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Introduction

Let d ≥ 1, T > 0 be fixed, and let D ′ be a bounded open connected subset of R 1+d . We will refer to D = D ′ ∩ [0, T ] × R d , as a time-dependent domain. For t ∈ [0, T ], the time sections of D are defined by D t = {x : (t, x) ∈ D} and are assumed to be convex and increasing in time. We deal with the normally reflected SDE in time-dependent domain of the following form: ∀t ⩽ T ,      X t = x + t 0 b(r, X r )dr + t 0 σ (r, X r )dW r + t 0 ⃗ n(r, X r )d|Λ| r ;

X t ∈ Dt , |Λ| t = t 0 χ {Xr ∈∂ Dr } d|Λ| r < ∞.

(

This class of reflected SDEs has been introduced by Costantini-Gobet-El Karoui [START_REF] Costantini | Boundary sensitivities for diffusion processes in time dependent domains[END_REF] for smooth timedependent domains. Then, in the case of SDEs with oblique reflection in non-smooth time-dependent domains, existence of weak solutions has been established by . This result has been generalized by Lundström-Önskog [START_REF] Lundström | Stochastic and partial differential equations on nonsmooth timedependent domains[END_REF], the authors proved the existence and uniqueness of a strong solution for obliquely reflected SDEs in non-smooth time-dependent domains. In the previous papers, the results of existence and uniqueness are obtained mainly by solving Skorohod problem. The aim of this work is to provide an approximation scheme for the reflected SDE (1.1) using standard SDEs. This problem has been considered by Lions-Menaldi-Sznitman [START_REF] Lions | Construction de processus de diffusion réfléchis par pénalisation du domaine[END_REF] and by Menaldi [START_REF] Menaldi | Stochastic Variational Inequality for Reflected Diffusion[END_REF] where an approximation is given in convex time-independent domains when b and σ are Lipschitz.

The same domain was considered by Bahlali-Maticiuc-Zalinescu [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF] when the coefficients are only measurable, the authors established a weak convergence result. In general time-independent domains, Ren-Wu [START_REF] Ren | Penalization of Reflected SDEs and Neumann Problems of HJB Equations[END_REF] extended these results to the case where the domain may have corners.

In this paper, we are able to extend similar results of convergence to the case of not necessarily smooth time-dependent domains whose time sections are increasing with time which constitutes the main result of this paper. As an application, we consider the following generalized backward stochastic differential equations (BSDE for short): ∀t ⩽ s ⩽ T , Y t,x s = h(X t,x T ) + T s f (r, X t,x r ,Y t,x r , Z t,x r )dr + T s ψ(r, X t,x r ,Y t,x r )d|Λ t,x | r -T s Z t,x r dW r ,

This class of BSDEs has been first introduced and studied by Pardoux-Zhang [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary value problems[END_REF]. Moreover, the authors showed that if (X t,x , Λ t,x ) is the solution of a normally reflected SDE in a smooth timeindependent domain, then the solution of (1.2) provides a probabilistic formula for u which is a solution of a system of PDEs with nonlinear Neumann boundary conditions on smooth time-independent domain. Based on this connection between BSDEs and PDEs, and the approximation by standard SDEs of reflected SDEs in regular convex time-independent domains, many authors studied the convergence in the S-topology of the approximation of the generalized BSDE (1.2) associated with a reflected SDE in a regular convex when the driver function f does not depend on z. Then, they give an approximation (by standard PDEs) for the associated PDE with nonlinear Neumann boundary conditions on smooth time-independent domain (see e.g. [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF][START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF][START_REF] Bahlali | Penalization for a PDE with a nonlinear Neumann boundary condition and measurable coefficients[END_REF]). A recent paper by Bahlali-Boufoussi-Mouchtabih [START_REF] Bahlali | Approximation of a degenerate semilinear PDE with a nonlinear Neumann boundary condition[END_REF] treats the case where the driver function is allowed to depend on the variable z. Moreover, the authors provide a strong approximation for the generalized BSDE using a sequence of standard BSDEs. Then they use it to obtain, once again, the approximation by standard PDEs for a PDE with nonlinear boundary condition on time-independent regular convex.

Using the approximation for the normally reflected diffusion (1.1) that we give in the first part of this paper, we get an approximation for the associated generalized BSDE (1.2) when randomness stems from (1.1), using a sequence of standard BSDEs. As we know that (see Jakani [START_REF] Jakani | System of nonlinear second-order parabolic partial differential equations with interconnected obstacles and oblique derivative boundary conditions on non-smooth time-dependent domains[END_REF]), the solution of the generalized BSDE (1.2) provides a solution for the following PDE with nonlinear Neumann boundary condition on the time-dependent domain

D ′ ∩ [0, T ] × R d : ∀i = 1, ..., m,            ∂ t u i (t, x) + L u i (t, x) + f i (t, x, u(t, x), σ ⊤ (t, x)D x u i (t, x)) = 0, (t, x) ∈ D ′ ∩ [0, T ) × R d ; ∂ u i ∂⃗ n (t, x) + ψ i (t, x, u(t, x)) = 0, (t, x) ∈ D ′ \ D ′ ∩ [0, T ) × R d ; u(T, x) = h(x), x ∈ D T , (1.3 
) where the operator L is defined by

L = 1 2 Tr(σ σ ⊤ )D 2 xx (.) + b ⊤ D x (.) and at a point (t, x) ∈ ∂ D we set ∂ ∂⃗ n = ⟨⃗ n(t, x), D x (.)⟩.
We then obtain an approximation for the PDE with nonlinear Neumann boundary condition on time-dependent domain (1.3) by a sequence of standard PDEs defined on [0, T ] × R d . The paper is organized as follows: In Section 2, we define the geometry of the domain considered in this paper and we collect some existing results on reflected SDEs in time-dependent domains. Section 3 is devoted to the results of convergence, we propose a sequence of standard SDEs for which we establish a priori estimates and we show that it converges to the solution of the reflected SDE in the time-dependent domain D. Then, in Section 4, we use the approximation of reflected SDEs in a smooth time-dependent domain to provide an approximation for both generalized BSDEs associated with reflected diffusions in time-dependent domains and PDEs with normal derivative and nonlinear Neumann boundary condition defined on time-dependent domains.

Preliminaries and formulation of the problem 2.1 Geometry of the time-dependent domain

Let d ≥ 1, T > 0 be fixed, we follow the notation of [START_REF] Lundström | Stochastic and partial differential equations on nonsmooth timedependent domains[END_REF] and we let D ′ be a bounded open connected subset of R 1+d . We will refer to D = D ′ ∩ [0, T ] × R d , as a time-dependent domain. Given D and t ∈ [0, T ], we define the time sections of D as D t = {x : (t, x) ∈ D}. We assume that: (2.1)

D t ̸ = ∅,
Our basic assumption is the following:

D t ⊂ D t ′ , whenever t ≤ t ′ , t,t ′ ∈ [0, T ]. (2.2)
Let t ∈ [0, T ], the boundary of D t will be denoted ∂ D t . Then, define N(t, x) the cone of unit inward normal vectors at a boundary point x ∈ ∂ D t which is nonempty thanks to assumption (2.1). Note that under this assumption, the domain may have corners which does not rule out the possibility of several unit inward normal vectors at the same boundary point. Now, let ⟨•, •⟩ denote the standard inner product on R d and |x| = ⟨x, x⟩ 1/2 be the euclidean norm of x ∈ R d . For x ∈ R d and r > 0, let B(x, r) and S(x, r) denote the ball and sphere of radius r, centered at x, respectively, i.e. B(x, r) = y ∈ R d : |x -y| < r and S(x, r) = y ∈ R d : |x -y| = r . We assume that there exists a radius r 0 > 0 such that the exterior sphere condition holds for all time-sections of D. This implies that for any t ∈ [0, T ], we have:

B(x -r 0 ⃗ n(t, x), r 0 ) ⊂ D c t , (2.3) 
whenever x ∈ ∂ D t and ⃗ n(t, x) ∈ N(t, x). This is equivalent to say that

⟨y -x,⃗ n(t, x)⟩ + 1 2r 0 |y -x| 2 ⩾ 0, ∀x ∈ ∂ D t , y ∈ D t , (2.4 
)

whenever ⃗ n(t, x) ∈ N(t, x) for t ∈ [0, T ].
Unless otherwise stated, we fix ⃗ n(t, x) in N(t, x) and we assume that:

⃗ n ∈ C 1,2 b (R 1+d , {0, 1}), (2.5) 
where C 1,2 b (R 1+d , {0, 1}) denotes the space of bounded functions that are continuously differentiable once with respect to the time variable and twice with respect to the space variable and having bounded derivatives. Then, let us recall the temporal variation of the domain d(t, x) := inf

y∈D t |y -x|, ∀t ∈ [0, T ], x ∈ R d that is assumed to satisfy for some p ∈ (1, ∞), d(., x) ∈ W 1,p ([0, T ], [0, ∞)), (2.6) 
for all x ∈ R d , where W 1,p ([0, T ], [0, ∞)) denotes the Sobolev space of functions whose first order weak derivatives belong to L p ([0, T ]) with Sobolev norm uniformly bounded in space and such that the first weak derivative ∂ t d(t, x) is jointly measurable in (t, x).

Remark 2.1 Thanks to assumption (2.1), the exterior cone condition assumed in [START_REF] Lundström | Stochastic and partial differential equations on nonsmooth timedependent domains[END_REF] which is weaker than the uniform sphere condition (2.3) holds, i.e, there exists a constant ρ ∈ (0, 1) such that

∪ 0⩽ξ ⩽ρ B(x -ξ⃗ n(t, x), ξ ρ) ⊂ D c t , ∀t ∈ [0, T ], x ∈ ∂ D t . (2.7)
It follows, that the interior cone condition is satisfied as well:

∪ 0⩽ξ ⩽ρ B(x + ξ⃗ n(t, x), ξ ρ) ⊂ D t , ∀t ∈ [0, T ], x ∈ ∂ D t . (2.8)
Moreover, by Remark 2.2 in [START_REF] Lundström | Stochastic and partial differential equations on nonsmooth timedependent domains[END_REF], there exists α = 1 -1/p ∈ (0, 1) and K ∈ (0, ∞) such that for all s,t ∈ 

[0, T ], x ∈ R d , |d(s, x) -d(t, x)| ≤ K|s -t| α . ( 2 

Reflected SDEs in time-dependent domain

Let (Ω, F , P) be a fixed probability space on which is defined an n-dimensional Brownian motion W = (W t ) 0⩽t⩽T , where F = (F t ) 0≤t≤T is the completed filtration of (σ (W s , 0 ≤ s ≤ t)) t≤T with all P-null sets of We start by recalling the definition of the solution:

F . Let b : [0, T ] × R d -→ R d and σ : [0, T ] × R d -→ R d × R n be
Definition 2.1 (Lundström-Önskog [START_REF] Lundström | Stochastic and partial differential equations on nonsmooth timedependent domains[END_REF]) A strong solution of the reflected SDE in D driven by W and with coefficients b and σ , direction of reflection along ⃗ n and initial condition x ∈ D0 is an F t -adapted stochastic process X t which satisfies P-almost surely, whenever t ∈ [0, T ],

     X t = x + t 0 b(r, X r )dr + t 0 σ (r, X r )dW r + t 0 ⃗ n(r, X r )d|Λ| r ; X t ∈ Dt , |Λ| t = t 0 χ {Xr ∈∂ Dr } d|Λ| r < ∞.
(2.10)

We introduce the following assumptions:

(a) The functions b and σ are Lipschitz continuous with respect to x, i.e., there exists a positive constant C such that

|b(t, x) -b(t, x ′ )| + |σ (t, x) -σ (t, x ′ )| ≤ C|x -x ′ |, ∀(t, x, x ′ ) ∈ [0, T ] × R d × R d . (2.11) (b)
The functions b and σ are of linear growth in (t, x), i.e., there exists a positive constant

C such that |b(t, x)| + |σ (t, x)| ≤ C(1 + |x|), ∀(t, x) ∈ [0, T ] × R d . (2.12)
Next, we recall the following result of existence and uniqueness of the solution of the reflected SDE (2.10) under the above geometric setting:

Theorem 2.1 (Lundström-Önskog [START_REF] Lundström | Stochastic and partial differential equations on nonsmooth timedependent domains[END_REF]) Under assumption (a), the reflected SDE (2.10) has a unique strong solution.

Moreover, it has been shown in [START_REF] Jakani | System of nonlinear second-order parabolic partial differential equations with interconnected obstacles and oblique derivative boundary conditions on non-smooth time-dependent domains[END_REF] that the solution satisfies the following properties:

Proposition 2.1 There exists a constant C such that for all x, x ′ ∈ D 0 , E[ sup 0⩽t⩽T | X x t -X x ′ t | 4 + | |Λ x | t -|Λ x ′ | t | 4 ] ≤ C | x -x ′ | 4 . (2.13)
Moreover, for each µ > 0, t ∈ [0, T ], there exists C(µ,t) such that for all x ∈ D 0 ,

E[e µ|Λ x | t ] ≤ C(µ,t).
(2.14)

Approximation of reflected SDEs in time-dependent domains

Let D be a time-dependent domain satisfying (2.1)- (2.6). From now on we assume that the functions b and σ satisfy assumptions (a) and (b). Let x ∈ D0 , we introduce the following penalized SDE: ∀n ≥ 1, ∀t ∈ [0, T ],

X n t = x + t 0 b(r, X n r )dr + t 0 σ (r, X n r )dW r -n t 0 (X n r -π(r, X n r ))dr. (3.1) Note that if X n t / ∈ Dt , the vector -X n t -π(t,X n t ) |X n t -π(t,X n t )| is an element of N(t, π(t, X n t )).
Then the penalized SDE (3.1) can be written as:

X n t = x + t 0 b(r, X n r )dr + t 0 σ (r, X n r )dW r + Λ n t ,
where Λ n and |Λ n | are given by:

Λ n t = t 0 n(X n r -π(r, X n r ))dr,
and

|Λ n | t = t 0 n|X n r -π(r, X n r )|dr = t 0 n|X n r -π(r, X n r )|dr = t 0 nd(r, X n r )dr.

