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Computer musicians refer to mesostructures as the intermediate levels of articulation be-
tween the microstructure of waveshapes and the macrostructure of musical forms. Examples
of mesostructures include melody, arpeggios, syncopation, polyphonic grouping, and textural
contrast. Despite their central role in musical expression, they have received limited attention
in recent applications of deep learning to the analysis and synthesis of musical audio. Cur-
rently, autoencoders and neural audio synthesizers are only trained and evaluated at the scale
of microstructure: i.e., local amplitude variations up to 100 milliseconds or so. In this paper,
we formulate and address the problem of mesostructural audio modeling via a composition
of a differentiable arpeggiator and time-frequency scattering. We empirically demonstrate
that time–frequency scattering serves as a differentiable model of similarity between synthe-
sis parameters that govern mesostructure. By exposing the sensitivity of short-time spectral
distances to time alignment, we motivate the need for a time-invariant and multiscale differen-
tiable time–frequency model of similarity at the level of both local spectra and spectrotemporal
modulations.

1 INTRODUCTION

1.1 Differentiable time–frequency analysis
Time–frequency representations (TFR) such as the short-

time Fourier transform (STFT) or constant-Q transform
(CQT) play a key role in music signal processing [1, 2]
as they can demodulate the phase of slowly varying com-
plex tones. As a consequence, any two sounds x and y with
equal TFR magnitudes (i.e., spectrograms) are heard as the
same by human listeners, even though the underlying wave-
forms may differ. For this reason, spectrograms can not
only serve for visualization, but also for similarity retrieval.
Denoting the spectrogram operator by�, the Euclidean dis-
tance ‖�(y) −�(x)‖2 is much more informative than the
waveform distance ‖y − x‖2, since the waveform distance
diverges quickly even when phase differences are small.
In recent years, existing algorithms for STFT and CQT

have been ported to deep learning frameworks such as Py-
Torch, TensorFlow, MXNet, and JAX [3, 4, 5]. By doing
so, the developers have taken advantage of the paradigm of
differentiable programming, defined as the ability to com-
pute the gradient of mathematical functions by means of
reverse-mode automatic differentiation. In the context of
audio processing, differentiable programming may serve
to train a neural network for audio encoding, decoding, or

both. Hence, we may coin the umbrella term differentiable
time–frequency analysis (DTFA) to describe an emerging
subfield of deep learning in which stochastic gradient de-
scent involves a composition of neural network layers as
well as TFR. Previously, TFR were largely restricted to
analysis frontends, but now play an integral part in learning
architectures for audio generation.
The simplest example of DTFA is autoencoding. Given

an input waveform x, the autoencoder is a neural network
architecture 5 withweightsW, which returns another wave-
form y [6, 7]. During training, the neural network 5] aims
to minimize the following loss function:

Lx (W) = ‖(� ◦ 5] ) (x) −�(x)‖2, (1)

on average over every sample x in an unlabeled dataset.
The function above is known as spectrogram loss because
� maps x and y to the time–frequency domain.
Another example of DTFA is found in audio restoration.

This time, the input of 5] is not x itself but some degraded
version ℎ(x) — noisy or bandlimited, for example [8, 9].
The goal of 5] is to invert the degradation operator h by
producing a restored sound ( 5] ◦ h) (x) which is close to
x in terms of spectrogram loss:

Lx (W) = ‖(� ◦ 5] ◦ ℎ) (x) −�(x)‖2. (2)
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Thirdly, DTFA may serve for sound matching, also
known as synthesizer parameter inversion [6, 10, 11]. Given
a parametric synthesizer g and an audio query x, this task
consists in retrieving the parameter setting ) such that
y = g()) resembles x. In practice, sound matching may be
trained on synthetic data by sampling ) at random, generat-
ing x = g()), and measuring the spectrogram loss between
x and y:

L) (W) = ‖(� ◦ g ◦ 5] ◦ g) ()) − (� ◦ g) ())‖2. (3)

