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Abstract
Mesophotic marine ecosystems are characterized by lower light penetration support-
ing specialized fish fauna. Due to their depths (−30– −150 m), accessibility is challeng-
ing, and the structure of mesophotic fish assemblages is generally less known than 
either shallow reefs or deep zones with soft bottoms which are generally trawled. 
Environmental DNA metabarcoding from seawater filtered in situ could improve our 
ability to monitor the diversity of mesophotic ecosystems. Here, we developed and 
tested a submersible standalone pumping device allowing targeted marine water fil-
tering to explore the biodiversity of two mesophotic ecosystems, one temperate along 
the Provence coast in the North- Western Mediterranean Sea and one tropical at the 
seamount La Pérouse in the Western Indian Ocean. We filtered water samples from 
depths ranging between 0 and 200 m in the Mediterranean Sea and between 60 and 
140 m in the Indian Ocean and applied a metabarcoding protocol using the teleo primer 
pair targeting the 12S mitochondrial rDNA (Actinopterygii and Chondrichthyes). For 
both study regions, our eDNA surveys were able to recover highly diverse fish assem-
blages, and the compositional analysis of eDNA samples showed both a marked signal 
of fish compositional turnover and overlapping taxa between depth zones. Further, 
we observed that a substantial number of species were found in samples collected in 
depths beyond their reported depth range suggesting an underestimation of species' 
depth tolerances. eDNA metabarcoding should thus complement existing knowledge 
of species' geographic distributions across space and depth. Overall, our results dem-
onstrate the potential of eDNA metabarcoding for future mesophotic surveys as it 
allows fast and broad biodiversity assessment.
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1  |  INTRODUC TION

Although there has been substantial progress in marine biodiver-
sity surveys to investigate shallow reef fishes (Antão et al., 2020; 
Edgar et al., 2020), large, remote, and deep areas, such as meso-
photic marine ecosystems (hereafter MEs), remain under- sampled 
(Costello & Chaudhary, 2017). MEs include mesophotic coral ecosys-
tems and temperate mesophotic ecosystems (Pyle & Copus, 2019; 
Loya, 2019), which are characterized by lower light penetration 
and by environmental factors generally more stable than their 
shallow- water counterparts, with classically colder waters (Cerrano 
et al., 2019; Kahng et al., 2019). They are found in subtropical, trop-
ical, and temperate regions at depths ranging from approximately 
30 to 150 m below the sea surface depending on water clarity (Loya 
et al., 2016; Loya, 2019). MEs support high biodiversity (Andradi- 
Brown et al., 2021), including species restricted and specialized to 
the mesophotic zone but also sharing species with their shallower 
counterparts (e.g., Lesser et al., 2019; Rocha et al., 2018; Soares 
et al., 2018). Sampling in these areas is difficult due to the presence 
of hard bottom at this depth range which limits the use of tradi-
tional methods such as scuba diving or grabs and trawls. Since our 
knowledge of ME biodiversity and ecology remains limited (Eyal 
et al., 2021; Kahng et al., 2017; Loya, 2019), we urgently need novel 
monitoring methods to document the organization of these ecosys-
tems and their ongoing changes (Frade et al., 2018).

Mesophotic ecosystems are galvanizing research interest, both 
because of their unique biodiversity from invertebrates to fishes 
(Andradi- Brown et al., 2021; Lesser et al., 2019), but also because 
of their potential to act as refugia for shallow- water species from 
anthropogenic disturbances (Bongaerts et al., 2010). It was widely 
assumed that MEs have a reduced vulnerability to threats because 
of their remoteness and depth and could therefore sustain fish pop-
ulations that are eroding on surface reefs (Eyal & Pinheiro, 2020; 
Laverick et al., 2016; Smith et al., 2019). However, there is increasing 
evidence showing that these disturbances go beyond the shallow 
MEs (Smith et al., 2019). Vertical connectivity and overlapping spe-
cies composition between shallow and ME waters support the hy-
pothesis of faunal exchange across these depth ranges and suggest 
that MEs could offer refugia for shallow species (Loya et al., 2016; 
Tenggardjaja et al., 2014). In contrast, other studies indicate that 
fish species assemblages in MEs are distinct from those of shallow 
waters as they host unique communities (Rocha et al., 2018). On 
coral reefs, species compositional turnover along a depth gradient 
suggests a transition between upper and lower MEs around 60 m, 
where assemblages, largely composed of shallow reef species, be-
come distinct to MEs (Lesser et al., 2019; Loya et al., 2016). In tem-
perate waters, such as in the Mediterranean Sea, the thermocline 
is closer to the surface (Bouzinac, 2003) with less marked species 

turnover within MEs. Hence, additional research on species turn-
over along depth gradients from the surface to mesophotic ecosys-
tems is needed in the near future. Despite recent advances, MEs 
remain understudied across the world, and regional knowledge gaps 
are substantial (Pyle & Copus, 2019). Improved methodology to sur-
vey MEs would provide insights into the ecology of MEs and predict 
whether MEs can truly act as refugia from anthropogenic and natu-
ral disturbances.

Environmental DNA (eDNA) metabarcoding could be a pow-
erful method to monitor MEs. Indeed, as compared to traditional 
sampling methods, eDNA metabarcoding is non- invasive and less 
cost-  and time- intensive (Deiner et al., 2017). However, to date, it 
has primarily been used to survey (sub- )surface and coastal ma-
rine areas (e.g., Polanco Fernández, Marques, et al., 2021; West 
et al., 2020), while little effort was invested into eDNA metabar-
coding studies focusing on deeper waters (but see Andruszkiewicz 
et al., 2017; Juhel et al., 2020; McClenaghan et al., 2020). To recover 
comprehensive biodiversity signals in an ecosystem, a large volume 
of water is required (Bessey et al., 2020; Cantera et al., 2019), but 
eDNA sampling at deeper depths remains challenging. The volume 
of filtered seawater and the number of replicates have been shown 
to influence the number of taxa (Stauffer et al., 2021) so only an 
appropriate protocol can provide accurate biodiversity assessments 
through eDNA metabarcoding within MEs. Therefore, the challenge 
is to sample a volume of water large enough as well as an adequate 
number of filtration replicates directly in situ, to avoid the possi-
ble risk of cross- contamination (Stauffer et al., 2021; Thomsen & 
Willerslev, 2015). The use of Niskin samplers to study deeper wa-
ters is a common method (e.g., Andruszkiewicz et al., 2017; Juhel 
et al., 2020; McClenaghan et al., 2020) as it allows the collection 
of eDNA at specific depths but this method has the drawback of 
filtering ex- situ. Therefore, the development of a submersible in situ 
pump for eDNA surveys in deep waters could enable the filtration of 
large volumes of seawater close to habitats or substrates and target 
micro- habitats while limiting the risk of contamination.