A priori estimates

Proposition 3.1 Under assumptions (a) and (b), for any q ≥ 1, ∀t ≤ T , we have:

sup n≥1 E sup 0≤t≤T |X n t | 2q + sup 0≤t≤T |Λ n | q t < ∞. (3.2) 
PROOF. From Itô's formula, we have: ∀t ∈ [0, T ],

|X n t -P 0 | 2 + 2n t 0 ⟨X n r -P 0 , X n r -π(r, X n r )⟩dr = |x -P 0 | 2 + t 0 |σ (r, X n r )| 2 dr + 2 t 0 ⟨X n r -P 0 , b(r, X n r )⟩dr + 2 t 0 ⟨X n r -P 0 , σ (r, X n r )⟩dW r .
Recall Lemma 2.1 -(d), then there exists P 0 ∈ D 0 such that for some 1 ⩽ γ < ∞, we have:

⟨X n r -P 0 , X n r -π(r, X n r )⟩ ≥ 1 γ |X n r -π(r, X n r )|. (3.3) 
This implies that:

2n t 0 ⟨X n r -P 0 , X n r -π(r, X n r )⟩dr ≥ 2n 1 γ t 0 |X n r -π(r, X n r )|dr.
Besides, from assumption (a), we deduce that for some constant M > 0 depending on the Lipschitz constant of b and σ , we have:

|b(r, X n r )| ≤ |b(r, P 0 )| + M|X n r -P 0 |, (3.4) |σ (r, X n r )| ≤ |σ (r, P 0 )| + M|X n r -P 0 |. (3.5)
Therefore,

|X n t -P 0 | 2 +2n 1 γ t 0 |X n r -π(r, X n r )|dr ≤ |x -P 0 | 2 + (M 2 + M + 1) t 0 |X n r -P 0 | 2 dr + t 0 |b(r, P 0 )| 2 dr + t 0 |σ (r, P 0 )| 2 dr + 2 t 0 ⟨X n r -P 0 , σ (r, X n r )⟩dW r .
Then from the boundedness of D0 and thanks to assumption (b), we get:

|X n t -P 0 | 2 +2n 1 γ t 0 |X n r -π(r, X n r )|dr ≤ C D 0 ,σ ,b,x +C t 0 |X n r -P 0 | 2 dr + 2 t 0 ⟨X n r -P 0 , σ (r, X n r )⟩dW r ,
and we have for q ≥ 1,

|X n t -P 0 | 2q + 2n 1 γ t 0 |X n r -π(r, X n r )|dr q ≤ C D 0 ,σ ,b,x +C t 0 |X n r -P 0 | 2q dr +C t 0 ⟨X n r -P 0 , σ (r, X n r )⟩dW r q . (3.6)
First, let us examine the term |X n t -P 0 | 2q . By taking the supremum over [0,t] and the expectation, we get:

E sup 0≤r≤t |X n r -P 0 | 2q ≤ C D 0 ,σ ,b,x +CE r 0 sup 0≤u≤r |X n u -P 0 | 2q du (3.7) +CE sup 0≤r≤t r 0 ⟨X n u -P 0 , σ (u, X n u )⟩dW u q .
From BDG inequality, it follows that:

E sup 0≤r≤t r 0 ⟨X n u -P 0 , σ (u, X n u )⟩dW u q ≤ CE t 0 |X n r -P 0 | 2 |σ (r, X n r )| 2 dr q 2 ≤ CE t 0 |X n r -P 0 | 4 + |σ (r, X n r )| 4 dr q 2 ≤ CE t 0 |X n r -P 0 | 2q |dr + t 0 |σ (r, X n r )| 2q |dr .
Again, using (3.5), we deduce from (3.7) that:

E sup 0≤r≤t |X n r -P 0 | 2q ≤ C D 0 ,σ ,b,x +C t 0 E sup 0≤u≤r |X n u -P 0 | 2q dr.
Finally, we apply Gronwall's lemma and we obtain: ∀q ≥ 1,

E sup 0≤r≤t |X n r -P 0 | 2q ≤ C, ∀t ≤ T, which implies that E sup 0≤t≤T |X n t | 2q ≤ C, ∀n ≥ 1.
Moreover, with the use of the latter estimate and taking into account (3.6), it follows that: ∀q ≥ 1,

E sup 0≤t≤T |Λ n | q t = E sup 0≤t≤T t 0 n|X n r -π(r, X n r )|dr q ≤ 1 2 γC, ∀n ≥ 1.

Uniform control of the distance

In this part, we are interested in the uniform control of d(t, X n t ). Note that assumptions (2.1) and (2.6) do not ensure the smoothness of the boundary. Inspired by [START_REF] Nyström | Reflected BSDE of Wiener-Poisson type in time-dependent domains[END_REF], we use a smooth approximation of D that allows to apply Itô's formula with a function involving the distance. More precisely, we recall the following lemma from the same work:

Lemma 3.1 Let ε > 0, there exists a C ∞ -smooth time-dependent domain D ε ⊂ D ′ satisfying (2.1) and (2.2) such that: h(D t , D ε,t ) < ε, ∀t ∈ [0, T ], (3.8) 
where h stands for the Hausdorff distance, which is defined by: h(F, G) = max(sup{d(y, F); y ∈ G}, sup{d(y, G); y ∈ F})

for any two sets F and G of R d .

Thanks to Lemma 3.1, we deduce that the cone of unit inward normal vectors at each boundary point of D ε is reduced to a unique vector that we denote⃗ n ε . Then for t ∈ [0, T ] and x ∈ R d \ Dε,t the projection of x along ⃗ n ε (t, x) will be denoted π ε (t, y). Note that π ε satisfies:

π ε (t, y) = y, ∀y ∈ D ε,t , ∀t ∈ [0, T ],
and

d ε (t, y) = d(y, D ε,t ) = |y -π ε (t, y)|, ∀y ∈ R d , ∀t ∈ [0, T ].
Proposition 3.2 Let (X n ) n⩾1 be the unique solution of the penalized SDE (3.1). Then for any p > 2, there exists c > 0 such that ∀n ⩾ 1, we have:

E sup 0≤t≤T d(t, X n t ) p ⩽ c n p-2 2 , (3.9) 
and

E T 0 d(t, X n t ) p dt ⩽ c n p 2 . ( 3.10) 
First we shall recall some properties of the projection π ε as stated in the following lemma which is borrowed from [START_REF] Nyström | Reflected BSDE of Wiener-Poisson type in time-dependent domains[END_REF].

Lemma 3.2 Let D ε be a smooth approximation of D satisfying (3.8). Then, there exists a constant c ≥ 0, such that, if ε ∈ (0, 1), y ∈ R d and t ∈ [0, T ], we have:

(i) |π(t, y) -π ε (t, y)| ≤ c min( ε 2 + εd ε (y,t); √ ε(1 + d ε (y,t)); ε 2 + εd(y,t)), (ii) |π(t, y) -π ε (t, y)| ≤ c √ ε d ε (t, y) whenever d ε (t, y) > ε.
PROOF OF PROPOSITION 3.2. We establish a uniform control of d ε (t, X n t ). This will be done using Itô's formula with the function ϕ ε (t, y) := (d ε (t, y)) p = |yπ ε (t, y)| p , ∀p > 2, which is continuously differentiable with respect to y and for which the derivative with respect to the time variable exists. Now, recall Lemma 3.1, then (D ε,t ) t⩾0 is increasing in time and by definition of ϕ ε , we have:

∂ t ϕ ε ≤ 0.
Using Itô's formula and thanks to the previous remark, we get:

∀t ∈ [0, T ], ϕ ε (t, X n t ) ≤ ϕ ε (0, X n 0 ) + t 0 ∂ x ϕ ε (s, X n s )dX n s + 1 2 t 0 ∂ xx ϕ ε (s, X n s )d⟨X n i , X n j ⟩ s ≤ ϕ ε (0, x) + t 0 ⟨∂ x ϕ ε (s, X n s ), b(s, X n s )⟩ds + t 0 ⟨∂ x ϕ ε (s, X n s ), σ (s, X n s )dW s ⟩ -n t 0 ⟨∂ x ϕ ε (s, X n s ), X n s -π(s, X n s )⟩ds + 1 2 t 0 σ ⊤ (s, X n s )∂ xx ϕ ε (s, X n s )σ (s, X n s )ds.
First, note that Lemma 3.2-(i) gives the following boundedness from above of ϕ ε (0, x):