1.2 Shortcomings of spectrogram loss
Despite its proven merits for generative audio modeling,

spectrogram loss suffers from counterintuitive properties
when events are unaligned in time or pitch [12]. Although
a low spectrogram distance implies a judgment of high per-
ceptual similarity, the converse is not true: one can find
examples in which�(x) is far from�(y) yet judged musi-
cally similar by a human listener. First, � is only sensitive
to time shifts up to the scale ) of the spectrogram window;
i.e., around 10–100 milliseconds. We exemplify this in Fig.
3 with a visualization of a multi-scale spectrogram’s loss
surface under time-shifts. In the case of autoencoding, if
5] (x) (C) = x(C − g) with g � ) , Lx (W) may be as large
as 2‖�(x)‖2 even though the output of 5] would be easily
realigned onto x by cross-correlation. In the case of audio
restoration of pitched sounds, listeners are more sensitive
to artifacts near the onset (e.g., pre-echo) [13], even though
most of the spectrogram energy is contained in the sustain
and release parts of the temporal profile.

Lastly, in the case of sound matching, certain synthesiz-
ers contain parameters which govern periodic structures
at larger time scales while being independent of local
spectral variations. In additive synthesis, periodic modu-
lation techniques such as vibrato, tremolo, or trill have
a “rate” parameter which is neither predictable from iso-
lated spectrogram frames, nor reducible to a sequence of
discrete sound events. A small perturbation to synthesis
parameters of Y will induce a g() + Y) globally dilated
or compressed but locally misaligned in time, rendering
‖(� ◦ g) () + Y) − (� ◦ g) ())‖ not indicative of the mag-
nitude of Y. Comparison of timbre similarity is no longer
possible at the time scale of isolated spectrogram frames.

Modular synthesizers shape sound via an interaction be-
tween controlmodules (sequencers, function generator) and
sound processing & generating modules (oscillators, filters,
waveshapers) [14]. In a “patch“, sequencers determine the
playback speed and actuate events, while amplitude en-
velopes, oscillator waveshapes and filters sculpt the timbre.
Changing the clock speed of a patch would cause events to
be unaligned in time, but not alter the spectral composition
of isolated events.

1.3 Musical timescales: micro, meso, macro
The shortcomings of modelling music similarity solely

at the microscale of short-time spectra is exemplified by the
terminology of musical structure used in algorithmic com-
position. Curtis Roads outlines the challenge of coherently
modeling multiscale structures in algorithmic composition

[15]. Computer musicians refer tomusical structures at a hi-
erarchy of time scales. At one end is the micro scale; from
sound particles of few samples up to the milliseconds of
short-time spectral analysis [16]. Further up the hierarchy
of time is the meso scale; structures that emerge from the
grouping of sound objects and their complex spectrotempo-
ral evolution [17]. While the macro scale broadly includes
the arrangement of a whole composition or performance.
In granular synthesis, microstructure arises from individ-
ual grains, while their rate of playback forms texture clouds
at the level of mesostructure. Beyond the micro scale and
spectrogram analysis are sound structures that emerge from
complex spectral and temporal envelopes, such as sound
textures and instrumental playing techniques [18].

1.4 Contributions
In this paper, we pave the way towards differentiable

time–frequency analysis of mesostructure. The key idea
is to compute a 2D wavelet decomposition (“scattering”)
in the time–frequency domain for a sound x. The result,
named joint time–frequency scattering transform (JTFS),
is sensitive to relative time lags and frequency intervals be-
tween musical events. Meanwhile, JTFS remains stable to
global time shifts: going back to the example of autoen-
coding, 5] (x) (C) = x(C − g) leads to (�JTFS ◦ 5] ) (x) ≈
�JTFS (x), which is in line with human perception.