In this study, we developed and tested a standalone and in situ 
water filtration system toward application for eDNA metabarcod-
ing in MEs and inventoried the fish composition of MEs in two 
marine regions. We sampled MEs along the Provence coast in the 
North- Western (NW) Mediterranean Sea and the La Pérouse sea-
mount in the Western Indian Ocean (WIO). The eDNA metabarcod-
ing sequences were analyzed at the species level and clustered into 
molecular operational taxonomic units (MOTUs). For both regions, 
we first investigated the ability of eDNA metabarcoding to detect 
taxa compared with known regional fish composition. Second, by 
sampling at different depths, we tested whether eDNA can recover 
differences in fish species composition with species turnover be-
tween the surface, shallow mesophotic, and deeper mesophotic 

K E Y W O R D S
biomonitoring, environmental DNA, marine biodiversity, mesophotic ecosystem, North- 
Western Mediterranean Sea, Western Indian Ocean
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ecosystems. Since MEs support diverse but also unique species 
communities (Lesser et al., 2019; Rocha et al., 2018), we anticipate 
the detection of different species compositions depending on the 
sampling depth. Finally, we investigated the differences between 
documented fish depth ranges and the depth at which species 
were detected with our eDNA approach. We expect an underesti-
mation of the species' depth range due to existing knowledge gaps 
in MEs (Kahng et al., 2014; Turner et al., 2019).

2  |  MATERIAL S AND METHODS

2.1  |  Study areas

2.1.1  |  Provence coast

The first study area is the Provence coast located in the South 
of France along the NW Mediterranean Sea (Figure 1a). The sam-
pling stations are located between Marseille (43°17'N, 5°22′ E) 
and Nice (43°42'N, 7°15' E) and are drop- offs from the surface to 
200 m in the immediate proximity of deeper trenches exceeding 
2000 m depth. The Mediterranean Sea is not only the world's larg-
est and deepest enclosed sea but also a marine biodiversity hot-
spot (Coll et al., 2010).

2.1.2  |  La Pérouse

The second study area is La Pérouse (19°43'S, 54°10' E), a shallow 
seamount located between Madagascar and Réunion Island in the 
WIO (Figure 1b; Marsac et al., 2020). La Pérouse is an extinct vol-
cano with a summit depth at 60 m below the sea surface. The pla-
teau of the summit has a maximum length of 12 km and a maximum 
width of 4 km. One side of the seamount might have collapsed in the 
past, leading to a less common crescent- shaped summit. The abyssal 
plains that surround this isolated pinnacle are at a depth of 5000 m 
(Durville et al., 2021; Marsac et al., 2020). Despite its proximity to 
Réunion Island (160 km northwest), La Pérouse and its surroundings 
are still poorly studied (Marsac et al., 2020; Roberts & Ternon, 2020).

2.1.3  |  eDNA sampling methods, 
filtration, and treatment

During the field and laboratory processes, a strict contamination 
control protocol was followed (Goldberg et al., 2016; Valentini 
et al., 2016). For each water sample, we used disposable gloves, as 
well as single- use filtration equipment. We applied three different 
eDNA sampling methods to collect seawater samples from various 
depths ranging from 0 to 200 m:

1. Athena method (subsurface transect sampling): surface eDNA 
was sampled in situ with the Athena® peristaltic pump (Proactive 

Environmental Products LLC, Bradenton, Florida, USA; nominal 
flow of ~ 1.0 L/min). The filtration process lasted 30 min to 
collect a water volume of ~ 30 L directly from the boat (Polanco 
Fernández, Marques, et al., 2021a). The entry of the tube was 
positioned at 20  centimeters below the water surface.

2. Niskin method (fixed- point sampling): we collected water samples 
using 10 L Niskin water samplers at different depths. A pressure 
sensor coupled to the Niskin water sampler was used to control 
the sampling depth. After bringing the Niskin water sampler to 
the surface, we poured the content into a sterile single- use plas-
tic bag and placed the inlet of the pump in the bag for ex- situ 
filtering. The water (10 L) was then filtered for 10 min using the 
Athena® peristaltic pump (Proactive Environmental Products 
LLC, Bradenton, Florida, USA; nominal flow of ~ 1.0 L/min).

3. Submersible method (deep transect sampling; Figure 2): we used 
the novel submersible pump (Subspace, Geneva, Switzerland; 
nominal flow of ~ 1.0 L/min) to collect samples at various depths 
during close circuit rebreather dives. The pump has an internal 
battery and can be activated underwater. This allows in situ fil-
tration directly at the targeted habitat and depth. The filtration 
lasted for 30 min to collect a total water volume of ~ 30 L.

We used these three filtration protocols to collect and filter 
water throughout a VigiDNA® 0.2 μM cross- flow filtration capsule 
(SPYGEN, le Bourget du Lac, France) using disposable sterile tub-
ing for each filtration capsule. After the filtration process, the re-
maining water in the capsules was emptied. The capsules were then 
filled with 80 ml of lysis conservation buffer (CL1 buffer SPYGEN, le 
Bourget du Lac, France) and stored at room temperature in the dark.

2.2  |  eDNA field sampling

2.2.1  |  Provence coast

In the Provence coast, a total of 35 samples from 14 stations 
were collected from July 1st to July 19th, 2019 (Figure 1a; 
Supplementary material 1, Table S1). Using the Athena method, a 
total of nine samples of surface water were collected at three sta-
tions (Beach Rock Cassis 5, Cap Lardier 1, and Cap Negre 1: three 
replicates). With the Niskin method, we performed nine eDNA 
samples at five stations with depths ranging from 0 to 200 m (Cap 
Lardier 2: five replicates and Beach Rock Cassis 1– 4: no replicates). 
The remaining 17 samples were obtained at six stations using the 
Submersible method (Banc de Magaud, Beach Rock Cassis 6, Cap 
Lardier 3, Cap Negre 2, and Tombant Americain: three replicates 
and Imperiaux 1: two replicates) on board Cetravim,a saturation 
diving barge during the GOMBESSA 5 expedition (https://gombe 
ssa- exped itions.com/gombe ssa- 5/). The two replicates collected 
at the Imperiaux 1 site (MS1) were collected during the ascent 
from 65 to 10 m, while the remaining samples collected using the 
submersible pump were taken in depths between 65 and 130 m. 
All samples were collected in the daytime.
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2.2.2  |  La Pérouse

At La Pérouse, a total of eight water samples were collected dur-
ing the MONT LA PÉROUSE expedition (https://gombe ssa- exped 
itions.com/mont- la- perou se/) on board the ship La Curieuse to the 

seamount La Pérouse from October 27th to November 5th 2019 
(Figure 1b; Supplementary material 1, Table S2). During close circuit 
rebreather dives, water samples from various depths, ranging from 
60 to 140 m below the sea surface, were collected using only the 
Submersible method (eight stations: no replicates). Out of the eight 

F I G U R E  1  Area of eDNA sampling 
(a) in the coastal North- Western 
Mediterranean Sea and (b) at the 
seamount La Pérouse in the Western 
Indian Ocean. More information about 
the sampling protocol can be found in 
supplementary material 1 (Tables S1 and 
S2; GEBCO Bathymetric Compilation 
Group 2021, 2021)

 26374943, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/edn3.358 by C

ochrane France, W
iley O

nline L
ibrary on [22/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://gombessa-expeditions.com/mont-la-perouse/
https://gombessa-expeditions.com/mont-la-perouse/


60  |    MUFF et al.

water samples, six were collected during the day, while two were 
collected at night (IS2_1 at 62 m and IS7_1 at 100– 125 m).

