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ABSTRACT Recently, new emerging techniques of neuromorphic hardware render spiking neuron networks
(SNN) promising as an energy-efficient solution for artificial intelligence (AI). With the idea of physics
informed neural network, the structure can be simple while training data can be light. However its application
in RF telecommunication system is still challenging. This paper, as the first time in the literatures, proposes a
solution of SNN-based digital predistortion (SNN-DPD) for linearization of RF transmitters, such as power
amplifiers (PA). A two-layer SNN is deployed in frequency domain to process the spectrum of the stimulus
for a predistorted signal. The proposed technique is experimentally validated on a test bench with a real PA
of different bias voltages. We also test the proposed SNN-DPD for multi-band linearization. The proposed
method reaches the best performance of traditional DPD methods while owing advantages of the SNN, such
as low power consumption and good biomimicry for AI.

INDEX TERMS Artificial intelligence (AI), digital predistortion, frequency domain, linearization, physics
informed, power amplifiers, spiking neural networks.

I. INTRODUCTION
Along with the development of artificial intelligence (AI) in
the past decades, different techniques based on neural net-
works have been used for PA linearization, such as artificial
neural networks (ANN) [1], [2], [3], convolutional neural
networks (CNN) [4], and support vector machine (SVM) [5].
These neuron-based techniques have been shown effective
when both the number of neurons and the training dataset are
large enough. In case where any knowledge of physical laws
are known, the problems can be addressed more accurately
with less training data thanks to physics informed neural
networks (PINN) [6]. The concept of the PINN has also
been generalized for different network structures, such as
the CNN [7].

The spiking neural networks (SNN) have been considered
as the third generation of neural network [8], which may
have advantages on information processing of an AI system
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and on energy consumption. Different from conventional
ANNs which process digital data, the SNN better mimics
the biological behavior of the brain cortex which processes
spike trains [9]. In other words, the event-driven SNN has
more capacity to be inspired by the biological brain since its
event-driven property helps to capture the rich dynamics of
neurons within the brain. As the research on brain science
is advancing rapidly, the process of inference and decision
making of human brain can bring more and more inspiration
to the AI.

Similar to the brain cortex, the neurons in SNN are excited
by a current Iex which brings an increase of membrane poten-
tial Vm. This waveform of Vm is in spike shape because it
will be reset to a low potential Vr once it reaches a threshold
Vs. The spike of Vm can be transmitted from one neuron to
another through synapses. Not like neurons inANNwhich are
always kept active for data processing and memory access,
a neuron in SNN shall be active only when it fires a spike.
This event-driven property results in a giant reduction on
computational consumption. The SNN is believed to have
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over 100 times higher efficiency on energy consumption than
the ANN when implemented on a field-programmable gate
array (FPGA) [10].

Moreover, compared with being developed on conven-
tional computers and digital signal processing circuits [11],
some recent studies found the SNN highly energy efficient
on non-von-Neumann computing hardware [12], [13], [14].
With SNN-based neuromorphic chip hardware, an IBM plat-
form TrueNorth [15] consumes only 10−5 of a conventional
continuous-value network. Besides, Loihi [16] and Brain-
drop [17] also provide solutions of neuromorphic chips which
save enormously energy compared with CPU-based proces-
sors.

In [18], an electronic neuron is designed with MOS tran-
sistors biased in weak inversion, which consumes around
several hundred pico-Watt. With the technique of low power
circuits design, the spiking neural networks exhibit a great
interest on power efficiency compared with conventional
continuous-value network of equivalent scale [19].

Power consumption has always been a crucial factor in
wireless communication systems. As the development of
modern 5G and beyond communication systems, the number
of base stations goes up exponentially. Improving the power
efficiency of the system becomes more and more important.
Power amplifiers (PA) are ones of the most power consuming
devices in the system. However, the energy efficiency of a PA
is restricted by its nonlinearity [20].

The digital predistortion (DPD) is one of the most com-
mon approaches for PA linearization [21]. The distortion
of a PA is mainly due to its nonlinearity and memory
effects. In order to compensate for these distortions, various
DPD models have been developed based on Volterra series,
such as memory polynomial (MP) [22], generalized mem-
ory polynomial (GMP) [23], dynamic-deviation-reduction
(DDR) model [24], and decomposed vector rotation (DVR)
model [25]. Block-oriented non linear (BONL) systems [26]
have also been studied. Some techniques of machine learn-
ing [27], [28] are recently found of interest in PA lineariza-
tion. The DPD can be implemented for both time-domain
(TD) data and frequency-domain (FD) data. In [29], an FD-
DPD has been proposed to process only the subcarriers of
a wideband signal, which largely reduces the number of
processed samples and avoids the restriction of the high sam-
pling rate. However, this FD-DPD has huge computational
burden in constructing nonlinear basis functions since the
multiplications in time domain is converted to convolutions
in frequency domain.With this physical knowledge, applying
the SNN under the framework of the PINN to address this
problem is promising but challenging. Some studies on using
the nonlinear behaviors of spiking neurons for off-line PA
modeling have recently been reported [30].