ϕ ε (0, x) = |x -π ε (0, x)| p = |π(0, x) -π ε (0, x)| p ≤ c p ε 2 + εd(x, D 0 ) p = (cε) p .
Next, for the term involving ∂ x ϕ ε , we observe that:

∂ x ϕ ε (t, x) = ∂ x (d ε (t, x) 2 ) p 2 = p 2 ∂ x d ε (t, x) 2 × d ε (t, x) 2 p 2 -1 = p × (x -π ε (t, x)) × d ε (t, x) p-2 .
Then by taking the norm, we get:

|∂ x ϕ ε (t, X n t )| ≤ pd ε (t, X n t ) p-1 .
Note that for any c 1 > 0, there exists C 1 depending on c 1 and p:

pd ε (s, X n s ) p-1 |b(s, X n s )| ≤ c 1 nd ε (s, X n s ) p + C 1 n p-1 |b(s, X n s )| p , (3.11) 
Then we obtain the following inequality:

∀c 1 > 0, t 0 ⟨∂ x ϕ ε (s, X n s ), b(s, X n s )⟩ds ≤ p t 0 d ε (s, X n s ) p-1 |b(s, X n s )|ds ≤ c 1 n t 0 d ε (s, X n s ) p ds + C 1 n p-1 t 0 |b(s, X n s )| p ds. (3.12) 
Next, note that -x-π ε (t,x) |x-π ε (t,x)| coincides with⃗ n ε (t, x) the unit normal vector pointing toward the interior of D ε,t whenever x ∈ ∂ D ε,t for each t ∈ [0, T ] and null elsewhere. Hence, we can see that,

∂ xx ϕ ε (t, x) = ∂ x -p⃗ n ε (t, x)d ε (t, x) p-1 = -p⃗ n ε (t, x)∂ x (d ε (t, x) 2 ) p-1 2 -p(d ε (t, x)) p-1 ∂ x ⃗ n ε (t, x).
Taking into account the smoothness of D ε and the boundedness of D ′ , the derivative ∂ x ⃗ n ε is bounded. Thus, by taking the norm there exists a constant c > 0 independent of ε such that:

1 2 t 0 (σ ⊤ ∂ xx ϕ ε σ (s, X n s )ds ≤ t 0 cpd ε (s, X n s ) p-1 + cp(p -1)d ε (s, X n s ) p-2 |σ (s, X n s )| 2 ds.
Similarly, we can see that for any c 2 , c 3 > 0 there exist C 2 ,C 3 > 0 depending on c 2 and c 3 respectively and p such that,

cpd ε (s, X n s ) p-1 ≤ c 2 nd ε (s, X n s ) p + C 2 n p-1 |σ (s, X n s )| 2p , and 
cp(p -1)d ε (s, X n s ) p-2 |σ (s, X n s )| 2 ≤ c 3 nd ε (s, X n s ) p ds + C 3 n p-2 2 |σ (s, X n s )| p .
Therefore, the following upper bound holds: ∀c 2 , c 3 > 0,

1 2 t 0 (σ ⊤ ∂ xx ϕ ε σ (s, X n s )ds ≤ (c 2 + c 3 )n t 0 d ε (s, X n s ) p ds + C 2 n p-1 t 0 |σ (s, X n s )| 2p ds + C 3 n p-2 2 t 0 |σ (s, X n s )| p ds.
Now, let us examine the term involving the penalization term,

-n t 0 <∂ x ϕ ε (s, X n s ), X n s -π(s, X n s ) > ds = -np t 0 d ε (s, X n s ) p ds -np t 0 d ε (s, X n s ) p-2 ⟨X n s -π ε (s, X n s ), π ε (s, X n s ) -π(s, X n s )⟩χ {dε (s,X n s )>ε} (s, X n s )ds -np t 0 d ε (s, X n s ) p-2 ⟨X n s -π ε (s, X n s ), π ε (s, X n s ) -π(s, X n s )⟩χ {dε (s,X n s )⩽ε} (s, X n s )ds.
On the one hand, Lemma 3.2-(ii) yields:

| -np t 0 d ε (s, X n s ) p-2 ⟨X n s -π ε (s, X n s ), π ε (s, X n s ) -π(s, X n s )⟩χ {dε (s,X n s )>ε} (s, X n s )ds| ≤ npc √ ε t 0 d ε (s, X n s ) p-2 |X n s -π ε (s, X n s )|d ε (s, X n s ) 1 2 χ {dε (s,X n s )>ε} (s, X n s )ds ≤ npc √ ε t 0 d ε (s, X n s ) 2p-1 2 ds.
This implies that, for any c 4 > 0 there exists C 4 > 0 depending on c 4 and p such that:

| -np t 0 d ε (s, X n s ) p-2 ⟨X n s -π(s, X n s ), π ε (s, X n s ) -π(s, X n s )⟩χ {dε (s,X n s )>ε} (s, X n s )ds| ≤ c 4 n t 0 d ε (s, X n s ) p ds +C 4 n 1 2p ε p .
On the other hand, the second term can be dominated as follows:

np t 0 d ε (s, X n s ) p-2 |X n s -π ε (s, X n s )||π ε (s, X n s ) -π(s, X n s )|(1 -χ {dε (s,X n s )⩽ε} (s, X n s ))ds ≤ np √ ε t 0 d ε (s, X n s ) p-1 (1 + d ε (s, X n s ))ds ≤ cnε p-1 2 .
The last line follows from Lemma 3.2-(i). As a conclusion, we have:

ϕ ε (t, X n t ) + (p -c 1 -c 2 -c 3 -c 4 )n t 0 ϕ ε (s, X n s )ds ≤ (c p +C 4 n 1 2p )ε p + cnε p-1 2 + C 1 n p-1 t 0 |b(s, X n s )| p ds + t 0 C 2 n p-1 |σ (s, X n s )| 2p + C 3 n p-2 2 
|σ (s, X n s )| p ds 

+ t 0 ⟨∂ x ϕ ε (s, X n s ), σ (s, X n s )dW s ⟩. ( 3 
E d ε (t, X n t ) p + n t 0 d ε (s, X n s ) p ds ≤ (c p +C 4 n 1 2p )ε p + cnε p-1 2 + C n p-2 2 E t 0 |b(s, X n s )| p + |σ (s, X n s )| p + |σ (s, X n s )| 2p ds . (3.14) 
By taking the supremum over [0, T ] and by recalling (3.2) and assumption (b), we conclude that:

sup 0≤t≤T E d ε (t, X n t ) p ⩽ (c p +C 4 n 1 2p )ε p + cnε p-1 2 + C n p-2 2 
, ∀p > 2.

Next, using B-D-G inequality there exists c > 0 such that:

E sup 0≤t≤T | t 0 ⟨∂ x ϕ ε (s, X n s ), σ (s, X n s )dW s ⟩| ≤ cE T 0 d ε (s, X n s ) p-1 |σ (s, X n s )|ds ≤ c 5 E T 0 nd ε (s, X n s ) p ds + C 5 n p-1 E T 0 |σ (s, X n s )| p ds , ∀c 5 > 0,
where C 5 > 0 is independent of n. Hence, from (3.13) and (3.14), we conclude that there exists c > 0 such that

E sup 0≤t≤T d ε (t, X n t ) p ⩽ (c p +C 4 n 1 2p )ε p + cnε p-1 2 + C n p-2 2 
, ∀p > 2.

