2 +

(
−dl2/dα
dl1/dα

)
d2l1
dα2

)
.

The effect of actuation forces on stiffness can be studied based on the terms γ1
and γ2. If γ1 > 0 (resp. γ2 > 0), it implies that F1 (resp. F2) has a positive influ-
ence on the stiffness. Similarly, if they are negative then forces have a negative
influence on the stiffness. Due to symmetry in the architecture and cable con-
nections, γ1 and γ2 are mutually symmetric about α = 0.

Mechanisms with positive γ1, γ2, are quite interesting because even when
they become unstable due to external factors such as an increase in payload, they
can be stabilized by simply increasing the actuation forces. This key property
makes them ideal candidates for mimicking muscle actuated joints in biological
systems, e.g., elbow joint of a human arm, where its increased stability can be
felt by simultaneous contraction of the associated muscles.

In the subsequent sections, the nature of γ1, γ2 is studied for various four-bar
mechanisms.

5 Effect of actuation forces on stiffness

The effects of antagonistic forces on the stiffness of parallelogram and anti-
parallelogram mechanisms are studied in Section 5.1, while the effects on general
symmetric four-bar mechanisms are studied in Section 5.2.
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Fig. 2: Schematic of the parallelogram mechanism (b0 = b).

5.1 Parallelogram and anti-parallelogram mechanisms

The parallelogram mechanism shown in Fig. 2 is obtained by setting b0 = b.
Unlike other four-bar mechanisms, α remains 0 at all configurations for this
mechanism. Hence, the orientation (θ) of the line joining mid points of the top
and base bars w.r.t. the vertical, is used as the independent coordinate. The
range of movement is limited by θ ∈

]
−π

2 ,
π
2

[
, due to the flat-singularities.

From Fig. 2, it is apparent that ϕ = ψ = π
2 +θ. Thus, from Eq. (4), the cable

lengths are given by:

l1 =
√
l2 + b2 + 2lb sin θ l2 =

√
l2 + b2 − 2lb sin θ (9)

Following the same process described in Section 4, with θ in place of α, one
obtains γ1, γ2 as: γ1 = − 2bλ2(λ2+1) cos2(θ)

(λ2+1−2λ sin θ)(λ2+1+2λ sin θ)3/2

γ2 = − 2bλ2(λ2+1) cos2(θ)
(λ2+1−2λ sin θ)3/2(λ2+1+2λ sin θ)

(10)

where λ = (l/b). It is apparent that all the factors in the numerators of γ1 and γ2
are positive. The two factors in the denominators are also positive since they are
bounded inside [(λ− 1)2, (λ+1)2] for all real θ. Thus, it is clear that γ1, γ2 < 0,
due to the leading negative sign. This shows that antagonistic forces have a
negative impact on the stiffness of the parallelogram mechanism. This result is
consistent with the experimental data presented in [14], which shows that the
cable tensions were reduced to increase the stiffness of this mechanism.

Contrary to the parallelogram mechanism, it has been proven analytically
in [11] that the antagonistic forces have a positive impact on the stiffness of
anti-parallelogram mechanism.

As a numerical illustration consider a parallelogram (b0 = b) and an anti-
parallelogram (b0 = −b) mechanism with b = 1 m and l = 2 m each. For the
sake of simplicity, the bar masses are neglected and no springs are added to these
mechanisms. In order to perform a fair comparison, the anti-parallelogram mech-
anism will also be described by the coordinate θ, as defined above for the parallel-
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Fig. 3: Stiffness of the mechanisms when θ ∈
]
−π

2 ,
π
2

[
for different actuation

forces.

ogram mechanism. The associated expressions for cable lengths and mechanism
stiffness can be found in [11].