In this paper, we explore to use the SNN technique on
the DPD modeling. Since the SNN uses the frequency of
its spike trains to present a constant value during a certain
period, it is difficult to process the orthogonal frequency
division multiplexing (OFDM) signal in time domain. Thus

we present an SNN-based DPD (SNN-DPD) as a solution
for both single-band and multi-band linearization, which pro-
cesses the subcarriers of OFDM frames in frequency domain.
Its input data is the spectrum of the stimulus magnitude, and
its output data gives the spectrum of the magnitude of the
predistorted signal. The SNN contains two layers of neurons,
with the input layer of neurons excited by the encoded cur-
rents, and the second layer outputs a series of firing rates
fspike which can be decoded to corresponding subcarriers of
the predistorted signal. To the best of authors’ knowledge, this
is the first study to employ the emerging technique of SNN in
the PA linearization. In this paper, the proposedmethod is val-
idated with experimental measurements on the testbench of
Chalmers WebLab [31] for both single-band and multi-band
cases, which confirms the effectiveness of its linearization
performance. The Chalmers WebLab is accessible to global
public via Internet so that researchers can fairly compare
different techniques under similar conditions.

This paper is organized as follows. In Section II, the
SNN and its training method are explained. The proposed
SNN-DPD is presented in Section III. We analyze the com-
plexity of classical techniques and the proposed technique in
Section IV. In SectionV, the test bench and the corresponding
experimental results are presented and discussed. Finally, the
conclusion is given in Section VI.

II. SNN AND NETWORK TRAINING
The SNN is inspired by the biological behavior of the brain
cortex. The information in the SNN is transmitted and pro-
cessed in the form of spike trains which are pulses of mem-
brane voltage. In the cortex neuron, a biological current Iex
is generated by the passing of Sodium (Na+) and Potassium
(K+) ions through the membrane [32]. Under the excitation
of Iex, the membrane voltage Vm keeps on increasing. The
neuron fires a spike once Vm exceeds a given threshold
VT . However, it cannot go to infinite. After exceeding the
threshold, Vm falls down quickly back to the rest value. This
electric behavior in the neuron has been described by the
Hodgkin-Huxley (HH) model [33] and Morris and Lecar
(ML) model [34], which enables the design of an elec-
tronic neuron to repeat the procedure of firing spikes. Some
simplified models have been proposed, such as Izhikevich
model [35] and leaky integrate and fire (LIF) model [36].

The information processing of a neuron is illustrated in
Fig. 1. A neuron generates spikes of membrane voltageVm (1)
when it is excited by a current Iex as shown in Fig. 1(a); (2) or
when a synapse connected to it is stimulated by a spike train
as shown in Fig. 1(b). The output spike train from a neuron
in Fig. 1(a) or (b) can have different frequencies, as shown
in Fig. 1(c). This spike train can carry the information in
different ways, such as by its frequency fspike. A counter is
connected to the neuron to read out fspike. This frequency
information can also be converted to the current information,
if necessary, through a predefined look-up table (LUT) since
the values of fspike and Iex are somehow one-to-one mapping.
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FIGURE 1. Scheme of a spiking neuron: (a) spiking neuron excited by a
current; (b) spiking neuron receives a spike train as input; (c) readout of
information from spike rates as neuron’s output and transfer to current
information if necessary.

Their relation depends on the realization model of the neuron
circuit and the model parameters.

A. SPIKING NEURON MODELS
The variation of membrane voltage Vm as a function of exci-
tation current Iex can be described by HH model:

dVm
dt

=
1
Cm

(
Iex − GNa · m3

· h · (Vm − ENa)

− GK · n4 · (Vm − EK ) − GL(Vm − EL)
)

dn
dt

= αn(1 − n) − βnn

dm
dt

= αm(1 − m) − βmm

dh
dt

= αh(1 − h) − βhh, (1)

whereCm is themembrane capacitance,GNa andGK aremax-
imum conductances of channels for Na and K ions respec-
tively, GL is the leakage conductance, ENa and EK are Nernst
potentials for Na and K ions respectively, EL is the leakage
potential, m, n, and h are activation coefficients, the variables
(αm, αn, αh, βm, βn, βh) are functions of Vm.
We can see in this models that the differential equation

of membrane voltage Vm shows its gradient is negatively
proportional to its own value, which means Vm increases
slowly when its value is large. However, under the excitation
by a current Iex which is large enough, the gradient of Vm
is kept positive. The membrane voltage of a neuron keeps
increasing till a threshold voltage and then is abruptly reset to
the rest voltage. This procedure generates a spike. With the
existence of Iex, the neuron keeps on generating spike train
with a frequency related to the value of Iex.

Fast Spiking (FS) neurons are explored in [14] and [18]
which fire high-frequency tonic spikes with relatively con-
stant period, as well as the Low-Threshold Spiking (LTS)
neurons which fire tonic spikes with pronounced spike fre-
quency adaptation (decreasing) and rebound spikes due to
post-inhibitory effect. In Fig. 2, we illustrate the Iex-fspike
curves with 4 different datasets from the post-layout simu-
lations of neurons redesigned as presented in [37]:

FIGURE 2. Normalized Iex vs. fspike curves of 4 neurons.

FIGURE 3. System scheme of two neurons connected by synapses.

1) Neuron 1: FS neuron with LIF model designed in [14].
2) Neuron 2: FS neuron with ML model designed in [14].
3) Neuron 3: FS neuron with ML model designed in [18].
4) Neuron 4: LTS neuronwithMLmodel designed in [18].
For better visualization, in Fig. 2, the datasets of fspike

and Iex are offset and normalized between the interval [0,1].
We can see that, though different types of neuron with dif-
ferent designs have different characteristics but with similar
trends, the value of Iex can always be determined if we know
fspike, and vice versa. In other words, with a constant input
Iex, a spiking neuron can produce a spike train with stable
frequency. This enables the connection between the samples
of signals and the SNN.