2.3  |  Laboratory procedures

eDNA extraction, amplification, and library preparation were per-
formed at SPYGEN, a controlled eDNA laboratory (Le Bourget du Lac, 
France), and the sequencing steps at Fasteris (Geneva, Switzerland). 
Each of these steps was carried out in separate dedicated rooms. 
Suitable clean working and room conditions, as described in Pont 
et al. (2018), were ensured in each step to prevent contamination. 
For DNA extraction, each filtration capsule was prepared as de-
scribed in the protocol of Pont et al. (2018). DNA extraction was 
carried out twice per filtration capsule using NucleoSpin® Soil 
(MACHEREY- NAGEL GmbH & Co., Düren Germany) and by follow-
ing the manufacturer's instructions from the 6th step on. The sam-
ples were further tested for inhibition by qPCR (Biggs et al., 2015), 
and, in the case of inhibition, samples were diluted five- fold. In a 
final volume of 25 μl, amplifications were carried out by using 3 μl 
of DNA extract as the template (Pont et al., 2018). The amplifica-
tion mixture contained 1 U of AmpliTaq Gold DNA Polymerase 
(Applied Biosystems, Foster City, CA), 10 mM Tris– HCl, 50 mM KCl, 
2.5 mM MgCl2, 0.2 mM each dNTP, 0.2 μM “teleo” primers (Valentini 
et al., 2016), 4 μM human blocking primer for the “teleo” primers 
(Civade et al., 2016) and 0.2 μg/μl bovine serum albumin (Roche 
Diagnostic, Basel, Switzerland). The primers were 5′- labeled to fa-
cilitate the matching of each sequence to their respective sampling 
station during the sequencing process. The PCR mixture was de-
natured at 95°C for 10 min, followed by 50 cycles of 30 s at 95°C, 
30 s at 55°C, and finally 1 min at 72°C and a final elongation step 
at 72°C for 7 min. For each filtration, a total of 12 replicate PCRs 
were run. The PCR replicates were sequenced separately, and the 
results for each PCR replicate were summed up for each sample 

with the 12 individuallytagged PCR replicates after bioinformatic 
curation (Pont et al., 2018). To perform the amplification, we used 
the teleo primer pair (forward: - ACACCGCCCGTCACTCT, reverse: 
- CTTCCGGTACACTTACCATG), which has been shown to accurately 
detect our target taxa Actinopterygii and Chondrichthyes (Collins 
et al., 2019; Polanco Fernández, Richards, et al., 2021b).These prim-
ers target a specific circa 60 bp fragment within the mitochondrial 
12S ribosomal DNA gene (Valentini et al., 2016). After the amplifica-
tion, the quantification of the samples was performed using capil-
lary electrophoresis (QIAxcel; Qiagen GmbH) and the purification 
with the MinElute PCR purification kit (Qiagen GmbH), respectively. 
The quantification step was repeated, and the resulting purified PCR 
products were then pooled in equivalent volumes (Pont et al., 2018). 
The three libraries were prepared according to the MetaFast pro-
tocol (Fasteris, 2020). Following the manufacturer's instructions, 
paired- end sequencing (2 × 125 bp) was performed on an Illumina 
HiSeq 2500 sequencer on a HiSeq Rapid Flow Cell v2 with the HiSeq 
Rapid SBS Kit v2 (Illumina) and a MiSeq (2 × 125 bp) with the MiSeq 
Flow Cell Kit v3 (Illumina). To monitor potential contaminants, a total 
of four negative extraction controls and two negativePCR controls 
(ultrapure water, 12 replicates) were amplified and sequenced in par-
allel to the samples. We found no fish sequence reads within our 
PCR controls.

2.4  |  Species pipeline –  OBITools filtering analyses

We used two bioinformatic pipelines: one to assign sequences to 
known species available in the reference database, and a second one 
into MOTUs since the reference database is incomplete (Marques 
et al., 2021). The first bioinformatics pipeline, the Species pipeline, 
was used following the protocol of Valentini et al. (2016) to process 
the raw sequence reads into taxa. For that, we applied programs 
implemented in the OBITools toolkit (https://git.metab arcod ing.

F I G U R E  2  Montage of pictures 
showing the submersible pump used for 
sampling along the Provence coast (North- 
Western Mediterranean Sea) and at the 
seamount La Pérouse (Western Indian 
Ocean). Photo credits: (a) Laurent Ballesta, 
Gombessa expéditions, Andromède 
Océanologie (2019), (b & c) Laurent 
Ballesta, Gombessa 6: Mission cap Corse, 
Gombessa expéditions, Andromède 
Océanologie (2021) and (d) Régis Hocdé, 
location: Calanques of Marseille, Riou 
island
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org/obito ols/obito ols.git Boyer et al., 2016). During the first main 
step –  pre- processing –  reads were assembled using illuminapaire-
dend (OBITOOLS). Reads were further demultiplexed and primers 
trimmed using ngsfilter. Sequences were cleaned using obiclean at 
default parameters. The taxonomic assignments were performed 
by the ecotag algorithm from the OBITools toolkit. This algorithm 
relies on the National Center for Biotechnology Information (NCBI) 
phylogeny tree as a reference base (Boyer et al., 2016). During the 
second main step, several quality thresholds were applied. We dis-
carded occurrences below ten reads and sequences that were not 
assigned to the targeted taxa. To correct for potential tag- jumps, se-
quences with an abundance of less than 0.001% per taxon and per 
library were discarded (Polanco Fernández, Marques, et al., 2021a; 
Schnell et al., 2015).

2.5  |  MOTU pipeline –  SWARM 
Clustering analyses

The second bioinformatics pipeline, the MOTU pipeline, followed the 
protocol described in Marques et al. (2020) to process the raw reads 
into MOTUs, acting as proxies of species richness in the absence of a 
complete reference database. This is extremely valuable, as accord-
ing to GAPeDNA v.1.0.1, only 36% and 30% of the species are se-
quenced for the teleo marker in the respective ecoregion: Western 
Mediterranean Sea and Mascarene Islands (https://shiny.cefe.cnrs.
fr/GAPeD NA/; Marques et al., 2021). The clustering of sequences 
into MOTUs further lowers the risk of overestimating the species 
richness due to intraspecific variation (Brandt et al., 2021). During 
the pre- processing step, reads were assembled using VSEARCH 
(Rognes et al., 2016). Reads were further demultiplexed and primers 
trimmed using CUTADAPT (Martin, 2011). With the unsupervised 
SWARM algorithm, sequences were clustered into MOTUs based 
on sequences' proximity and abundance (parameter d = 1, - f option 
enabled). The taxonomic assignment relies also on the NCBI phy-
logeny tree as a reference base (Boyer et al., 2016). For the assign-
ment, the most abundant sequence within each cluster was used as 
a representative sequence (Marques et al., 2020). During the second 
main step, the same cleaning steps as for the Species pipeline were 
applied, with the addition of removing MOTUs present in a single 
PCR replicate over the data set to avoid overestimation of richness 
due to spurious sequences arising in a single PCR event. In the post- 
clustering step, the post- clustering curation algorithm LULU was 
applied with default parameters to further clean erroneous MOTUs 
(Frøslev et al., 2017; Marques et al., 2020). A limitation of this pipe-
line is the clustering and the application of stringent thresholds, 
which might discard some rare but real species or group distinct re-
lated species together within the same MOTU. These precautionary 
steps are however needed to better approximate species richness in 
the absence of a complete reference database and to reduce the risk 
of numerous false positives (Marques et al., 2020).