Finally, since h(D t , D ε,t ) < ε, we have d(s, X n ) ≤ d ε (s, X n s ) + ε. Then, it suffices to take the limit as ε → 0.

Convergence of the Penalized SDE

First, we show that (X n ) n⩾1 is a Cauchy sequence as stated in the following proposition: 

Proposition 3.3 Let (X n ) n⩾1 be
|X n t -X m t | 2 = 2 t 0 ⟨X n s -X m s , b(s, X n s ) -b(s, X m s )⟩ds + 1 2 t 0 |σ (s, X n s ) -σ (s, X m s )| 2 ds -2n t 0 ⟨X n s -X m s , X n s -π(s, X n s )⟩ds + 2m t 0 ⟨X n s -X m s , X m s -π(s, X m s )⟩ds + 2 t 0 ⟨X n s -X m s , (σ (s, X n s ) -σ (s, X m s ))dW s ⟩.
Using the Lipschitz continuity of b and σ , we deduce that:

|X n t -X m t | 2 ≤ c b,σ t 0 |X n s -X m s | 2 ds -2n t 0 ⟨X n s -X m s , X n s -π(s, X n s )⟩ds + 2m t 0 ⟨X n s -X m s , X m s -π(s, X m s )⟩ds + 2 t 0 ⟨X n s -X m s , (σ (s, X n s ) -σ (s, X m s ))dW s ⟩. (3.16) Note that, -⟨X n s -X m s , X n s -π(s, X n s )⟩ = -|X n s -π(s, X n s )| 2 + π(s, X n s ) -π(s, X m s ), - X n s -π(s, X n s ) |X n s -π(s, X n s )| d(s, X n s ) -π(s, X m s ) -X m s , X n s -π(s, X n s ) . (3.17)
By recalling the exterior sphere property (2.4) and using the Lipschitz continuity of π w.r.t. y, we deduce that:

-2n t 0 ⟨X n s -X m s , X n s -π(s, X n s )⟩ds ≤ cn t 0 |π(s, X n s ) -π(s, X m s )| 2 d(s, X n s )ds + 2n t 0 d(s, X n s )d(s, X m s )ds ≤ cn t 0 d(s, X n s )|X n s -X m s | 2 ds + 2n t 0 d(s, X n s )d(s, X m s )ds.
We do likewise with the third term in the right hand side of (3.16). Then, we obtain the following inequality:

|X n t -X m t | 2 ≤ M m,n t + H m,n t + t 0 Ψ m,n s |X n s -X m s | 2 ds
, where M m,n is a local martingale and the processes H m,n and Ψ m,n are defined by:

H m,n t :=2(m + n) t 0 d(s, X n s )d(s, X m s )ds Ψ m,n s :=c b,σ ,r (1 + nd(s, X n s ) + md(s, X m s )
). Then thanks to Stochastic Gronwall's inequality (see e.g. Lemma 2.3 in Ren-Wu [START_REF] Ren | Penalization of Reflected SDEs and Neumann Problems of HJB Equations[END_REF], Theorem 4 in Scheutzow [START_REF] Scheutzow | A stochastic Gronwall lemma[END_REF]), we get:

E sup 0≤t≤T |X n t -X m t |e - c b,σ ,r 2 T 0 (1+nd(s,X n s )+md(s,X m s ))ds ≤ 3cE (n + m) T 0 d(s, X n s )d(s, X m s )ds 1 2 ≤ cE sup 0≤t≤T d(t, X m t ) T 0 nd(s, X n s )ds + sup 0≤t≤T d(t, X n t ) T 0 md(s, X m s )ds 1 2 ≤ c E sup 0≤t≤T d(t, X m t ) + sup 0≤t≤T d(t, X n t ) 1 2 × E n T 0 d(s, X n s )ds + m T 0 d(s, X m s )ds 1 2 .
Recall Proposition 3.1, then from (3.2) we deduce that

E n T 0 d(s, X n s )ds = E |Λ n | T ≤ c. This implies that, E n T 0 d(s, X n s )ds + m T 0 d(s, X m s )ds ≤ c
On the other hand, from (3.9) it follows that for p > 2, there exists c > 0 that may change from line to line such that:

E sup 0≤t≤T d(t, X m t ) + sup 0≤t≤T d(t, X n t ) 1 2 ≤ E sup 0≤t≤T d(t, X m t ) + sup 0≤t≤T d(t, X n t ) p 1 2p ≤ c E sup 0≤t≤T d(t, X m t ) p + sup 0≤t≤T d(t, X n t ) p 1 2p ≤ c 1 m p-2 2 + 1 n p-2 2 1 2p .
Therefore, the following holds: ∀p > 2,

E sup 0≤t≤T |X n t -X m t |e - c b,σ ,r 2 (1+|Λ n | T +|Λ m | T ) ≤ c 1 m p-2 2 + 1 n p-2 2 1 2p -→ m,n→∞ 0.
First, observe that: ∀κ > 0,

sup 0≤t≤T |X n t -X m t | = sup 0≤t≤T |X n t -X m t | χ e - c b,σ ,r 2 (1+|Λ n | T +|Λ m | T ) ⩽κ + χ e - c b,σ ,r 2 (1+|Λ n | T +|Λ m | T ) >κ ≤ sup 0≤t≤T |X n t -X m t |χ 1+|Λ n | T +|Λ m | T ⩾ln ( 1 κ ) + 1 κ sup 0≤t≤T |X n t -X m t |e - c b,σ ,r 2 (1+|Λ n | T +|Λ m | T ) .
By taking the expectation, we obtain: ∀κ > 0,

E sup 0≤t≤T |X n t -X m t | ≤ E sup 0≤t≤T |X n t -X m t | 1 2 P 1 + |Λ n | T + |Λ m | T ⩾ ln 1 κ 1 2 + 1 κ 1 m p-2 2 + 1 n p-2 2 1 2p ≤ E sup 0≤t≤T |X n t -X m t | 1 2 E 1 + |Λ n | T + |Λ m | T ln 1 κ 1 2 + 1 κ 1 m p-2 2 + 1 n p-2 2 1 2p
.

Thanks to the estimate (3.2), there exists a constant c > 0 independent of n and m such that ∀κ > 0,

E sup 0≤t≤T |X n t -X m t | ≤ c 1 ln 1 κ 1 2 + 1 κ 1 m p-2 2 + 1 n p-2 2 1 2p .
It follows that:

lim sup m,n→∞ E sup 0≤t≤T |X n t -X m t | = 0.
Again from the estimate (3.2), we can see that for any p ⩾ 1 the family (|X n t -X m t | p ) m,n is uniformly integrable. Therefore, the following convergence holds: ∀p ⩾ 1,

E sup 0≤t≤T |X n t -X m t | p -→ m,n→∞ 0.
It follows that (X n ) n⩾1 is a Cauchy sequence in the space S p defined by:

S 2 = {(ψ t ) 0⩽t⩽T F t -progressively measurable such that E[ sup 0≤t≤T | ψ t | p ] < ∞}, then (X n ) n⩾1 converges.
To conclude this section, we show that the limit of (X n , Λ n ) n⩾1 is the solution of the reflected SDE (2.10). Proposition 3.4 For any p ⩾ 1, we have:

lim n→∞ E sup 0≤t≤T |X n t -X t | p = 0. (3.18)
PROOF. Let n ⩾ 1, by applying Itô's formula to |X n t -X t | 2 , we get:

|X n t -X t | 2 = 2 t 0 ⟨X n s -X s , b(s, X n s ) -b(s, X s )⟩ds + 1 2 t 0 |σ (s, X n s ) -σ (s, X s )| 2 ds + 2 t 0 ⟨X n s -X s , (σ (s, X n s ) -σ (s, X s ))dW s ⟩ + 2 t 0 (X n s -X s )dΛ n s -2 t 0 (X n s -X s )dΛ s .
The Lipschitz continuity of b and σ , implies that;

|X n t -X t | 2 ≤ c b,σ t 0 |X n s -X s | 2 ds + 2 t 0 ⟨X n s -X s , (σ (s, X n s ) -σ (s, X s ))dW s ⟩ -2n t 0 ⟨X n s -X s , X n s -π(s, X n s )⟩ds + 2 t 0 (X n s -X s )dΛ s . (3.19) 
Then, by repeating the same calculus as in the previous proof, we obtain:

-2n t 0 ⟨X n s -X s , X n s -π(s, X n s )⟩ds ≤ cn t 0 |π(s, X n s ) -π(s, X s )| 2 d(s, X n s )ds + 2n t 0 d(s, X n s )d(s, X s )ds ≤ cn t 0 d(s, X n s )|X n s -X s | 2 ds + 2n t 0 d(s, X n s )d(s, X s )ds.
Since (X t ) 0⩽t⩽T is the solution of the reflected SDE in the time-dependent domain (2.10), then X t ∈ D t . This implies that d(t, X t ) = 0 for any 0 ⩽ t ⩽ T . Therefore, the inequality (3.19) becomes:

|X n t -X t | 2 ≤ M n t + c t 0 (1 + nd(s, X n s ))|X n s -X s | 2 ds + 2 t 0 (X n s -X s )dΛ s ,
where M m is a local martingale. Besides, note that

|X n s -X s | ≤ |X n s -π(s, X n s ) + π(s, X n s ) -X s | ≤ d(s, X n s ) + c, since π(s, X n s )
and X s belong to the bounded set D T . It follows that,

|X n t -X t | 2 ≤ M n t + c t 0 (1 + nd(s, X n s ))|X n s -X s | 2 ds + c t 0 (1 + d(s, X n s ))d|Λ s |.
Again thanks to Stochastic Gronwall's inequality (see e.g. Lemma 2.3 in Ren-Wu [START_REF] Ren | Penalization of Reflected SDEs and Neumann Problems of HJB Equations[END_REF], Theorem 4 in Scheutzow [START_REF] Scheutzow | A stochastic Gronwall lemma[END_REF]), we get:

E sup 0≤t≤T |X n t -X t,x t |e - c b,σ ,r 2 
T 0 nd(s,X n s )ds ≤ 3cE T 0 d(s, X n s )d|Λ| s 1 2 ≤ cE sup 0≤t≤T d(t, X n t )|Λ| T 1 2 ≤ c E sup 0≤t≤T d(t, X n t ) p 1 p × E |Λ| T q 1 q 1 2 , p > 2, q > 1 and 1 p + 1 q = 1.
Thanks to (2.14) and (3.2), we deduce that the right hand side tends to zero as n → ∞. The remaining of the proof is similar to the proof of Proposition 3.3.

Note that the above convergence implies the convergence of Λ n to Λ as stated in the following corollary: Corollary 3.1 For any p ⩾ 1, we have:

lim n→∞ E sup 0≤t≤T |Λ n t -Λ t | p = 0. (3.20) PROOF. Recall that Λ n t -Λ t = X n t -X t + t 0 (b(r, X r ) -b(r, X n r ))dr + t 0 (σ (r, X r ) -σ (r, X n r ))dW r .
Then using the Lipschitz continuity of b and σ , we get: ∀p ⩾ 1,

|Λ n t -Λ t | p ≤ |X n t -X t | p + t 0 (b(r, X r ) -b(r, X n r ))dr p + t 0 (σ (r, X r ) -σ (r, X n r ))dW r p .
By taking the expectation, together with the use of B-D-G inequality and the convergence (3.18), we obtain the result.

Remark 3.1 It should be pointed out that the smoothness of the direction of reflection (2.5) and the assumption on the boundary of the domain (2.6) are not required to obtain the convergence of the approximation (3.1). However, in case these conditions are not satisfied, the existence and uniqueness of a solution of the reflected SDE (2.10) as well as its properties are not ensured within the geometric setting of Lundström-Önskog [START_REF] Lundström | Stochastic and partial differential equations on nonsmooth timedependent domains[END_REF]. In another framework, when the SDE (2.10) is reflected in D ⊂ R d+1 which is assumed to be at least H 2 -time-dependent domain, the cone of unit inward normal vectors is reduced to a unique element and the time sections of D satisfy the uniform exterior and interior sphere condition. Therefore, the existence and uniqueness of the solution of the reflected SDE (2.10) within this geometric setting as well as the estimate (2.14) follow without the need for the assumptions (2.5) and (2.6) (see Theorem 3.2, Theorem 3.4 and Proposition 3.5 in Costantini-Gobet-El Karoui [START_REF] Costantini | Boundary sensitivities for diffusion processes in time dependent domains[END_REF]). Moreover, with this type of regularity, the control of the distance d(t, X n t ) is obtained without resorting to the approximation of the domain (3.1).

Remark 3.2 In the case of time-independent domains, the estimates (3.2) coincide with the estimates obtained for the approximation of reflected SDEs in regular convex domain given in Bahlali-Maticiuc-Zalinescu [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF] and Menaldi [START_REF] Menaldi | Stochastic Variational Inequality for Reflected Diffusion[END_REF]. We also note that the convergence results (3.18) and (3.20) are similar to the results of convergence obtained in time-independent domains: for convex domain (Menaldi [10] and Slominski [START_REF] Slominski | Weak and strong approximations of reflected diffusions via penalization methods[END_REF]) and for non-convex domains (see e.g. Lions-Sznitmann [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF] and Ren-Wu [START_REF] Ren | Penalization of Reflected SDEs and Neumann Problems of HJB Equations[END_REF]).

Application to generalized BSDEs and PDEs with boundary condition on non-smooth time-dependent domains

Let D be a time-dependent domain satisfying (2.1)-(2.6). In this section, we give an application of the results obtained in the previous section by providing an approximation of generalized BSDEs when the underlying process is a reflected diffusion in a time-dependent domain. This approximation consists of a sequence of standard BSDEs associated with standard diffusions. Therefore, by considering the associated PDEs we also get an approximation of PDEs with boundary conditions on a time-dependent domain using a sequence of standard PDEs defined on R d . However, this requires an additional smoothness condition on the domain. From now on, we assume that the cone of unit inward normal vectors at each boundary point is reduced to a unique element ⃗ n that is assumed to satisfy (2.5).