One of the ways to study the change in stiffness with increasing antagonistic
forces is to firstly specify a minimum value for the actuation forces, say Fmin. At
a given configuration θ, one could compute the balancing forces (F1, F2) from
Eq. (6) (neglecting Ug) such that one of them is equal to Fmin while the other is
greater than or equal to Fmin. These forces can be substituted in Eq. (7) to find
the respective value of stiffness. This process has been carried for different values
of Fmin: 0 N, 75 N and 150 N. The corresponding values of stiffness are plot-
ted for the parallelogram and anti-parallelogram mechanisms in Fig. 3a and 3b,
respectively. The equilibrium forces are also represented at certain configura-
tions. It is apparent that an increase in Fmin causes a decrease (resp. increase)
in stiffness for the parallelogram (resp. anti-parallelogram) mechanism, for all
values of θ. This is a consequence of the negative (resp. positive) force coeffi-
cients γ1, γ2 for the parallelogram (resp. anti-parallelogram) mechanism. This
shows that the anti-parallelogram mechanism can serve as a bio-inspired joint
while the parallelogram mechanism cannot.

5.2 General symmetric four-bar mechanisms

Unlike the parallelogram and anti-parallelogram mechanisms, it is very difficult
to conduct analytical studies on γ1, γ2 for the general mechanisms (b0 ̸= ±b) due
to the emergence of nested square roots in expressions of l1, l2 (see Eqs. (3),(4)).
Hence, the nature of γ1, γ2 will be studied through numerical examples for these
mechanisms. Firstly, six different cases I, . . . ,VI have been identified based on the
value of b0, as shown in Tables 1 and 2. In each case, the limiting configurations
at (±αmax), plot of γ1, γ2 inside α ∈] − αmax, αmax[ for one candidate design,
and the limiting value of γ1, γ2 inside the feasible design space, are presented
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in the successive columns of these tables. The following observations are made
from them:

– The maximum orientation of top bar αmax varies in ]0, π[ for the mechanisms
in cases (I, II, III), while it is limited to [0, π2 [ in cases (IV,V,VI). Thus,
mechanisms with crossed limbs must be preferred for applications requiring
large α.

– From the plots of γ1, γ2 for one candidate design, it is observed that they re-
main non-negative (resp. non-positive) for cases (I, II, III) (resp. (IV,V,VI)).
The values of γ1, γ2 tend to ±∞ near the boundary, in cases (I, III, IV,VI)
due to the vanishing of dl1

dα or dl2
dα , present in the denominator of the re-

spective expressions (see below Eq. (8)). However, γ1, γ2 remain bounded
and tend to 0 in cases (II,V) due to the vanishing of both first derivatives
of l1, l2 at the boundary.

– In order to verify if γ1, γ2 remain positive (resp. negative) for other de-
signs in cases (I, II, III) (resp. (IV,V,VI)), their minimum γmin (resp. max-
imum γmax) inside the range of movement is tested. Since the expressions
of γ1, γ2 are homogeneous w.r.t. the derivatives of cable lengths, one of the
length variables (b ̸= 0) can be factored out as in Eq. (10). This reduces
the design space to just two variables ( lb ,

b0
b ). Firstly, a feasible design space

satisfying the assembly condition l > |b−b0|
2 and bounded by 0 < l

b ,
|b0|
b ≤ 20

is constructed. The values of γmin
b and γmax

b are computed for the feasible
designs numerically to obtain the plots in last columns of the two tables.
From these, it is clear, that γmin ≥ 0 for cases (I, II, III) and γmax ≤ 0 for
cases (IV,V,VI). This illustrates that the antagonistic forces have a positive
(resp. negative) influence on the stiffness of mechanisms with crossed (resp.
regular) limbs.

– Among the four-bar mechanisms with a positive correlation between forces
and stiffness, the anti-parallelogram (case II) has the largest range of move-
ment α ∈]−π, π[ and is to be preferred in general. However, the mechanisms
in cases (I, III) might also be interesting for applications where large orien-
tation range may not be essential, e.g., joints in the hyper redundant robots
inspired from elephant’s trunk [5]. In cases (I, III) the value of γmin is large
for designs close to the limiting assembly condition 2l = |b− b0|, which indi-
cates that there is a compromise between the range of movement and γmin
in these designs.