B. SYNAPSE MODELS
The neurons are connected with synapses which transmit the
spikes of the pre-neuron to the post-neuron as illustrated in
Fig. 3. The synapses are labeled with different weights wi.
The spikes fired by the pre-neurons are transmitted through
synapses to the post-neuron. For a neuron of HH or ML
model, the membrane voltage Vm is increased by wi once it
receives a spike from the synapses:

dVm
dt

=
Iex − (GNa · m3

· h · (Vm − ENa)
Cm

−
GK · n4 · (Vm − EK ) + GL(Vm − EL)

Cm
+

∑
i

wi
∑
s

δ(t − ti,s), (2)

where ti,s represents the s-th spiking time of the i-th pre-
neuron.
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FIGURE 4. Structure of SNN with hidden layers.

A simple structure of an SNN is illustrated in Fig. 4.
A network can be composed of at least 2 layers: the input layer
and the output layer. Between these 2 layers, some hidden
layers can be inserted for better variety of connections. Each
layer consists of a certain number of neurons. The input signal
can be some spike trains or some values of excitation current
Iex , and the output signal can be measured directly in form of
spiking rate fspike or their equivalent current Iex .

C. NETWORK TRAINING BY STDP
An effective way to train the SNN is the spike-timing depen-
dent plasticity (STDP) mechanism [38]. In the brain cortex,
the strength of connections between neurons is dynamic and
is adjusted by the STDP process. In the artificial synapses,
we adopt the same process for the SNN training.

The strength of connections between neurons is repre-
sented by the weight of synapse wi in (2). The main factor
in the STDP is the spiking times of the pre-neuron and post-
neuron on the two sides of the synapse. In case where the
pre-neuron fires a spike before the post-neuron, we shall
increase the weight because there is a causal connection
between the pre-neuron spike and that of the post-neuron.
In case where the pre-neuron fires a spike after the post-
neuron, the causal connection does not exist anymore and we
shall decrease the weight. The weight variation 1wi depends
on the spiking time difference 1t between the pre-neuron
and the post-neuron. When their spiking times are close,
their connection should be adjusted rapidly. Thus for the i-
th synapse, we have

1wi =

∑
spre

∑
spost

F(1tspre,spost ), (3)

where spre and spost are the index of spike train fired by the
pre-neuron and the post-neuron of the i-the synapse, respec-
tively. The function F(1t) can be expressed as

F(1t) =

Apree
−

1t
τpre , if 1t > 0,

−Aposte
−

1t
τpost , otherwise,

(4)

where Apre and Apost are positive constants to determine the
limit of F(1t), τpre and τpost are time constants to scale 1t ,
and 1t = tspost − tspre is positive when the pre-neuron fires a
spike before the post-neuron.

D. POWER CONSUMPTION OF SNN
The SNN can be implemented on three kinds of materials:
1. classical digital circuits, such as Intel CPU or FPGA;
2. neuromorphicmanycore processor, such as TrueNorth [15],
Loihi [16] and Braindrop [17]; 3. low-power neuromorphic
circuits with weak-inversion CMOS, such as in [14] and [18].
We analyze their corresponding power consumption sepa-
rately.

1) CLASSICAL DIGITAL CIRCUITS
With classical digital circuits, the spike is represented by
bit 1 while bit 0 represents non-spiking state. The power
consumption of an FPGA is proportional to its sampling
frequency according to [39]:

P = V 2
dc · f · Cl · α (5)

where α is the switching activity of bits which corresponds
to number of flops (floating-point operations per second),
Cl the load capacitance, Vdc the supply voltage and f is the
system frequency directly related to the sampling frequency
fs. The power consumed by a classic DPD is usually in order
of several hundreds of mW and up to 2 W according to [40].

2) NEUROMORPHIC MANYCORE PROCESSOR
The neuromorphic processors are specifically designed for
synaptic operations. Its power consumption is counted per
synaptic operation. According to [15], TrueNorth consumes
26 pJ per synaptic event which renders around 400 billion
synaptic operations per second (SOPS) per watt. Loihi in [16]
consumes 23.6 pJ per synaptic event and Braindrop needs
only 381 fJ per synaptic event according to [17].

3) LOW-POWER NEUROMORPHIC CIRCUITS
Recently some electrical neurons (e-neuron) have been pro-
posed with CMOS transistors working in weak-inversion
mode which permits the circuit to work with very low current.
The e-neuron in [18] needs 3.6 fJ for each spike. Moreover,
the circuit is only activated in very short time when there
is a spike. At other time, the circuit is equivalent to being
deactivated. The power consumption of an SNN on different
material are listed in Table 1. In [37], authors have mea-
sured the power of e-Neuron based on ML model designed
in [14] and obtain 5 nW for the silicon core with an area
of 0.025 µm2, which is negligible in front of classical digital
circuits.