To illustrate the potential of JTFS in DTFA, we present
an example of differentiable sound matching in which mi-
croscale distance is a poor indicator of parameter distance.
In our example, the target sound x = g()) is an arpeggio
of short glissandi events (“chirplets”) which spans a scale
of two octaves. The two unknowns of the problem are the
number of chirplets per unit of time and the total duration
of the arpeggio. We show that it is possible to retrieve these
two unknowns without any feature engineering, simply by
formulating a least squares inverse problem in JTFS space
of the form:

)∗ = arg min
˜)
L) (˜))

= arg min
˜)
‖(� ◦ g) (˜)) − (� ◦ g) ())‖22 (4)

Intuitively, for the inverse problem above to be solvable
by gradient descent, the gradient ofL) should point towards
) when evaluated at any initial guess ˜) . Our main finding
is that such is the case if � is JTFS, but not if � is the
multi-scale spectrogram (MSS). Moreover, we find that the
gradient of L) remains informative even if the target sound
is subject to random time lags of several hundred millisec-
onds. To explain this discrepancy, we define the concept of
differentiable mesostructural operator as yielding the Jaco-
bian matrix of (� ◦ x) at ˜) , i.e., the composition between
audio synthesis and JTFS analysis at the parameter setting
of interest. This concept is not limited to sound matching
but also finds equivalents when training neural networks for
autoencoding and audio restoration.
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Fig. 1. Illustration of chirps overlapping in time and log–frequency. The red chirps are of equal chirp rate W. The blue chirps are displaced
in time from red and of increasing W (left to right). The bars indicate the distance between two chirps in the multiscale spectrogram (grey)
and time–frequency scattering (black) domains, respectively. We observe that when the chirp rates W governing mesostructure are equal,
the JTFS distance is at a minimum, while spectrogram distance is around its maximum. JTFS distance correlates well with distance in
W. We give a more detailed discussion of the importance of a time-invariant differentiable mesostructural operator in Section 4.

We release a differentiable implementation of JTFS in
Kymatio v0.41, an open-source software for DTFA onGPU,
which is interoperable with modern deep learning libraries
[19]. To encourage reproducibility of numerical experi-
ments, we supplement this paper with open-source code2.

2 MOTIVATING EXAMPLE

2.1 Comparing time-delayed chirps
Fig. (1) illustrates the challenge in DTFA of reliably

computing similarity between chirps synthesized by g. In
the example, the first-order moments of two chirps in the
time–frequency domain are equal, regardless of frequency
modulation (FM) rate. Consider two chirps that are dis-
placed from one another in time. Their spectrogram dis-
tance is at a maximum when the mesostructure is identical,
i.e. the FM rates are equal and the two signals are dis-
joint. As the FM rate increases, the two chirps overlap in
the time–frequency domain, resulting in a reduction of the
spectrogram distance that does not correlate with correct
prediction of ) . The spectrogram loss changes little as W
is varied. Moreover, local micro segments of a chirp are
periodically shifted in both time and frequency under W,
implying that comparison of microstructure is an inade-
quate indicator of similarity. A possible solution would be
to dynamically realign the chirps, however this operation
is numerically unstable and not differentiable. In the fol-
lowing sections, we outline a differentiable operator that is
capable of modelling distance in ) and stable to time shifts.
A representation that is well-equipped to disentangle these
three factors of variability should provide neighbourhood
distance metrics in acoustic space that reflect distance in
parameter space.

2.2 Chirplet synthesizer
A chirplet is a short sound event which produces a diag-

onal line in the time–frequency plane. Generally speak-
ing, chirplets follow an equation of the form x(C) =
a(C) cos(2c>(C)) where a and > denote instantaneous am-
plitude and phase respectively. In this paper, we generate

1Kymatio v0.4: https://github.com/kymatio/kymatio
2Experiments repository: https://github.com/

cyrusvahidi/meso-dtfa

chirplets whose instantaneous frequency grows exponen-
tially with time, so that their perceived pitch (roughly pro-
portional to log-frequency) grows linearly. We parametrize
this frequency modulation (FM) in terms of a chirp rate W,
measured in octaves per second. Denoting by 5c the instan-
taneous frequency of the chirplet at its onset, we obtain:

>(C) = 5c
W log2

2WC . (5)

Then, we define the instantaneous amplitude a of the
chirplet as the half-period of a sine function, over a time
support of Xt. We parameterise this half-period in terms of
amplitude modulation (AM) frequency 5m = 1

2X
t. Hence:

a(C) = sin(2c 5mC) if 0 ≤ 5mC <
1
2 and 0 otherwise. (6)

At its offset, the instantaneous frequency of the chirplet is
equal to 5m = 5c2WX

t
= 5m2W/ 5m . We use the notation ) as a

shorthand for the AM/FM tuple ( 5m, W).