We excluded four sample replicates from the analysis as both pipe-
lines could only retrieve non- targeted taxa. These were three samples 

collected with the Niskin method in Cap Lardier 2 (MN5_1 at 0 m, 
MN5_4 at 150 m, MN5_5 at 200 m) and one sample collected with the 
Submersible method in Tombant Americain (MS5_1 at 120 m).

2.6  |  Data cleaning and analysis

The taxonomic assignments, which were gained through two bio-
informatics pipelines (NCBI taxonomy), were first corrected to fit 
the FishBase taxonomy by using the R package rfishbase (Boettiger 
et al., 2012). We then manually verified these retrieved taxa by using 
the online version of FishBase (Froese & Pauly, 2021). When the 
geographical occurrence of the taxa did not match the respective 
sampling area, we reassigned the taxa to the next possible taxo-
nomic level known to occur in this area (Supplementary material 2, 
Tables S3 and S4). This verification procedure was used to avoid 
false positives, as taxonomic classification errors can occur due to 
the lack of taxonomic resolution on the metabarcode for some spe-
cies coupled with gaps in the reference database for both regions, 
as well as the presence of some potentially erroneous sequences in 
NCBI (Marques et al., 2021).

2.7  |  Comparison of eDNA taxa identification to 
synthesis data

Using the outputs of the Species pipeline, we compared the detec-
tion capabilities of eDNA to the known occurrences of taxa based 
on a synthesis of previous data sets. Before the comparison, we 
adapted the taxonomic information of all synthesis data according to 
the FishBase taxonomy by using the R package rfishbase (Boettiger 
et al., 2012). For all taxa at the species level, we further obtained 
their habitat category from FishBase (Froese & Pauly, 2021).

2.7.1  |  Provence coast

For the Provence coast, we used data from the Marine Species 
Identification Portal as our synthesis data (Albouy et al., 2013; 
MSIP, n.d.). This data set contains 635 Mediterranean fish species, 
along with their geographic distribution on a 0.1 resolution grid 
system (Albouy et al., 2013). The list combines endemic, exotic, 
and ubiquitous species from existing atlases (Golani et al., 2002; 
Quignard & Tomasini, 2000; Whitehead et al., 1986) with the spe-
cies bathymetric ranges adapted according to depth ranges from 
FishBase (Froese & Pauly, 2010) and Louisy (2015) using the ba-
thymetry of the Mediterranean Sea obtained from ETOPO2 v2 
(NOAA National Geophysical Data Center, 2006). For our synthe-
sis data, we included only species from the list occurring within 
the same cells (0.1 × 0.1°) where eDNA samples were collected 
and species belonging to the two targeted taxa Actinopterygii 
and Chondrichthyes. This resulted in a total of 359 species, out of 
which 29% are sequenced for the 12S mitochondrial position and 
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the teleo primer (https://shiny.cefe.cnrs.fr/GAPeD NA/ Marques 
et al., 2021).

2.7.2  |  La Pérouse

For La Pérouse, we compared the eDNA data to two different syn-
thesis data. The first synthesis data were a species list based on 
the checklist of fish species of La Réunion from Fricke et al. (2009). 
This checklist includes a total of 986 taxa (Actinopterygii and 
Chondrichthyes) occurring in freshwater, transitional waters, and ma-
rine habitats. In our synthesis data, we only included the 969 taxa that 
occur in marine habitats. 34% of the 961 taxa that were assigned to 
the species level were sequenced for the 12S mitochondrial position 
and the teleo primer (https://shiny.cefe.cnrs.fr/GAPeD NA/ Marques 
et al., 2021). The second synthesis data consisted of data collected 
during the same expedition as the eDNA data (Durville et al., 2021). 
The species list was compiled using films and photographs taken dur-
ing nine dives (one dive at night). It included 147 different taxa belong-
ing to both classes Actinopterygii and Chondrichthyes. 133 species 
were identified up to the species level, with 36% being sequenced 
for the 12S mitochondrial position and the teleo primer (https://shiny.
cefe.cnrs.fr/GAPeD NA/ Marques et al., 2021).

2.8  |  Compositional analysis between 
eDNA samples

We investigated compositional differences in eDNA samples by 
using the outputs of the MOTU pipeline. For both marine regions, 
we constructed a MOTUs presence- absence matrix for each sam-
ple. Using these matrices, we calculated the Jaccard distance as-
sessing the MOTU dissimilarity between samples (R package vegan; 
function vegdist, Oksanen et al., 2020). To ordinate the composi-
tional differences between sampling stations for each region, we 
performed a principal coordinates analysis (PCoA) on the Jaccard 
distance matrix using the R package ade4 (function dudi.pco, Dray 
& Dufour, 2007). We then plotted the ordination values in a geo-
graphic space and additionally reported the explained deviation of 
each axis. To test the effect of depth (categories: 0 m, 20– 99 m, 
≥ 100 m) on MOTU composition dissimilarity (Jaccard distance), 
we performed a Permutational Multivariate Analysis of Variance 
(PERMANOVA, 9999 permutations) by using the R package vegan 
(function adonis, Oksanen et al., 2020). We further analyzed for 
both marine regions the number of MOTUs shared by samples found 
in the depth categories described above. We finally computed the 
MOTU compositional dissimilarity as turnover 

(

� jtu
)

 and nestedness 
(

� jne
)

components of the � diversity between the surface, shallow 
mesophotic, and deeper mesophotic ecosystems using the function 
beta.pair of the R package betapart (Baselga et al., 2021).