III. PROPOSED SNN-DPD
A. CHALLENGES IN APPLICATION OF SNN
As the SNN technique has a great advantage on energy
efficiency and is promising for AI development thanks to
its biomimicry, we propose to apply it as a DPD for PA
linearization. As described in the previous section, if the input
of a spiking neuron is a constant, its output is a spike trainwith
a constant frequency. Otherwise, the frequency of the spike
train at the neuron output is also varying as shown in Fig. 2.
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TABLE 1. Comparison of hardware consumption per spike for SNN.

We need to wait for an observation window to read out the
information of fspike. The length of this observation window
determines the bit rate of each neuron. Since the neuron spike
rate is stable when excited by a constant current, we can
count the time delay between two neighbored spikes and
take its reciprocal as fspike. With the e-Neuron in Braindrop
in [17] and circuits designed in [18], the length of the obser-
vation window needs several microseconds to cover this time
delay.

Since the DPD working in frequency domain has lower
complexity and submits to less constraints on the sampling
rate of the input signal according to [29], in this work,
we use the SNN to process the subcarriers of the orthogonal
frequency division multiplexing (OFDM) signal before it
goes to time domain. The system of an orthogonal frequency
division multiplexing (OFDM) transmitters (TX) with TD
DPD and FD DPD is illustrated in Fig 5(a) and 5(b), respec-
tively. A frame of OFDM data is first created in frequency
domain and is split into parallel subcarriers through a serial
to parallel (S/P) converter. The time-domain signal x(n)
for the PA is then prepared by inverse fast Fourier trans-
form (IFFT). The TD DPD processes the signal after the
IFFT and FD DPD processes the signal before the IFFT.
There is no additional complexity brought by the FD DPD.
In this figure, we omit the digital-to-analog converter (DAC)
and the modulator which upconvert the baseband signal
x(n) to radio-frequency (RF) before feeding the signal to
the PA.

B. PHYSICS INFORMATION OF FD SIGNAL PROCESSING
A conventional TDDPD ismodeled by the GMP as expressed
in [23]:

x(n) =

Ka−1∑
k=0

La−1∑
l=0

aklu(n− l)|u(n− l)|k

+

Kb∑
k=1

Mb∑
m=1

Lb−1∑
l=0

bkmlu(n− l)|u(n− l − m)|k

+

Kc∑
k=1

Mc∑
m=1

Lc−1∑
l=0

ckmlu(n− l)|u(n− l + m)|k , (6)

where the input signal is u(n), k is the index for nonlinearity,
m and l are the indices for memory, and akl , bkml and ckml
are the complex coefficients. The extraction of DPD model
coefficients using direct or indirect learning architecture
(DLA/ILA) has been well described in [41] and [42]. If we
denote U (ω) and X (ω) as the Fourier transform of u(n) and
x(n) with sampling rate fs in spectrum [- fs2 ,

fs
2 ] respectively,

FIGURE 5. Diagram of system with (a) TD DPD and (b) FD DPD.

an FD-GMPmodel can be deduced from (6) for the FD-DPD:

X (ω)

=

Ka−1∑
k=0

La−1∑
l=0

akle
−j2π ω

fs
lU (ω) ∗ 8k

(
U (ω)

)
+

Kb∑
k=1

Mb∑
m=1

Lb−1∑
l=0

bkmle
−j2π ω

fs
lU (ω)∗8k

(
U (ω)e−j2π

ω
fs
(l+m))

+

Kc∑
k=1

Mc∑
m=1

Lc−1∑
l=0

ckmle
−j2π ω

fs
lU (ω)∗8k

(
U (ω)e−j2π

ω
fs
(l−m))

,

(7)

where ∗ is the convolution function, and 8k
(
U (ω)

)
can be

defined as in [29]:

8k
(
U (ω)

)
=

{
U (ω)∗

k
2 Ū (−ω)∗

k
2 , if k is even,

U (ω)∗
k+1
2 Ū (−ω)∗

k−1
2 , otherwise,

(8)

where Ū represents the conjugate of U , and (·)∗k represents
the convolution power.

The FD-DPD can also be extended for linearization of
multi-band case. According to the 2D-MP model in [43]:

xs(n) =

Ks−1∑
k=0

k∑
r=0

Ls−1∑
l=0

a(1)krlus(n− l)

× |us(n− l)|k−r |us̄(n− l)|r , (9)

where us and xs (s=1,2) denotes input and the predistorted
signal of the s-th band respectively, xs̄ represents the input
signal other than the s-th band, n is the index of the signal
sample, Ks is the nonlinearity order for the s-th band, and Ls
is the memory depth for the s-th band.

The FD-2D DPD model can then be deduced as

Xs(ω) =

Ks−1∑
k=0

k∑
r=0

Ls−1∑
l=0

akrle
−j2π ω

fs
lUs(ω)

∗ 8k−r
(
Us(ω)

)
∗ 8r

(
Us̄(ω)

)
. (10)

The subcarriers of the predistorted signal depends thus on the
subcarriers of signals in both two bands.

The reasoning above gives a physics information for
the SNN-DPD that, if we take the subcarriers of signal
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spectrum U (ω)/X (ω) as the SNN’s input/output data, each
output neuron should be connected to all input neurons. In the
proposed SNN-DPD, an SNN is expected to replace the
highly power-consuming convolutions with low-power spike
processing.