2.3 Differentiable arpeggiator
We now define an ascending “arpeggio” such that the

offset of the previous event coincides with the onset of
the next event in the time–frequency domain. To do so,
we shift the chirplet by =XC in time and multiply its phase
by 2=Xf = 2=WXt for integer =. Lastly, we apply a global
temporal envelope to the arpeggio, by means of a Gaussian
window (C ↦→ 5F (WC)/W) ofwidth WFwhere the bandwidth
parameter F is expressed in octaves. Hence:

x(C) = 1
W
5F (WC)

+∞∑
==−∞

a

(
C − =

5m

)
cos

(
2W

=
5m >

(
C − =

5m

))
= g) (C), where ) = ( 5m, W). (7)

In the equation above, the number of events with non-
negligible energy is proportional to:

a()) = 5mF

W
, (8)

which is not necessarily an integer number since it varies
continuously with respect to ) . Here we see that our para-
metric model g, despite being very simple, controls an au-
ditory sensation whose definition only makes sense at the
mesoscale: namely, the number of notes a in the arpeggio
that form a sequential stream. Furthermore, this number re-
sults from the entanglement between AM ( 5m) and FM (W)
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and would remain unchanged after time shifts (replacing C
by (C − g)) or frequency transposition (varying 5c). Thus,
although the differentiable arpeggiator has limited flexibil-
ity, we believe that it offers an insightful test bed for the
DTFA of mesostructure.

3 TIME–FREQUENCY SCATTERING

Joint time–frequency scattering (JTFS) is a convolu-
tional operator in the time–frequency domain [20]. Via two-
dimensional wavelet filters applied in the time–frequency
domain at various scales and rates, JTFS extracts mul-
tiscale spectrotemporal modulations from digital audio.
When used as a frontend to a 2D convolutional neural
network, JTFS enables state-of-the-art musical instrument
classification with limited annotated training data [21]. Flo-
rianHecker’s compositions, e.gFAVN in 2016,mark JTFS’s
capability of computer music resynthesis (see a full list of
compositions from [22]).

3.1 Wavelet scalogram
Let 7 ∈ L2 (R,C) be a complex-valued wavelet filter of

unit center frequency and bandwidth 1/&1. We define a
constant-& filterbank of dilations from 7 as 7_ : C ↦−→
_7(_C), with constant quality factor&1. Each wavelet has a
centre frequency _ and a bandwidth of _/&1. We discretise
the frequency variable _ under a geometric progression of
common ratio 2

1
&1 , starting from _/&1. For a constant qual-

ity factor of &1 = 1, subsequent wavelet centre frequencies
are spaced by an octave, i.e. a dyadic wavelet filterbank.

Convolving the filterbank 7 with a waveform x ∈ L2 (R)
and applying a pointwise complex modulus gives the
wavelet scalogram U1:

U1x(C,_) = |x ∗ 7_ | (C) (9)

U1 is indexed by time and log-frequency, corresponding
to the commmonly known constant-Q transform in time–
frequency analysis.

Fig. 2. Illustration of the shape of 2D time–frequency wavelets
(second-order JTFS). Red and blue indicate higher positive and
lower negative values (resp.). Each pattern shows the response of
the real part of two-dimensional filters that arise from the outer
product between 1D wavelets 7U (C) and 7V (log_) of various
rates U and scales V (resp.). Orientation is determined by the sign
of V, otherwise known as the spin variable falling in {−1,1}. See
Section 3 for details on JTFS.

3.2 Time–frequency wavelets
Similarly to Section 3.1, we define another two wavelets

7t and7f along the time and log-frequency axes, with qual-
ity factors equivalent to &2 and &fr, respectively. We then
derive two filterbanks 7tU and 7f

V
, with center frequencies

of U and V, where

7tU (C) = U7t (UC) (10)

7fV (log2_) = V7f (V log2_) (11)

As in the computation of U1, we discretize U and V by
geometric progressions of common ratios 2

1
&2 and 2

1
&fr .We

interpret the frequency variable U and V from a perspective
of auditory spectrotemporal receptive fields (STRFs) [23]:
U is the temporal modulation rate measured in Hz, while V
is the frequential modulation scale measured in cycles per
octave.