2.9  |  Comparison between species- reported depth 
ranges and sampled depths

We used the outputs of the Species pipeline to analyze the dif-
ferences between the documented fish depth ranges and the 
depths at which species were detected with our eDNA approach. 
The former ecological trait was gathered from FishBase (Froese & 
Pauly, 2021). For the sampled depths, we used the term “species- 
depth occurrences” since most species were present in more than 
one eDNA sample. When the sampled depth had a range between 
two depths (e.g., 100– 140 m), and then, we used the mean of the 
range for further analyses. In the first step, we computed the 
percentage of species- depth occurrences that were found within 
each species documented depth range. Species with a lower depth 
limit up to 300 m below sea surface were then plotted with their 
depth range and their respective sampled depth. The limit was 
chosen on one hand for reasons of clarity and on the other hand as 
the excluded species were found predominantly within their lower 
depth limit. The second step included a Welch two- sample t- test 
to investigate whether the signal of eDNA is as strong when found 
outside each species documented depth range as when it was 
found inside this documented depth range. The rationale behind 
this test was the “abundant- center” effect stipulating that species 
abundances are expected to be greatest at the center of their en-
vironmental niches and decline further away from these “optimal” 
environmental conditions (Brown et al., 1995). This pattern was 
shown for reef fishes (Waldock et al., 2019), so we can expect a 
lower number of sequence reads, if proportional to abundance 
(Carvalho et al., 2022), in samples outside a species- reported depth 
range. We therefore compared the mean number of reads of the 
two groups. The null hypothesis posits that the mean number of 
reads sampled within a species- reported depth range was equal to 
the mean number of reads sampled outside of a species- reported 
depth range. As a third step, we ran a Kendall rank correlation test 
for the species- depth occurrences sampled outside of the spe-
cies' depth range to assess the relationship between the number 
of reads and the difference between the sampled depth and the 
species' depth range. We calculated this difference by subtracting 
the species' published lower depth limit from the sampled depth 
for cases where the species' sampled depth was below its lower 
depth limit. If the sampled depth was above the species' published 
upper depth limit, then we subtracted the sampled depth from the 
species' upper depth limit. The null hypothesis posits that there 
was no significant correlation between the number of reads and 
these calculated differences corresponding to a niche shift. For 
the statistical tests, a p- value of 0.05 was chosen as a statistical 
significance criterion.

We used the statistical programming environment R v.4.0.3 for 
the data cleaning, the downstream analyses, and for producing the 
graphics and maps (R Core Team, 2020).
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3  |  RESULTS

3.1  |  Detection capabilities of eDNA 
metabarcoding

3.1.1  |  Provence coast

Using the outputs of the Species pipeline, we estimated diversity in 
taxa composition and compared results to synthesis data. For the 
Provence coast, we obtained 10,817,609 reads from 35 water sam-
ples and found a total of 811 distinct fish sequences (Supplementary 
material 3; Table S5). Overall, eDNA metabarcoding identified 41 
species, 57 genera, 43 families, and 33 orders. In comparison to the 
eDNA approach, the synthesis data of this region counted 359 spe-
cies covering 249 genera and 128 families. For both approaches, 
eDNA and synthesis, about half of all taxa were classified as demer-
sal (Table 1; synthesis 47.4% and eDNA 48.8%) and the remaining 
species were either bathypelagic, benthopelagic, pelagic- neritic, 
pelagic- oceanic, or reef- associated species. Bathydemersal species 
were only included in the synthesis data (6.7%). The species lists ob-
tained from eDNA included 10.9% of species found in the synthesis 
data. In return, the eDNA approach recorded two species (Buenia 
affinis and Corcyrogobius liechtensteini) that were not present in the 
synthesis data. Further, the number of genera in the synthesis data 
was more than four times higher than the genus richness recov-
ered by the eDNA method (synthesis n = 249 and eDNA n = 57). 
However, the family Gobiidae was for both, synthesis data (n = 13) 
and eDNA samples (n = 11), the family with the highest number of 
genera. While for the synthesis data the family Sparidae (n = 12) had 
the second- highest richness, only two genera were present for this 
family in eDNA samples. The families with the second- highest genus 
richness (n = 5) in the eDNA data were Labridae and Scombridae, 
which also both had a high genus richness in the synthesis data with 
each family having eight genera. The family Myctophidae (synthesis 
n = 8 and eDNA n = 4) was for both approaches among the five 
families with the highest genus richness.

3.1.2  |  La Pérouse

For la Pérouse, out of 5,653,393 reads from eight eDNA samples, 
we found a total of 721 distinct sequences (Supplementary material 
3, Table S5). We detected 57 fish species, as well as the presence of 
102, 56, and 33 different genera, families, and orders, respectively. 
The first synthesis data included a total of 969 distinct taxa, 961 of 
which were identified at the species level. Overall, 494 and 165 gen-
era and families were present respectively. 47 species were included 
in the first synthesis data and also detected by the eDNA approach. 
While 914 species listed in the first synthesis data were not de-
tected by eDNA, eDNA identified ten additional species (Acanthurus 
bariene, Cirrhitichthys oxycephalus, Crossorhombus valderostratus, 
Diaphus splendidus,Hirundichthys oxycephalus, Lachneratus phasmati-
cus, Pseudocheilinus evanidus, Scombrolabrax heterolepis, Thalassoma 
lutescens,and Zebrasoma desjardinii). The second synthesis data, 
which was gathered during the same expedition as the eDNA data, 
discovered a total of 147 distinct taxa. 133 distinct species were 
identified, and overall, 90 and 35 genera and families, respectively, 
were present. 34 species were detected by both eDNA and the cam-
era approach of the second synthesis data. While with eDNA we 
found 23 additional species, the camera approach could identify 99 
additional species. Most species detected by the eDNA approach 
and the two synthesis data were categorized as reef- associated 
(Table 2; eDNA: 75.4%, synthesis 1: 71.7%, and synthesis 2: 94.0%). 
In all three data sets, species classified as bathypelagic, benthope-
lagic, and pelagic- oceanic species were included. The eDNA data set 
and the first synthesis data both contained demersal and pelagic- 
neritic species, whereas pelagic species were only present in the first 
synthesis data (n = 1). In terms of taxonomic richness and composi-
tion, the first synthesis data (n = 494) had the highest genus richness 
per family followed by the eDNA approach (n = 102) and the second 
synthesis data (n = 90). The families with the highest genus rich-
ness in the eDNA samples were Labridae (n = 11), Balistidae (n = 7), 
Myctophidae (n = 7), Apogonidae (n = 5), Muraenidae (n = 5). For 
the first synthesis data, the family Gobiidae (n = 29) was the family 
with the highest genus richness, followed by the following four fami-
lies Labridae (n = 25), Blenniidae (n = 18), Carangidae (n = 16), and 
Serranidae (n = 16). The families with the highest genus richness in 
the second synthesis data were Labridae (n = 11), Serranidae(n = 8), 
Balistidae (n = 5), and Lutjanidae(n = 5).