C. THE STRUCTURE OF SNN-DPD
According to the physics information of given in the previous
section and the study in [37], we propose an SNN-DPD
which realizes the functionality of the FD-DPD with a full
connected two-layer SNN. The system structure is depicted
in Fig. 6. Since the SNN processes only positive real data,
the complex subcarriers values of the OFDM data are split
into real-part group and imaginary-part group by functions
real(·) and imag(·) respectively. These values of real-part and
imaginary-part are then offset to positive and are rescaled
according to themaximal value of neuron’s Iex. For a stimulus
of bandwidth B, if the subcarriers of the stimulus spectrum
can be expressed with discrete ω ∈ [−B

2 , B2 ] with a step of
1ω as:

U (ω) = Ur (ω) + iUi(ω), (11)

the input of the i-th neuron in the input layer is

Iex(i) =


(

Ur (i)
max|U (ω)|

+ 0.5)Iex,max , if i <
B

1ω
,

(
Ui(i− N )
max|U (ω)|

+ 0.5)Iex,max , otherwise,
(12)

where N is the number of subcarriers U (ω), 1ω=
1
N fs, and

i=[1,. . . ,2N], Iex,max is the maximum of excitation current
for the spiking neuron. We connect the neurons of output
layer directly with the input layer without any hidden layer.
The output of the neurons in the output layer are spike trains
of different fspike which corresponds to the real part and
imaginary part of the frequency components of spectrum of
the desired predistorted signal. The values of fspike can be
read out and translated to current information as shown in
Fig. 1. To be noticed, this translation of output information
from fspike to the current format is just because our target data
in network training is in form of current Iex, which will be
explained in the following subsection. They are regrouped
according to the order of neuron index to restore the complex
value for the IFFT. The predistorted signal x(n) converted
from X (ω) is then fed to the PA. As discussed in [29], the
FD-DPD is implemented before the OFDM signals are con-
verted into time domain signals by IFFT. Therefore, there is
no additional complexity of IFFT to be considered compared
with the time-domain DPD techniques.

D. TRAINING OF 2-LAYER SNN-DPD
The identification of the proposed SNN-DPD model can be
in different ways. In this paper, we first extract an ideal pre-
distorted signal xd (n) using the augmented iterative learning
control (AILC) technique [3], [44].

The AILC is an iterative process by adjusting the PA input
signal to make the PA output signal converge towards a

desired signal yd (n), where yd (n)=G · u(n) with G denotes
the linear gain of the PA [45]. The AILC at the k-th iter-
ation is depicted in Fig. 7. A Gaussian white noise d(n) is
considered at the PA input. The initial input of PA is set as
x0(n)=u(n). At each iteration, x(n) is updated according to
the error between themeasured PA output y(n) and the desired
signal yd (n):

xk+1 = xk + L · F{ek}, (13)

where xk = [xk (1), . . . , xk (N )], N is the number of signal
samples, L is the learning matrix, F{·} represent low pass
filtering, ek = [yd (1) − yk (1), . . . , yd (N ) − yk (N )]. After
the system converges within several iterations, we obtain the
updated signal x(n) as the desired predistorted signal xd (n).

The SNN is then trained with U (ω) and Xd (ω) which is
the FFT of xd (n) as illustrated in Fig. 8. The target dataset in
the SNN training is biased and rescale Xd (ω). We rescale the
subcarriers of main band spectrum and adjacent band spectra
differently since its power in adjacent bands is much lower
than that in the main band. For the purpose of not making the
figure too complicated, in Fig. 8 we simply demonstrate the
training process with main band of Xd (ω) which has the same
number of subcarriers as U (ω). The training for adjacent
bands are similar with the same input data U (ω) while only
the target data are of different bands.

According to (2), we can see that a neuron fires spikes
when it is excited by a current Iex or when it receives enough
spikes transmitted by synapses. In the proposed SNN-DPD,
the neurons in the input layer can be excited by certain values
of currents or by certain spike trains. Either of them should
correspond to the input signal U (ω). In contrast, the neurons
in the output layer only receive information transmitted from
the input layer through synapses. Thus, in Fig. 8, we create
a supervisor layer (in red) to enable the supervised training.

We first encode the real part and imaginary part of sub-
carriers U (ω) to excitation currents Iex of the neurons in the
input layer. The spike trains fired by these input layer then
represent the information of U (ω). In the same way, we cre-
ate spike trains from neurons in the supervisor layer with
excitation currents which represent the desired predistorted
signal Xd (ω).

The remote supervised method (ReSuMe) in [46] is
adopted for the 2-layer SNN training. The neurons in the
supervisor layer are connected to the neurons in the input
layer in the same way as red synapses in Fig. 6.

The training is an iterative procedure as describe in Algo-
rithm 1 where at each iteration we separately compute the
bias of two groups of weight 1woi and 1wdi according to (3)
and (4). The weight of the i-th synapses at the k-th iteration
is then updated by

wi,k = wi,k−1 + 1woi − 1wdi . (14)

Then, by running the training system in Fig. 8 for a neces-
sary period, the spiking time differences1tsinput,soutput between
the input and output layers will converge to the spiking time
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FIGURE 6. PA linearization with SNN-DPD.

FIGURE 7. AILC scheme at the k-th iteration.

FIGURE 8. Training of SNN-DPD.

differences 1tsinput,ssupervisor between the input and supervisor
layers, so that 1woi − 1wdi ≈ 0 and woi is stable.