The outer product between 7tU and 7f
V
forms a family of

2D wavelets of various rates U and scales V. We convolve
7tU and 7f

V
with U1x in sequence and apply a pointwise

complex modulus, resulting in a four-way tensor indexed
(C, _, U, V):

U2x(C,_,U, V) = |U1x(C,_) ∗ 7tU ∗ 7fV | (12)

In Fig. 2 we visualize the real part of the 2D wavelet
filters in the time–frequency domain. The wavelets are of
rate U, scale V and orientation (upward or downward) along
log2_, capturing multiscale oscillatory patterns in time and
frequency.

3.3 Local averaging
We compute first-order joint time–frequency scattering

coefficients by convolving the scalogram U1x of Eqn. (9)
with a Gaussian lowpass filter 5) of width ) , followed by
convolution with 7V (V ≥ 0) over the log-frequency axis,
then pointwise complex modulus:

S1x(C,_,U = 0, V) = |U1x(C,_) ∗ 5) ∗ 7V | (13)

Before convolution with 7V , we subsample the output of
U1G(C,_) ∗ 5) along time, resulting in a sampling rate pro-
portional to 1/) . Indeed, Eqn. (13) is a special case of
Eqn. (12) in which modulation rate U = 0 by the use of 5) .

We define the second-order joint time–frequency scatter-
ing transform of x as:

S2x(C,_,U, V) = U2x(C,_) ∗ 5) ∗ 5� (14)

where 5� is a Gaussian lowpass filter over the log-
frequency dimension of width �. For the special case of
V = 0 in Eqn. 12, 7V performs the role of 5� , yielding:

S2x(C,_,U, V = 0) = |U1x(C,_) ∗ 7tU ∗ 5� | ∗ 5) (15)

In both Eqns. (14) and (15), we subsample S2x to sampling
rates of )−1 and �−1 over the time and log-frequency axes,
respectively. Lowpass filtering with 5) and 5� provides
invariance to time shifts and frequency transpositions up to
a scale of ) and � respectively. The combination of S1x
and S2x, i.e. Sx = {S1x,S2x}, allows us to cover all paths
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combining the variables (_,U, V). In Section 4 we introduce
the use of Sx as a DTFA operator for mesostructures.
In Fig. 1, we highlighted the need for a operator that

models mesostructures. The stream of chirplets is displaced
in frequency at a particular rate. At second-order, JTFS
describes the larger scale spectrotemporal structure that
is not captured by S1. Moreover, JTFS is time-invariant,
making it a reliable measure of mesostructural similarity
up to time scale ) .

4 DIFFERENTIABLE MESOSTRUCTURAL OPERATOR

In this section, we introduce a differentiable mesostruc-
tural operator for time–frequency analysis. Such an op-
erator is needed in optimization scenarios that require a
differentiable measure of similarity, such as autoencoding.
In Section 2, we defined a differentiable arpeggiator g

whose parameters ) govern themesostructure in x. We now
seek a differentiable operator � ◦ g that provides a model
to control the low-dimensional parameter space ) . By way
of distance and gradient visualization under � ◦ g, we set
out to assess the suitability of� for modelling ) in a sound
matching task.
We consider two DTFA operators in the role of�: (i) the

multiscale spectrogram (MSS) (approximately U1x) and
(ii) time–frequency scattering (Sx = {S1x,S2x}) (JTFS).

JTFS MSS

Fig. 3. Loss surface and gradient field visualization under � as
JTFS (left) and MSS (right) for sounds synthesized by g (see
Section 2). Sounds are sampled from a logarithmically spaced
grid on 5m and W. We plot the target sound as a green dot and
compute the loss between the target and a sound generated at every
point on the grid. We time shift the generated sound relative to
the target by a constant of g = 210 samples. In the quiver plots, we
evaluate the gradient of the loss operator with respect to synthesis
parameters 5m and W. The direction of the arrows is indicative
of the informativeness of the distance computed on � ◦ g with
respect to ) . In the case of �JTFS, we observe a 3D loss surface
whose global minimum is centred around the target sound, while
gradients point towards the target. Contrarily, the global minimum
of �MSS does not centre around the target or reach 0. In the
presence of small time shifts, the MSS loss appears insensitive to
differences in AM and uninformative with respect to ) .