3.2  |  Fish community composition from 
different depths

3.2.1  |  Provence coast

We used the MOTU pipeline to investigate the compositional dis-
similarity of fish communities among eDNA samples depending on 
their sampling depth. For the Provence coast, we identified a total of 
7,265,928 reads from 35 eDNA samples, resulting in a total of 113 
distinct MOTUs (Supplementary material 3, Table S5). Within the 

TA B L E  1  The number of species per habitat category along 
the Provence coast (North- Western Mediterranean Sea) for the 
samples collected by eDNA and for the synthesis data. The table 
is presented in decreasing order of importance according to eDNA 
data

Provence coast

eDNA data Synthesis data

Demersal 20 (48.8%) 170 (47.4%)

Reef- associated 6 (14.6%) 36 (10.0%)

Benthopelagic 5 (12.2%) 46 (12.8%)

Pelagic- neritic 4 (9.8%) 27 (7.5%)

Pelagic- oceanic 4 (9.8%) 25 (7.0%)

Bathypelagic 2 (4.9%) 31 (8.6%)

Bathydemersal — 24 (6.7%)
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31 samples containing MOTUs, we detected on average 77.0 ± 80.4 
MOTUs per sample.Overall, we detected 30 different species, as 
well as the presence of 46, 31, and 21 different genera, families, and 
orders, respectively. For the PCoA of the eDNA samples, the per-
centage of variance explained by the first two axes was 27.0% (axis 
1: 14.54% and axis 2: 12.46%; Figure 3a). The surface water sam-
ples filtered with the Athena method had on average 129.3 ± 112.9 
MOTUs per sample and formed two clusters according to their 

filtration replicates (MA replicates, gray diamonds in Figure 3a). The 
Athena surface samples collected at Cap Negre 1 (MA3 replicates) 
were more heterogeneous, especially the MA3_1 replicate which 
only contained ten MOTUS. The samples collected with the Niskin 
method had on average 19.2 ± 21.4 MOTUs per sample and did not 
show a strong pattern along the depth gradient (MN replicates, tri-
angles in Figure 3a). The Submersible method (MS replicates, circles 
in Figure 3a) had on average 69.2 ± 54.3 MOTUs per sample. The 
mid- depth samples collected at Imperiaux 1 (MS1 replicates, orange 
circles in Figure 3a), which were collected by continuously sampling 
from 65 to 10 m, are close to the Athena surface samples in the upper 
right corner. All Submersible samples between 60– 120 m, with the 
exception of one mid- depth Banc de Magaud replicate (MS4_3, 6 
MOTUs), formed a cluster in the upper left corner. Overall, there was 
a significant effect of depth (categories: 0 m, 20– 99 m, ≥ 100 m) on 
MOTU composition (PERMANOVA: p = 2.51, R2 = 0.15, p = 0.001). 
Approximately the same numbers of distinct MOTUs were found at 
the surface (0 m, n = 80) and mid- depth (20– 99 m, n = 83) but fewer 
MOTUs were detected in the deep waters (≥ 100 m, n = 34). The 
deep- water samples share 30 and 23 MOTUs with the mid- water 
and surface water samples, respectively. The mid- water and surface 
waters on the other hand share 53 MOTUs (Figure 4a). The pairwise 
Jaccard's dissimilarity index calculated between the depth catego-
ries showed that the surface and the deep- water samples differed 
the most (� jac = 0.747). The difference in MOTU composition was 
mainly explained by turnover (� jtu = 0.489) and less by nestedness 

TA B L E  2  The number of species per habitat category at La 
Pérouse (Western Indian Ocean) for the samples collected by 
eDNA and for both synthesis data. The table is presented in 
decreasing order of importance according to eDNA data

La Pérouse

eDNA data Synthesis data 1
Synthesis 
data 2

Reef- associated 43 (75.4%) 689 (71.7%) 125 (94.0%)

Benthopelagic 5 (8.8%) 52 (5.4%) 3 (2.3%)

Pelagic- oceanic 5 (8.8%) 38 (4%) 4 (3.0%)

Demersal 2 (3.5%) 102 (10.6%) — 

Bathypelagic 1 (1.8%) 26 (2.7%) 1 (0.8%)

Pelagic- neritic 1 (1.8%) 22 (2.3%) — 

Bathydemersal — 31 (3.2%) — 

Pelagic — 1 (0.1%) — 

F I G U R E  3  Compositional differences (PCoA) were calculated using the Jaccard distance matrix, which is based on the MOTUs presence- 
absence matrix between eDNA samples collected (a) along the Provence coast in the North- Western Mediterranean Sea and (b) at La 
Pérouse in the Western Indian Ocean. The color indicates the depth of each sample, and the shape represents the used sampling method. 
More information about the sampling protocol can be found in supplementary material 1 (Tables S1 and S2)
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(� jne = 0.258). The pairwise Jaccard's dissimilarity index between 
the mid- depth and the deep- water samples reached a value of 
� jac = 0.655 and was mostly explained by nestedness (� jne = 0.445) 
and less by turnover (� jtu = 0.211). In return, the difference between 
the surface and the mid- depth water samples (� jac = 0.518) was al-
most exclusively explained by turnover (� jtu = 0.505, � jne = 0.013).

3.2.2  |  La Pérouse

For La Pérouse, 3,157,242 reads were produced from eight 
eDNA samples and a total of 213 MOTUs could be distinguished 

(Supplementary material 3, Table S5). On average, we detected 
326.5 ± 134.6 MOTUs per sample and out of these MOTUs, we 
identified a total of 40, 76, and 46 species, genera, and families, 
respectively. For the PCoA of the La Pérouse eDNA samples, the 
first two axes explained 48.57% of the total variance (axis 1: 31.71% 
and axis 2: 16.86%; Figure 3b). On the first axis, there is a distinc-
tion visible between the samples collected around 60 m (red circles 
in Figure 3b) and the deep- water samples (≥ 100 m; green and blue 
circles in Figure 3b). The mid- depth samples (IS1_1 –  IS5_1, around 
60 m) were all clustered in the lower right corner, except one sam-
ple (IS2_1) which was collected during the night. From the more 
dispersed deep- water samples, the IS7_1 sample (green circle in 
Figure 3b) was collected at night, while the samples IS6_1 (green 
circle in Figure 3b) and IS_8 (blue circle in Figure 3b) were taken dur-
ing the daytime. In total, depth (categories: 60– 99 m, ≥ 100 m) had a 
significant effect on MOTU composition (PERMANOVA: F = 2.28, 
R2 = 0.28, p = 0.02). The comparison between the MOTUs found 
in the mid- depth water (n = 198) and the MOTUs found in depths 
below 100 m (n = 123) showed that they share 108 MOTUs, includ-
ing 21 taxa assigned to the species level. 90 and 15 MOTUs were 
found only in mid- depths and deep- water samples, respectively 
(Figure 4b). The pairwise Jaccard's dissimilarity index between the 
two depth categories reached a value of � jac = 0.493, with a simi-
lar amount explained by both turnover (� jtu = 0.217) and nestedness 
(� jne = 0.276).