E. SNN-DPD FOR BAND-LIMITED AND MULTI-BAND
LINEARIZATION
With a modulated OFDM stimulus as the DPD input, the pre-
distorted signal has spectral regrowth which occupies wider
bandwidth due to the nonlinearity. From the structure of the
proposed SNN in Fig. 6, each subcarrier of predistorted signal

Algorithm 1 Training of the i-Th Synapse
Set the maximum loop number Kmax;
Initialize wi,0=0 ;
for k=1:Kmax do

Feed Iex=U to the pre-neuron in input layer;
Obtain spiking times tsinput ;
Run the SNN with woi,k−1;
Obtain spiking times of the post-neuron in output
layer tsoutput ;
Compute 1woi with tsinput and tsoutput by (3);
Feed Iex=Xd to the post-neuron in supervisor
layer;
Obtain spiking times tssupervisor ;
Compute 1wdi with tsinput and tssupervisor by (3);
woi,k = woi,k−1 + 1woi − 1wdi ;

end

can be computed with the entire ensemble of subcarriers of
the input signal independently. In other words, the bandwidth
or even the frequency bands of the predistorted signal can
be customized. This allows band-limited linearization and
multi-band linearization with limited number of neurons in
the output layer.

We depict the spectra of the DPD input signalU (ω) and the
desired predistorted signal Xd (ω) acquired by AILC in Fig. 9,
where the dots represent the subcarriers. We can see that the
SNN-DPD can have a band-limited predistorted signal if we
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FIGURE 9. Subcarriers of DPD input and output for band-limited PA
linearization: (a) selection of subcarriers in the band of desired
linearization; (b) the linearization effect within the selected band of
predistorted signal.

FIGURE 10. Subcarriers of DPD input and output for multi-band
linearization: (a) selection of subcarriers in the band of desired
linearization; (b) the linearization of a dual-band signal.

train the SNN with limitied number of subcarriers for the
supervisor layer as the red dots shown in Fig. 9(a) while the
blue dots represented subcarriers excluded from the target
training data. With all subcarriers of U (ω) fed to the input
layer of the SNN, we can generate subcarrier of X (ω) of any
wanted frequency at the output layer. If we generate only the
predistorted subcarriers in the limited band, we can achieve
a linearization of the PA in any specific bands as shown in
Fig. 9(b), which results in an equivalent performance as the
band-limited DPD in [47]. With lower number of subcarriers
for X (ω), we can reduce the number of neurons in the out-
put layer of the SNN, which reduces the complexity of the
network and its power consumption.

With the same principle, the SNN-DPD can be applied for
multi-band linearization as illustrated in Fig. 10. The predis-
torted signal depends only on the subcarriers of the signals in
the two bands, and is independent of the frequency separation
of the two bands. We train the SNN with the subcarriers of
transmitted signals and the subcarriers of desired predistorted
signals in the interesting bands, as depicted in Fig. 10(a). The
intermodulation (IMD) products of signals in the two bands
are not considered in the linearization since they can be easily
filtered out as depicted in Fig. 10(b).

TABLE 2. Number of flops for operations.

IV. COMPLEXITY ANALYSIS
Though the advantage of SNN on energy saving is mainly
due to the neuromorphic circuits, we still make a comparison
against some classical DPD methods implemented on clas-
sical digital hardware in this paper. The polynomial based
model and classical ANN are taken as comparison references.
For a fair comparison, we compute the number of flops
according to Table 2 in [48]. Both running complexity and
training complexity are discussed in this section.

A. RUNNING COMPLEXITY
According to [48], the complexity of a GMP model is esti-
mated as:

Fgmp = 3 + 7 + Fcrm(Ka +KbMb +KcMc)

+ 8Ncoeff − 2, (15)

where Fcrm is 2 flops for complex-real multiplication (see
Table. 2), and Ncoeff is the number of model coefficients.
The complexity of a classical ANN with h layers is

Fann = 4N1 +

h−1∑
i=1

2NiNi+1 + 4Nh. (16)

where Ni is the number of neurons in the i-th layer.
The complexity of the SNNwhen implemented on classical

digital circuits can be expressed as

Fsnn = 2Frescale + NinFsynaptic. (17)

where Frescale is the complexity for bias (real addition) and
rescaling (real multiplication) equal to 2 Nin

Nout
, Fsynaptic is the

complexity of a synaptic computing which is a real multipli-
cation, Nin and Nout are number of neurons in the input and
output layer respectively.

B. TRAINING COMPLEXITY
The training of polynomial-based model is the linear extrac-
tion of the model coefficients through matrix inversion.
According to [26], the complexity of Ncoeff coefficients
extraction using QR-decomposition with a dataset of N sam-
ples is

Fiden = 2NN 2
coeff +

1
3
N 3
coeff

+ 2NNcoeff − Ncoeff. (18)

The complexity of training a classical ANN is mainly from
the back-propagation computation. For simple estimation,
we consider the derivation as a real division of 4 flops. Thus
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FIGURE 11. Test bench of WebLab [31] for Experimental Implementation.