In case (i), we deem a small distance between two sounds
to be an indication of samemicrostructure. On the contrary,
similarity in case (ii) suggests the same mesostructure. Al-
though identical U1 implies equality in mesostructure, the
reverse is not true, e.g. in the case of time shifts and non-
stationary frequency.
Previously, JTFS has offered assessment of similarity be-

tween musical instrument playing techniques that underlie
mesostructure. With the DTFA operator �, there is poten-
tial to model mesostructures by their similarity as expressed
in terms of the raw audio waveform, synthesis parameters
or neural network weights. In cases such as granular syn-
thesis, it may be desirable to control mesostructure, while
allowing microstructure to stochastically vary.

4.1 Gradient computation & visualization
Weevaluate a distance objective under the operator� ◦ g

as a proxy for distance in ):

L) ()̃) = ‖(� ◦ g) ()) − (� ◦ g) ()̃)‖22 (16)

For a given parameter estimate )̃ , the gradient ∇L\ of the
distance to the target ) is:

∇L\ (\̃) = −2
(
(� ◦ g) ()) − (� ◦ g) ()̃)

))
· ∇(� ◦ g) (\̃)

(17)

The first term in Eqn. (17) is a row vector of length
% = dim

(
(� ◦ g) ())

)
and the second term is a matrix

of dimension % × dim()̃). The dot product between the
row vector in the first term and each column vector in the
high-dimensional Jacobian matrix ∇(� ◦ g) yields a low-
dimensional vector of dim()). Each column of the Jacobian
matrix can be seen as the direction of steepest descent in
the parameter space, such that distance in � is minimized.
Therefore the operator� ◦ g should result in distances that
reflect sensitivity and direction of changes in ) .

In L\ of Eqn. (16), we adopt time–frequency scattering
(Yx) (see Section 3) in the role of�. Otherwise, we refer to
L"(() when using the multi-scale spectrogram (MSS). In
the JTFS transform,we set � = 12, � 5 A = 5,&1 = 8,&2 = 2,
& 5 A = 2, and set � = 0 to disable frequency averaging.

Alternatively, we refer to L"(() when using the multi-
scale spectrogram (MSS). Let �(=)STFT be the short-time
fourier transform coefficients computed with a window size
of 2=. We compute the MSS loss in Eqn. (18), which is the
average of L1 distances between spectrograms at multiple
STFT resolutions:

L"(() ()̃) = 1
#

10∑
8=5
| (�(=)STFT ◦ g) ()) − (�

(=)
STFT ◦ g) ()̃) |

(18)

The chosen resolutions account for the sampling rate of
8192 Hz used by g. We set F = 2 octaves in all subsequent
experiments and normalize the amplitude of each g) .
For this experiment, we uniformly sample a grid of

20 × 20 AM/FM rates ( fm,$) on a log-scale ranging from
4 to 16 Hz and 0.5 to 4 octaves per second, leading

Submitted to J. Audio Eng. Soc., 5
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start far from target start near target start anywhere

Fig. 4. Parameter distance | |) − ˜) | | (log-scale) over gradient descent iterations with � as MSS and JTFS in 3 scenarios: (left) 5
initialisations of ˜) far from the target, (centre) 5 initialisations of ˜) in the neighbourhood of the target and (right) 5 initialisations of ˜)
across the range of the grid. We do not apply a time shift to the predicted sound (see Fig. 3 for gradient visualisation). The target sound
has parameters ) = [8.49,1.49]. The lines indicate the mean distance at each iteration across 5 runs of different ˜) initialisation. The
shaded region indicates the range across the 5 initialisations. The titles indicate the range of the initial ˜) . We highlight that even with no
time shifts, MSS only recovers ) well when ˜) is initialised in its local neighbourhood (centre). When ˜) is initialised far from the target
(left), MSS fails to converge. Starting anywhere (right), converges in the best case, but on average fails to converge and is close to the
worst case.