3.3  |  Differences between species- reported depth 
ranges and detected depths

3.3.1  |  Provence coast

Due to incomplete depth range available in FishBase for four 
out of the 41 detected species in the Provence coast, the fol-
lowing species were excluded from this analysis: Chelon labrosus, 
Corcyrogobius liechtensteini, Lesueurigobius suerii, and Oedalechilus 
labeo. The published depth ranges of the remaining 37 species 
extend from 0 to 2878 m (mean upper depth limit: 14.1 ± 26.7 m; 
mean lower depth limit: 364.8 ± 556.5 m) (Froese & Pauly, 2021). 
Most species were present in more than one eDNA sample result-
ing in a total of 155 species- depth occurrences. 54.2% (n = 84) of 
all occurrences were found within species- reported depth ranges. 
Divided into the depth categories, there were 98 species- depth 
occurrences above 60 m, out of which 42.9% match the published 
depth ranges. Between 60 and 99 m and below 100 m, a total of 
39 and 18 species- depth occurrences were found, respectively. 
The percentage matching the species- reported depth ranges was 
74.4% and 72.2%, respectively. We observed species both below 
their published lower depth limit and above their published upper 
depth limit (Figure 5). For example, Symphodus ocellatus was sam-
pled at 0, 38, and 70 m (documented depth range of 1– 30 m) while 
Spicara maena was detected at 0, 38, and 130 m (documented 
depth range of 30– 130 m) (Froese & Pauly, 2021). No statistically 

F I G U R E  4  Venn diagrams showing the number of MOTUs 
found (a) in the three depth zones of the coastal North- Western 
Mediterranean Sea and (b) in the two depth zones of the seamount 
La Pérouse in the Western Indian Ocean
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significant difference was found between the mean number of 
reads of species- depth occurrences taken within a species docu-
mented depth range (M = 12,359) and the mean number of reads 
per sample outside a species documented depth range (M = 6289; 
Welch two- sample t- test, p = 0.10; Supplementary material 4, 
Table S6). For the species- depth occurrences found outside of 
the species- reported depth ranges, the mean difference between 
the sampled depths and the species- reported depths was 21.8 m 
(Mdn = 10.0 m, SD = 27.6 m, min = 1.0 m, max = 150.0 m). No 
significant correlation was found between the number of reads 
and the depth difference (Kendall rank correlation test, � = −0.07, 
p = 0.43; Supplementary material 4, Table S7).

3.3.2  |  La Pérouse

For La Pérouse, one species (Macropharyngodon bipartitus) out of 57 
detected species was excluded as the upper depth range was un-
known (lower depth range: 30 m). This species was found in two fil-
ters at 65 m, which means that, regardless of its lower depth range, 
it is outside of the reported depth range from FishBase. The pub-
lished depth ranges of the remaining species were between 0 and 
8000 m (mean upper depth limit: 10.1 ± 29.6 m; mean lower depth 
limit: 380.9 ± 1142.1 m) (Froese & Pauly, 2021). Most species were 
present in more than one eDNA sample resulting in a total of 162 
species- depth occurrences. Out of these occurrences, 48.1% (n = 78) 
were collected at a sampling depth within the expected depth range. 
Divided into the depth categories, there were 122 species- depth 
occurrences in mid- depth waters (60– 99 m) and 40 species- depth 
occurrences in deeper waters (≥ 100 m). The percentage matching 
the species- reported depth ranges was 47.5% (n = 58) and 50.0% 
(n = 20), respectively. Three species- depth occurrences of two spe-
cies (Scombrolabrax heterolepis: documented depth range of 100– 
900 m and Lepidocybium flavobrunneum: documented depth range of 

200– 1100 m) were found around 60 m, which is above their reported 
upper depth limit. However, more occurrences were detected below 
their lower depth range as for example Hirundichthys oxycephalus or 
Sufflamen chrysopterum, which have reported maximal depth ranges 
of 20 m and 30 m, respectively, but were both found below 60 m 
(Figure 6). The mean number of reads of the 84 species- depth oc-
currences collected outside the species documented depth ranges 
(M = 5628) and the mean of the 78 occurrences taken within the 
species documented depth ranges (M = 6108) did not vary signifi-
cantly (Welch two- sample t- test, p = 0.84; Supplementary mate-
rial 4, Table S6). For the species- depth occurrences collected outside 
of the species- reported depth range, no significant correlation was 
found between the number of reads and the difference between 
the observation depths and species- reported depths (Kendall rank 
correlation test, � = −0.09; p = 0.24; Supplementary material 4, 
Table S7). The mean difference between the two depths was 30.1 m 
(Mdn = 21.5 m, SD = 28.9 m, min = 1.0 m, max = 140.0 m).

4  |  DISCUSSION

Beyond the well- established capacity of eDNA metabarcoding 
through the 12S marker to provide a comprehensive picture of fish 
biodiversity in shallow MEs (e.g., Boulanger et al., 2021; Polanco 
Fernández, Marques, et al., 2021a), our study further shows that 
this technique was able to assess highly diverse fish assemblages 
made of Actinopterygii and Chondrichthyes in two different oceanic 
regions: the shallow- to- mesophotic ecosystem along the Provence 
coast (NW Mediterranean Sea) and the mesophotic ecosystem 
at the seamount La Pérouse (WIO). By analyzing the MOTU dis-
similarity along the shallow- mesophotic sampling depth, we show 
marked variations in species composition as well as the presence of 
unique and shared MOTUs in the different depth zones. Moreover, 
the high percentage of species- depth occurrences recorded outside 

F I G U R E  5  Fish species detected with 
eDNA metabarcoding along the Provence 
coast (North- Western Mediterranean 
Sea). The black lines show the species- 
reported depth ranges retrieved from 
Froese & Pauly (2021). Only species with 
a lower depth limit of up to 300 m are 
displayed for clarity reasons. The points 
represent species detections by eDNA. 
The size of the point is proportional to the 
total number of reads for a single species 
within one filter. Note that in samples 
taken at 150 and 200 m, no species were 
retrieved through the eDNA approach
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of species- reported depth ranges is intriguing and promising since 
these ranges are potentially underestimated (Kahng et al., 2014), 
and eDNA surveys might be used to improve their accuracy. These 
insights are crucial since a substantial amount of marine biodiversity, 
particularly in deeper oceans, remains unknown (Turner et al., 2019).

The species compositions detected by eDNA show that with a 
relatively small sampling effort of 35 samples for the Provence coast 
and eight samples at the seamount La Pérouse a broad snapshot of 
fish diversity can be obtained. For the well- studied Provence coast, 
the eDNA approach detected a subset of the potentially present spe-
cies from the synthesis data, but this information combines multiple 
atlases based on data collected over many years (Golani et al., 2002; 
Quignard & Tomasini, 2000; Whitehead et al., 1986). A major dif-
ference with the synthesis data is that we have not detected any 
bathydemersal fish species, which could require filtering closer to the 
substrate to capture those species that live and feed on the bottom at 
depths beyond our present maximum eDNA sampling depth (Froese & 
Pauly, 2021). For the less studied seamount ecosystem of La Pérouse, 
the eDNA approach retrieved a more diverse fish community com-
position than the second synthesis data (camera approach), which 
was gathered during the same expedition. The camera approach, in 
return, led to more taxa being found that were assigned up to the spe-
cies level (Durville et al., 2021). For both study regions, we found taxa 
that were not reported in the respective synthesis data. On the one 
hand, this can be due to incomplete synthesis data as for example the 

species Diaphus splendidus was also found by Cherel et al. (2020) at 
the seamount La Pérouse or the species Corcyrogobius liechtensteiniis 
known to occur in the Mediterranean Sea (Boulanger et al., 2021). 
On the other hand, such putative new records might only be due to 
closely related species having no barcode available. This could for 
example be the case for Thalassoma lutescens, as the closely related 
species Thalassoma genivittatum was detected by both synthesis data 
but is not sequenced for the 12S mitochondrial position and the teleo 
primer (Durville et al., 2021; Fricke et al., 2009; Marques et al., 2021). 
Overall, our results further demonstrate the applicability of eDNA 
metabarcoding in a variety of environments from the surface to me-
sophotic depths. Especially, the use of in situfiltering method enables 
the collection of large- volume water samples at the desired sampling 
depth and targeted habitat, which allows dynamic, more accurate, 
and comprehensive eDNA surveys.