6 Conclusion

A class of four-bar mechanisms with symmetric limbs, actuated antagonistically
with two cables imposing forces F1, F2 > 0, has been considered in this work. The
effect of an actuation force F1 (resp. F2) on the stiffness a mechanism has been
studied through its coefficient γ1 (resp. γ2) in the expression of stiffness after
eliminating the other force F2 (resp. F1) using the equilibrium equation. Due to
the symmetry in architecture and arrangement of cables, the force coefficients



Effect of antagonistic actuation on the stiffness of symmetric four-bar 9

T
ab

le
1:

E
ffe

ct
of

an
ta

go
ni

st
ic

fo
rc

es
on

th
e

st
iff

ne
ss

of
fo

ur
-b

ar
m

ec
ha

ni
sm

s
w

it
h
(b

0
<

0
)

(c
ro

ss
ed

lim
bs

).

C
on

d
it

io
n
/

S
ch

em
at

ic
B

ou
n
d
s

on
α
∈
]
−

α
m

ax
,α

m
ax
[

P
lo

t
of

−
γ
1
,
−

γ
2

fo
r

on
e

d
es

ig
n

w
it

h
b
=

1
m

,
l
=

2
m

(γ
m

in
/
b)

in
d
es

ig
n

sp
ac

e
2
l
>

|b
−

b 0
|&

l,
|b

0
|∈

[0
,2
0
b]

-
3

-
2

-
1

0
1

2
3

01234

-
3

-
2

-
1

0
1

2
3

-
0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
5

1
0

1
5

2
0

-
1
.0

-
0
.5

0
.0

0
.5

1
.0

-
3

-
2

-
1

0
1

2
3

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5



10 V. Muralidharan et al.

T
ab

le
2:

E
ffe

ct
of

an
ta

go
ni

st
ic

fo
rc

es
on

th
e

st
iff

ne
ss

of
fo

ur
-b

ar
m

ec
ha

ni
sm

s
w

it
h
(b

0
>

0
)

(r
eg

ul
ar

lim
bs

).

C
on

d
it

io
n
/

S
ch

em
at

ic
B

ou
n
d
s

on
α
∈
]
−

α
m

ax
,α

m
ax
[

P
lo

t
of

−
γ
1
,
−

γ
2

fo
r

on
e

d
es

ig
n

w
it

h
b
=

1
m

,
l
=

2
m

(γ
m

in
/
b)

in
d
es

ig
n

sp
ac

e
2
l
>

|b
−

b 0
|&

l,
|b

0
|∈

[0
,2
0
b]

-
3

-
2

-
1

0
1

2
3

-
2
.0

-
1
.5

-
1
.0

-
0
.5

0
.0

-
1
.5

-
1
.0

-
0
.5

0
.0

0
.5

1
.0

1
.5

-
1
.2

-
1
.0

-
0
.8

-
0
.6

-
0
.4

-
0
.2

0
.0

0
.2

0
5

1
0

1
5

2
0

-
1
.0

-
0
.5

0
.0

0
.5

1
.0

-
3

-
2

-
1

0
1

2
3

-
8

-
6

-
4

-
20



Effect of antagonistic actuation on the stiffness of symmetric four-bar 11

are also mutually symmetric about the configuration where the top and base bars
are parallel. When γ1, γ2 are positive, the stiffness increases with the increase in
cable forces, similar to the muscle actuation of a biological joint.

It was found through numerical simulations that γ1, γ2 > 0 occurs only when
the two limbs are crossed, and not otherwise. Among such mechanisms, the
anti-parallelogram mechanism offers the largest orientation range of ] − π, π[
for the top bar w.r.t. its base, and is thus best suited for building bio-inspired
robot manipulators. The other mechanisms with crossed limbs might also be of
interest for applications where large range of movement is not a necessity, as in
redundant and hyper-redundant systems.

The formulation of stiffness showed that the effect of actuation forces depends
only on the varying cable lengths in the mechanism and its first, second order
derivatives. Hence, it would be interesting to search for more general conditions
on the instantaneous properties of actuation force lines and the instant center of
rotation, to have a positive correlation between actuation and stiffness. For the
four-bar mechanisms, it is well known that the movement of its coupler w.r.t.
the base can be represented by the pure rolling of one curve (moving centrode)
over another (fixed centrode) [15]. A study of the nature of these curves and the
cable force lines in each case might provide a more intuitive understanding of the
co-activation phenomenon, and aid in the development of more such mechanisms
(with one or more degrees of freedom) for bio-inspired robots.
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