Remark 4.1 By assuming that ⃗ n is unique at each boundary point, we note that Lemma 2.2 in Boufoussi-Casteren [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF] can be generalized to the case φ ∈ C 1,2 b (R 1+d ). The result is based essentially on the convergences (3.18) and (3.20). In fact we have: ∀p ⩾ 1,

lim n→∞ E sup 0≤t≤T t 0 ⟨φ (r, X r ), dΛ r ⟩ - t 0 ⟨φ (r, X n r ), dΛ n r ⟩ p = 0.
Therefore, by taking φ :=⃗ n(., .), we get:

lim n→∞ E sup 0≤t≤T t 0 ⟨⃗ n(r, X r ), dΛ r ⟩ - t 0 ⟨⃗ n(r, X n r ), dΛ n r ⟩ p = lim n→∞ E sup 0≤t≤T |Λ n | t -|Λ| t p = 0.
Now, let (t, x) ∈ D be fixed, we define (X t,x s , Λ t,x s ) t⩽s⩽T as the unique solution of: ∀t ⩽ s ⩽ T ,      X t,x s = x + s t b(r, X t,x r )dr + s t σ (r, X t,x r )dW r + s t ⃗ n(r, X t,x r )d|Λ t,x | r ;

X t,x s ∈ Ds , |Λ t,x | s = s 0 χ {X t,x r ∈∂ Dr } d|Λ t,x | r . (4.1) 
Then, let m ⩾ 1 and let us introduce the following functions:

f : (t, x, y, z) ∈ [0, T ] × R d × R m × R m×n -→ f (t, x,⃗ y, z) = ( f i (t, x,⃗ y, z i )) i=1,...,m ∈ R m , ψ : (t, x, y) ∈ [0, T ] × R d × R m -→ ψ(t, x,⃗ y) = (ψ i (t, x,⃗ y)) i=1,...,m ∈ R m , h : x ∈ R d -→ h(x) = (h i (x)) i=1,...,m ∈ R m .
From now on, we make the following assumptions:

(H 0 )
The function h is continuous and is of polynomial growth.

(H 1 ) (i) (t, x) -→ f (t, x,⃗ y, z) and (t, x) -→ ψ(t, x,⃗ y) are uniformly continuous with respect to (⃗ y, z) and ⃗ y respectively.

(ii) (t, x) -→ f (t, x, 0, 0) and (t, x) -→ ψ(t, x, 0) are of polynomial growth.

(iii) f and ψ are Lipschitz continuous with respect to (⃗ y, z) and ⃗ y respectively.

(iii) ∃β < 0 such that ⟨y -ȳ, ψ(t, x, y) -ψ(t, x, ȳ)⟩ ≤ β | y -ȳ | 2 .

Associated BSDEs

Now, let (X t,x s , Λ t,x s ) t⩽s⩽T be the unique solution of the reflected SDE (4.1), then we introduce the associated multidimensional generalized BSDE: ∀t ⩽ s ⩽ T ,

Y t,x s = h(X t,x T ) + T s f (r, X t,x r ,Y t,x r , Z t,x r )dr + T s ψ(r, X t,x r ,Y t,x r )d|Λ t,x | r - T s Z t,x r dW r , (4.2) 
which has a unique solution thanks to Theorem 1.6 in Pardoux-Zhang [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary value problems[END_REF] that we denote (Y t,x , Z t,x ). Moreover, the following estimates hold:

E sup t⩽s⩽T | Y t,x s | 2 + T t | Y t,x r | 2 d|Λ t,x | r + T t ||Z t,x r || 2 dr < ∞. (4.3) 
Next, let n ⩾ 1 and let X t,x,n be the unique solution of the penalized SDE:

∀t ⩽ s ⩽ T ,          X t,x,n s = x + s t b(r, X t,x,n r )dr + s t σ (r, X t,x,n r )dW r + Λ t,x,n s ; Λ t,x,n r = -n s t (X t,x,n r -π(r, X t,x,n r ))dr, |Λ t,x,n | s = s 0 n|X t,x,n s -π(s, X t,x,n s )|dr. (4.4)
Then, consider the associated sequence of standard BSDEs:

∀n ⩾ 1, ∀t ⩽ s ⩽ T , Y t,x,n s = h(X t,x,n T ) + T s f (r, X t,x,n r ,Y t,x,n r , Z t,x,n r )dr + T s ψ(r, X t,x,n r ,Y t,x,n r )d|Λ t,x,n | r - T s Z t,x,n r dW r . (4.5) 
We first give the estimates for the penalized BSDE:

Proposition 4.1 Let n ⩾ 1 and (Y t,x,n , Z t,x,n ) be the solution of the the penalized BSDE (4.5). Then, we have the following estimates: ∀n ⩾ 1,

E sup t⩽s⩽T | Y t,x,n s | 2 + T t | Y t,x,n r | 2 d|Λ t,x,n | r + T t ||Z t,x,n r || 2 dr < c, (4.6) 
where c is a constant independent of n.

PROOF. From Itô's formula, we have:

|Y t,x,n s | 2 + T s ||Z t,x,n r || 2 dr = |h(X t,x,n T )| 2 + 2 T s ⟨Y t,x,n r , f (r, X t,x,n r ,Y t,x,n r , Z t,x,n r )⟩dr +2 T s ⟨Y t,x,n r , ψ(r, X t,x,n r ,Y t,x,n r )⟩d|Λ t,x,n | r -2 T s ⟨Y t,x,n r , Z t,x,n r dW r ⟩.
Besides, using assumptions (H 1 )(ii) -(iv), we have:

⟨Y t,x,n r , f (r, X t,x,n r ,Y t,x,n r )⟩ ≤ |Y t,x,n r || f (r, X t,x,n r ,Y t,x,n r )| ≤ |Y t,x,n r |{c(1 + |X t,x,n r | + |Y t,x,n r | + |Z t,x,n r |)} ≤ c c 1 {(1 + |X t,x,n r | 2 + |Y t,x,n r | 2 } + c 1 ||Z t,x,n r || 2 (4.7)
and

⟨Y t,x,n r , ψ(r, X t,x,n r ,Y t,x,n r )⟩ ≤ ⟨Y t,x,n r , ψ(r, X t,x,n r ,Y t,x,n r ) -ψ(r, X t,x,n r , 0)⟩ + ⟨Y t,x,n r , ψ(r, X t,x,n r , 0)⟩ ≤ β |Y t,x,n r | 2 + c 2 |Y t,x,n r | 2 + c c 1 {1 + |X t,x,n r | 2 )}.
Note that the constants c 1 and c 2 can be chosen such that (-βc 2 ) > 0 and (1c 1 ) > 0. Therefore, the equation (4.7) yields,

|Y t,x,n s | 2 + (-β -c 2 ) T s |Y t,x,n r | 2 d|Λ t,x,n | r + (1 -c 1 ) T s ||Z t,x,n r || 2 dr ≤ c{1 + |X t,x,n T | 2 + T s |X t,x,n r | 2 dr + T s |X t,x,n r | 2 d|Λ t,x,n | r } + c T s |Y t,x,n r | 2 dr -2 T s ⟨Y t,x,n r , Z t,x,n r dW r ⟩.
Next, using the estimates (3.2)and by taking the expectation, we get:

E |Y t,x,n s | 2 + (-β -c 2 ) T s |Y t,x,n r | 2 d|Λ t,x,n | r + (1 -c 1 ) T s ||Z t,x,n r || 2 dr ≤ c{1 + E sup t≤r≤T |X t,x,n r | 2 + |Λ n | q [t,s] + T s |Y t,x,n r | 2 dr }.
Then, thanks to Gronwall's lemma, we obtain:

sup t≤s≤T E |Y t,x,n s | 2 + T s |Y t,x,n r | 2 d|Λ t,x,n | r + T s ||Z t,x,n r || 2 dr ≤ c.
Finally, it suffices to apply BDG inequality to conclude.