As eDNA studies rely on reference database completeness 
(Marques et al., 2020) and MEs, or below, remain largely understudied 
(Pyle & Copus, 2019), we clustered sequences into MOTUs, which en-
ables an accurate assessment of biodiversity gradients in the absence 
of a complete database (Marques et al., 2020; Mathon et al., 2022). 
The high numbers of MOTUs obtained for both study regions, espe-
cially with the Athena and the Submersible method, further highlight 
the potential of eDNA to reveal comprehensive species assemblages. 
For both study regions, more MOTUs are found in surface and mid- 
depth water samples than in deep- water samples, which matches 

F I G U R E  6  Fish species detected with 
eDNA metabarcoding at La Pérouse 
(Western Indian Ocean). The black lines 
show the species- reported depth ranges 
retrieved from Froese & Pauly (2021). 
Only species with a lower depth limit 
of up to 300 m are displayed for clarity 
reasons. The points represent species 
detections by eDNA. The size of the point 
is proportional to the total number of 
reads for a single species within one filter
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the findings of previous eDNA studies (Andruszkiewicz et al., 2017; 
Govindarajan et al., 2022). Moreover, we reveal that while a large 
fraction of MOTUs is shared between depth zones, each depth also 
has its own set of MOTUs (Figure 4). The presence of differences in 
fish community composition depending on sampling depth in both 
our study regions further shows the feasibility of applying eDNA me-
tabarcoding on smaller scales and along depth gradients. However, 
the effect of depth on MOTU composition was only minor for both 
study regions. In regard to this, it is important to note that the three 
methods differ in the amounts of water sampled, resulting in a dif-
ferent number of MOTUs per sample. To improve results within and 
across methods, increasing the sampled water volume and num-
ber of sampling replicates is important to maximize the number of 
taxa obtained per sample, especially as DNA molecules in seawater 
samples can be patchy (Bessey et al., 2020; Stauffer et al., 2021). 
Nevertheless, with appropriate sampling protocols, eDNA metabar-
coding is a promising tool to reveal community compositions at small 
spatial scales and along depth gradients.

In our study, we use eDNA detections as a proxy of a source spe-
cies being present at the respective sampled location. This assump-
tion must be treated with caution, as eDNA molecules might get 
transported away from the place where they are shed from an or-
ganism. Such vertical and horizontal transport mechanisms are very 
complex in marine systems and influenced by hydrological factors 
(e.g., wind, currents, site characteristics) as well as the abiotic (e.g., 
temperature, salinity), and biotic environment (e.g., biofilms, vege-
tation) (Harrison et al., 2019). The vertical eDNA movement in MEs 
has received little attention (but see Allan et al., 2021), but there 
is evidence that the vertical dispersal is limited (e.g., Govindarajan 
et al., 2022; Jeunen et al., 2020; Monuki et al., 2021; Murakami 
et al., 2019). Since much is still unknown about DNA persistence and 
transport in marine environments, more proof- of- concept research 
is needed, especially in terms of how eDNA is transported across 
marine environments and how these processes vary along depth 
gradients when environmental conditions change (Miya, 2022).

Beyond documenting species geographic range (e.g., Polanco 
Fernández, Marques, et al., 2021a; West et al., 2020), eDNA, com-
bined with in situ filtration, could inform on marine fish species' 
depth ranges. Growing evidence suggests that species' lower depth 
range limits are underestimated (Kahng et al., 2014), partly due to 
the lack of sampling efforts in mesophotic and deeper regions (Pyle 
& Copus, 2019). In agreement, our comparison of the depth at which 
a species was detected with eDNA metabarcoding to the species' 
published depth range from FishBase shows for both study regions 
that only circa half of all eDNA species- depth occurrences fit the 
species' documented depth range (Froese & Pauly, 2021). As dis-
cussed in the previous section, such detections of species outside 
their reported depth range might also be explained by DNA being 
transported away from its source. However, other evidence suggests 
that the vertical dispersal of eDNA molecules is limited (e.g., Allan 
et al., 2021; Minamoto et al., 2017; Murakami et al., 2019) so that 
detection can indicate real depth range use. For example, the detec-
tion of Sufflamen chrysopterum, a species of Balistidae, in La Pérouse 

deeper than its published depth range within 1– 30 m (Froese & 
Pauly, 2021) matches knowledge from other Balistidae species that 
inhabit deeper environments of the continental shelf mesophotic en-
vironments (Chasqui Velasco & González Corredor, 2019; Thresher 
& Colin, 1986). The absence of correlation between the number of 
reads and the depth difference also suggests that we poorly know 
the real depth boundaries of most species or that the “abundant- 
center” effect does not apply along the depth gradient. Therefore, 
our findings highlight the importance of integrating sampling across 
depth zones to gain a more complete understanding of local bio-
diversity patterns, especially community structure and turnover in-
cluding the vertical dimension.

5  |  CONCLUSION

Mesophotic ecosystems are widely understudied (e.g., Costello 
& Chaudhary, 2017; Kahng et al., 2014; Turner et al., 2019), and 
we show the potential of eDNA metabarcoding to reveal fish 
community compositions across the shallow- to- mesophotic 
depth gradient. An even more comprehensive taxonomic picture 
of local biodiversity can be revealed, by using the same water 
samples for subsequent analysis and applying primer sets spe-
cific to other taxa (McClenaghan et al., 2020). This represents 
a valuable methodological step forward since mesophotic eco-
systems are harder to study than their shallow counterparts 
but are also potentially threatened (Pyle & Copus, 2019; Smith 
et al., 2019). Our eDNA surveys did not only detect variations in 
community composition depending on the sampling depth but 
also found shared MOTUs between samples collected at the 
surface, in mid- depth, and below 100 m. Based on the emerg-
ing evidence of the applicability and accuracy of eDNA surveys 
at small spatial scales (e.g., Andruszkiewicz et al., 2017; Jeunen 
et al., 2020; Minamoto et al., 2017), our findings highlight the 
potential of applying eDNA surveys along depth gradients and 
thereby gain relevant insights in vertically structured com-
munity assemblages. Further, eDNA might enhance species' 
reported depth ranges which currently lack precision and are 
biased (Kahng et al., 2014). These insights are crucial, especially 
because MEs face increasing threats such as climate change, 
overexploitation, or invasive species (Díaz et al., 2019; Smith 
et al., 2019). We thus advocate the use of eDNA for the investi-
gation in mesophotic ecosystems to better understand, monitor, 
and predict changes in community composition. Future eDNA 
surveys should incorporate region- specific factors, such as ther-
mocline, or hydrologic and hydrodynamic processes, to enhance 
accuracy and further validate our findings.
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