FIGURE 12. PA AM/AM & AM/PM curves from testbench of WebLab.

complexity of training an ANN of h layers in Eann epochs
using the dataset of N sample is

Fann,tr = Eann
h−1∑
i=1

4NiNi+1N . (19)

The complexity of training the proposed SNN is mainly
from (14) with 2 real additions. Thus complexity of training
the proposed SNN in Esnn epochs is

Fsnn,tr = 2EsnnNinNout. (20)

V. EXPERIMENTAL RESULTS
A. MEASUREMENT SETUP
We use test bench of WebLab [31] for measurements as
depicted in Fig. 11. The proposed DPD is tested with dif-
ferent dual-band 5 MHz LTE signal and single-band LTE
signals with 20 MHz and 40 MHz bandwidth as the stimulus.
The sampling rate of these signals is all 200 MHz with
length of 20000 samples. The baseband IQ signal is fed from
the PC Workstation to the driver through a Vector Signal
Transceiver (PXIe-5646R VST) using a 200 MHz sampling
frequency. The VST up-converts the baseband signal to the
carrier frequency 2.14 GHz. The signal at the output of the
PA is then down-converted to baseband by the VST which
provides to the PC workstation the baseband signal digitized
with a sampling frequency of 200 MHz. The input and output

baseband signals are then synchronized in time to be used by
the identification algorithm.
A GaN PA CGH40006P transistor mounted in the man-

ufacturer demo-board fabricated by CREE has been used to
validate the proposed low rate DPD. Its nominal gain is 13 dB
at 2 GHz and the output power at 1dB gain compression is
40.2 dBm. The nonlinearities and the memory effect of this
PA can be seen from the AM/AM & AM/PM (Amplitude
Modulation/Amplitude Modulation & Amplitude Modula-
tion/Phase Modulation) curves in Fig. 12.
The SNN is implemented with Python, which is a valida-

tion of the functioning and can be further implemented on
neuromorphic circuits in the following studies. In this section,
we make the estimation of the SNN energy consumption by
taking Braindrop [17] as a reference.

B. CHARACTERISTICS OF HH MODEL SNN
The HH model is the most general model of a spiking neu-
ron. One realization of the electronic HH neuron has been
proposed in [49]. The Izhikevich model and LIF model can
also be used for spiking neurons. In this paper, we use an
HH-based SNN simulator thanks to Brian 2 library [50].
The Iex-fspike curve of an HH-model SNN is depicted in
Fig. 13 with a certain configuration of electronic parameters
(Cm, GNa, GK, GL , ENa, EK, EL). In the simulator, we set
the area of neuron at 20000 µm2, so that Cm=200 pF ,
GNa=20 nS, GK=6 nS, GL=10 nS. And we set ENa=50 mV,
EK=−90 mV, EL=−65 mV. The variables (αm, αn, αh, βm,
βn, βh) in (1) are defined as

αn =
0.032(15 − Vm + VT )

e
15−Vm+VT

5 −1

βn = 0.5e
10−Vm+VT

40

αm =
0.32(13 − Vm + VT )

e
13−Vm+VT

4 −1

βm =
0.28(Vm − VT − 40)

e
Vm−VT−40

5 −1

αh = 0.128e
17−Vm+VT

18

βh =
4

1 + e
40−Vm+VT

5

, (21)

and the threshold voltage is set at VT=−63 mV. We rescale
the signals sent to neurons as Iex data between 0 and 40 nA to
avoid the divergence.

In Fig. 14, from the top to bottom, we show the spike trains
of the 4-th neuron in the input layer, the output layer after
training, and the supervised layer, respectively. The time scale
is dependent on the configuration of parameters, such as area
of chip, capacitance Cm, etc. Even though the neuron of the
output layer does not have the same waveform of Vm as the
neuron of the supervisor layer, their spiking rates are very
close. The waveform of Vm of the neuron in the output layer
is dominated by the spikes of the neurons in the input layer,
which determines it spiking or not by comparison with the
threshold potential VT . The information of spiking rate fspike
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FIGURE 13. Characteristics of the HH model neuron.

FIGURE 14. Membrane potential Vm of the input layer, output layer, and
supervisor layer of the SNN.

FIGURE 15. Evolution of the 1500-th weight during 9 epochs (iterations)
of training.

is thus transmitted from the input layer to the output layer in
a nonlinear way. This biological mimicry of the human brain,
which processes information in form of spikes, brings a high
degrees of freedom in AI system.

In Fig. 15, the evolution of a synapses weight (the 1500-th
synapse) is given for the first 9 epochs. The value of w1500
becomes stable after the 6-th epoch.

C. LINEARIZATION PERFORMANCE OF SNN-DPD
We evaluate the linearization performance of the proposed
SNN-DPD with the testbench of WebLab. The peak-to-
average power ratio (PAPR) of the tested OFDM stimulus is
about 7.6 dB. The average power of the signal at the input
of the driver is around −19.8 dBm. The measured average
output power of the PA is 29.7 dBm.

The GMP-DPD is tested under the same circumstance as a
reference for the comparison. Thanks to the algorithm in [51],
we are allowed to determine a group of optimal parameters for
the model structure of the GMP-DPD:

Ka = 6, La = 5

Kb = 3, Lb = 1, Mb = 2

Kc = 1, Lc = 6, Mc = 3. (22)

There are 54 coefficients. The tested ANN has 2 hidden
layers with 40 neurons per layer.The number of epochs in the
training of ANN is 100.