The convergence of (Y t,x,n , Z t,x,n ) n⩾1 is stated in the following proposition: Proposition 4.2 Let (Y t,x,n , Z t,x,n ) n⩾1 and (Y t,x , Z t,x ) be the unique solutions of the sequence of BS-DEs (4.5) and the generalized BSDE (4.2) respectively. Then, the following convergences hold true: [START_REF] Bahlali | Approximation of a degenerate semilinear PDE with a nonlinear Neumann boundary condition[END_REF] when (X t,x s , Λ t,x s ) t⩽s⩽T is the solution of the reflected SDE (4.1) in a regular convex time-independent domain. The proof is very technical and relies essentially on the results of convergence and properties of the penalized SDE (4.4) established in [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF][START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF][START_REF] Slominski | Weak and strong approximations of reflected diffusions via penalization methods[END_REF] and the properties of the reflected SDE in a regular convex time-independent domain that can be found in [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF][START_REF] Tanaka | Stochastic differential equations with reflecting boundary condition in convex regions[END_REF][START_REF] Menaldi | Stochastic Variational Inequality for Reflected Diffusion[END_REF]. The properties of the solution (X t,x s , Λ t,x s ) t⩽s⩽T and the results of convergence obtained in Section 2 and Section 3 are the generalizations of these results within our geometric setting. Therefore, the proof of Proposition 4.2 can be obtained by mimicking the proof of Theorem 6 in Bahlali-Boufoussi-Mouchtabih [START_REF] Bahlali | Approximation of a degenerate semilinear PDE with a nonlinear Neumann boundary condition[END_REF], we omit any further details. 

lim n→∞ E sup t≤s≤T |Y t,

Associated PDEs

D o = D ′ ∩ [0, T ) × R d , ∂ D = D ′ \ D ′ ∩ [0, T ) × R d .
Next, let us consider the following system of PDEs: ∀i = 1, ..., m,

          
∂ t u i (t, x) + L u i (t, x) + f i (t, x, u(t, x), σ ⊤ (t, x)D x u i (t, x)) = 0, (t, x) ∈ D o ;

∂ u i ∂⃗ n (t, x) + ψ i (t, x, u(t, x)) = 0, (t, x) ∈ ∂ D; u(T, x) = h(x), x ∈ D T , (4.9) 
where the operator L is defined by L = It follows from Theorem 2 in Jakani [START_REF] Jakani | System of nonlinear second-order parabolic partial differential equations with interconnected obstacles and oblique derivative boundary conditions on non-smooth time-dependent domains[END_REF], that u is a viscosity solution of the system of PDEs with boundary condition of Neumann type on time-dependent domain (4.9) in the sense of Definition 2.2 in Jakani [START_REF] Jakani | System of nonlinear second-order parabolic partial differential equations with interconnected obstacles and oblique derivative boundary conditions on non-smooth time-dependent domains[END_REF].

Finally, let (Y t,x,n , Z t,x,n ) n⩾1 be the unique solution of (4.5), it is well known that the sequence of deterministic functions (u n ) n⩾1 given by u n (t, x) = Y t,x,n t for any n ⩾ 1 is a viscosity solution of the following PDEs system: ∀x ∈ R d , ∀0 ⩽ t < T , ∀i = 1, . . . , m,

       ∂ t u n i (t, x) + L u n i (t, x) + f i (t,
x, u n (t, x), σ ⊤ (t, x)D x u n i (t, x))

-nψ i (t, x, u n (t, x))⟨⃗ n(t, x), xπ(t, x)⟩ = 0, u n (T, x) = h(x). As an application of the approximation provided for generalized BSDEs (4.5), we obtain an approximation for the system of PDEs (4.9): 

  and that D t is open and convex for every t ∈ [0, T ].

. 13 )

 13 It suffices to choose c 1 , c 2 , c 3 and c 4 positive such that pc 1c 2c 3c 4 > 1. Then, by taking the expectation, there exists C > 0 depending on c 1 , c 2 , c 3 , c 4 and p such that:

  Now, we are in a position to get an approximation of PDEs with nonlinear Neumann boundary condition on time-dependent domains. Let us set D = D ′ ∩ [0, T ] × R d . Then, following the notation of Lundström-Önskog [9], let us recall the spaces:

1 2

 1 Tr(σ σ ⊤ )D 2 xx (.) + b ⊤ D x (.) and at a point (t, x) ∈ ∂ D we set ∂ ∂⃗ n = ⟨⃗ n(t, x), D x (.)⟩. Let u : D → R m be the deterministic function defined by Y t,x the solution of the multidimensional generalized BSDE (4.2) as follows: u i (t, x) := Y t,x,i t , ∀i = 1, . . . , m. (4.10)

Proposition 4 . 3

 43 The following convergence holds: ∀(t, x) ∈ D, ∀i = 1, . .

  Now, recall that for any t ∈ [0, T ], D t is convex. Then for each t ∈ [0, T ], we have for all y ∈ R d \ Dt at least one projection of y onto ∂ D t along N(t, •) denoted π(t, y) which satisfies: d(t, y) = d(y, D t ) = |yπ(t, y)| and π(t, y) = y, ∀y ∈ Dt .

	Let D be a time-dependent domain satisfying (2.1) and (2.2), then we have the following lemma
	which is an adaptation of Lemma 3.1 in [11] to our case:
	Lemma 2.1 For any t ∈ [0, T ], and y, y ′ ∈ R d , we have:
	(a) ⟨y ′ -y, y -π(t, y)⟩ ≤ 0, y ′ ∈ Dt ;	
	(b) ⟨y ′ -y, y -π(t, y)⟩ ≤ ⟨y ′ -π(t, y ′ ), y -π(t, y)⟩, y ′ ∈ Dt ;
	(c) |π(t, y) -π(t, y ′ )| ≤ |y -y ′ |.		
	Furthermore, there exists P 0 ∈ D 0 and 1 ≤ γ < ∞ depending on d(P 0 , ∂ D 0 ) such that:
	(d) ⟨y -P 0 , y -π(t, y)⟩ ≥ 1 γ |y -π(t, y)|, for any y ∈ R d and t ∈ [0, T ].
			.9)
	Recall the function l(r) = sup s,t∈[0,T ] x∈ Ds sup	inf y∈ Dt	|x -y| introduced in [5], then by Remark 2.4 in [9], the
	|s-t|⩽r		
	condition (2.9) is equivalent to l(r) ⩽ Kr α .

  the solution of the penalized SDE (3.1). Then, for any p ⩾ 1,

	lim m,n→∞ E sup 0≤t≤T	|X n t -X m t | p = 0.	(3.15)
	PROOF. Let m, n ⩾ 1 and 0 ⩽ t ⩽ T , by applying Itô's formula to |X n s -X m s | 2 , we get:	

  Remark 4.2 The convergence (4.8) was established in Bahlali-Boufoussi-Mouchtabih

	s	x,n	-Y t,x s | 2 +	t	T	||Z t,x,n r	-Z t,x r || 2 dr = 0.	(4.8)

  . , m,

	lim n→∞	u n i (t, x) = u i (t, x).	(4.12)

PROOF. Let (t, x) ∈ D, then from the definition of (u n i ) i=1,...,m and (u i ) i=1,...,m , it follows that: ∀i = 1, . . . , m,

lim n→∞ |u n i (t, x)u i (t, x)| 2 = lim n→∞ |Y t,x,n,i t -Y t,x,i t | 2 ≤ lim n→∞ E sup t≤s≤T |Y t,x,n,i s -Y t,x,i s | 2 = 0.