The PA output spectra with and without linearization
are given in Fig. 16. The 1st adjacent channel power ratio
(ACPR) and error vector magnitude (EVM) values are listed
in Table 3. The yellow green curve with circles presents the
theoretical best linearization performance given by the AILC.
Since the AILC is only an off-line method to acquire the most
appropriate predistorted signal rather than a forward DPD
method, it is provided as a reference of the lowest bound.
The result of the GMP DPD is shown with green dashed
curve. With the strong nonlinearity and memory depth of
the PA biased with Vgs=−2.8V in the WebLab testbench,
the conventional GMP has limited performance especially
at near-band region (inside [−20 MHz, 20 MHz]). The blue
curve with squares shows the performance of a classical ANN
DPD. The result of the proposed SNN-DPD is examined
as the red curve shows. We can see that the linearization
performance of the proposed SNN-DPD can reach a better
level than the classical GMP DPD and a similar level as the
classical ANN DPD. The power consumption of the SNN
estimated with Braindrop is 4.6 mW which is extremely low
compared with classical DPD according to [40].

The generated OFDM signal has 20000 subcarriers
spanned in 200 MHz. Since the bandwidth of stimulus is
20 MHz, we only need to process 2000 subcarriers for the
input of the SNN. Each subcarrier corresponds to a neuron in
the input layer. For the output of the SNN,we consider 6 times
of the stimulus bandwidth which demands 12000 subcarriers
to process. We make symmetrical zero padding so that we
can obtain the 20000-sample time domain signal. In Table 3,
we list also the estimation of computational complexity and
power consumption of the SNN when it is implemented on
classical digital circuits and neuromorphic circuits respec-
tively. We denote the running complexity by Frun and the
training complexity by Ftrain. The total complexity is com-
puted by multiplying Frun with the number of processed
samples. According to Table 1, the power consumption of
different circuits has a huge variation. We count the energy
of synaptic event in Braindrop as a reference and in aver-
age 300 events/millisecond for each synapse. The running
complexity of the GMP is lower than neural networks since
we applied an optimization technique in [51] on pruning its
structure. For the ANN and SNN, we use full connection
networks without any pruning technique.
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FIGURE 16. PA output spectra tested with 20 MHz LTE.

TABLE 3. Performance comparison of DPD models with 20 MHz LTE.

FIGURE 17. PA output spectra tested using 40 MHz LTE.

The PA in WebLab can be biased with a gate-to-source
voltage Vgs for different behaviors. To better validate the
effectiveness of the proposed SNN-DPD, we bias the PAwith
Vgs=−2.1V. We also change the stimulus to 40 MHz LTE.
The linearization performance of different DPD techniques
is depicted in Fig. 17. The ACPR and EVM values are listed
in Table 4. The biased PA in WebLab testbench is easier to
linearize than unbiased PA which has been testified in [52].
The nonlinearity orders K for three branches (a, b and c)
are set to 10, and memory depths L for three branches (a,
b and c) andM for two branches (b and c) are set to 6 and 2
respectively. The GMP DPD has almost the same lineariza-
tion performance as the ANN and the SNN. However, the
proposed SNN-based DPD has always an obvious advantage
on energy consumption. Considering the implementation on
classical digital circuits, the proposed SNN-DPD needs less
flops than GMP-DPD and ANN DPD on both running and
training. With a neuromorphic circuit such as Braindrop,

TABLE 4. Performance comparison of DPD models with 40 MHz LTE.

FIGURE 18. Dual-band linearization.

TABLE 5. Performance of dual-band linearization.

the SNN consumes a negligible power in front of classical
methods.

D. DUAL-BAND LINEARIZATION
We also test the proposed SNN-DPD for multi-band lin-
earization with a dual-band input stimulus. The lineariza-
tion performances of the proposed technique and traditional
2D-MP model are given in Fig. 18. The ACPR in the 1st
adjacent channels and EVM values for each transmission
band are listed in Table 5.

The PAPR of the dual-band stimulus is about 9.3 dB. The
average power of the signal at the input of the driver is around
-23.5 dBm. The measured average output power of the PA is
27.2 dBm. Compared with the single-band case in the pre-
vious section, the dual-band signal suffers less nonlinearity
distortion since the operating point of the PA is lower.

The proposed SNN-DPD depicted by the red curve outper-
forms the traditional 2D-MP-DPD which is the blue dashed
curve when looking at the spectral regrowth on the adjacent
channels. The SNN-DPD has shown its effectiveness and
robustness on linearization for different types of signals no
matter how its frequency carriers are located. The estimated
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consumption is 0.38 mW. The SNN-based technique may
not have as obvious advantage on training complexity as on
running complexity, especially since some techniques such
as in [53] can reduce the training complexity of time domain
DPD with a factor of 5. However, since the network does not
need to be trained all the time, the running complexity is a
more critical factor to be considered for power consumption.
Besides, the SNN-based DPD enables its implementation
on neuromorphic circuits, which has far more energy-saving
than classical DPD techniques.

VI. CONCLUSION
In this paper, we propose an SNN-DPD for PA lineariza-
tion. To the best of authors’ knowledge, this is the first
time that an SNN is applied on DPD techniques. The pro-
posed SNN-DPD processes an OFDM signal in frequency
domain and generates the predistorted subcarriers at desired
frequencies. According to the experimental validation on
WebLab testbench for single-band and dual-band cases, the
proposed technique gives better trade-off of linearization
performance and energy consumption than traditional DPD
methods. Besides, it allows implementations on neuromor-
phic hardware with low-power circuits. Moreover, since the
SNN is more brain-like than other conventional neural net-
works, its application on RF PA linearization will provide
more promising development of AI techniques on wireless
communication systems.
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