to 400 signals with a carrier frequency of fc = 512 Hz.
We designate the centre of the grid fm = 8.29 Hz and
$ = 1.49 octaves / second as the target sound.We introduce
a constant time shift g = 210 samples to the target sound in
order to test the stability of gradients under perturbations
in microstructures. We evaluate L) and ∇L) associated to
each sound for the two DTFA operators �STFT and �JTFS.
We visualize the loss surfaces and gradient fields with

respect to ˜) in Fig. 3. We observe that the JTFS operator
forms a loss surface with a single local minimum that is
located at the target sound’s ) . Meanwhile gradients across
the sampled parameters ˜) consistently point towards the tar-
get, despite certain exceptions at high W, which acoustically
correspond to very high FM rate. Contrarily, MSS loss gra-
dient suffers frommultiple local minima and does not reach
the global minimum when ˜) is located at the target due to
time shift equivariance. We highlight that the MSS distance
is insensitive to variation along AM, making it unsuitable
for modelling mesostructures.

In line with our findings, previous work [21] found that
3D visualizations of themanifold embedding of JTFS’ near-
est neighbour graph revealed a 3D mesh whose principal
components correlated with parameters describing carrier
frequency, AM and FM. Moreover,  -nearest neighbours
regression using a nearest neighbours graph in JTFS space
produced error ratios close to unity for each of the three
parameters.

4.2 Sound Matching by gradient descent
Unlike classic sound matching literature, where )̃ is esti-

mated from a forward pass through trainable 5] (i.e., neural
network weights), we formulate sound matching as an in-
verse problem in (� ◦ g). For the sake of simplicity, we do
not learn any weights to approximate ) .

Using the gradients derived in Section 4.1, we attempt
soundmatching of a target state in ) using a simple gradient

descent scheme with bold driver heuristics. We perform
additive updates to )̃ along the direction dictated by gradient
∇)̃L) :

)̃ ← )̃ − U∇)̃L) (19)

Our bold driver heuristic increases the learning rate U by a
factor of 1.2whenL) decreases it by a factor of 2 otherwise.
Our evaluation metric in parameter space is defined as:

L) (˜)) = ‖) − ˜) ‖22 (20)

Fig. 6 shows the mean L2 parameter error over gradient
descent steps for each �. We select a fixed target and ini-
tial prediction. We run multiple optimizations that consider
time shifts between 0 and 210 samples on the target audio.
Across time-shifts within the support ) of the lowpass filter
in��) �( , convergence is stable and reaches close to 0. We
observe that MSS does not converge and L) (˜)) does not
advance far from its initial value, including the case of no
time shifts. In Fig. 7, we further illustrate the effects of time
shifts for DTFA, validating that JTFS is a time-invariant
mesostructural operator up to support ) .

4.3 Time invariance
In Fig. 4, we explore the gradient convergence for dif-

ferent initialisations of ˜) but without time shifting the pre-
dicted sound. In each plot, we perform gradient descent for
5 different initialisations of ˜): (i) far away from the target
sound, (ii) in the local neighbourhood of the target sound
and (iii) broadly across the parameter grid. We highlight
that JTFS is able to converge to the solution in each of the
3 initialisation schemes, as corroborated by its gradients in
Fig. 5. We observe that even without time shifts, MSS fails
to recover the target sound in the case that the parameter
initialisation is far from the target.MSS does indeed recover
the target sound if ˜) is initialised in the neighbourhood of
the target. Although when starting anywhere, MSS does
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JTFS MSS JTFS MSS
no time shift no time shift random time shift random time shift

Fig. 5. Loss surfaces (top) and gradient fields (bottom) under�JTFS and the�MSS for sounds synthesized by g (see Section 2), sampled
from a logarithmically spaced grid on 5m and W. Each sound is randomly shifted in time relative to the target by 2= samples, where =
is sampled uniformly between [8,12]. We plot the target sound as a green dot and compute the loss under �JTFS and �MSS between
each sound and the target. In the quiver plots, we evaluate the gradient of the loss operator with respect to the synthesis parameters 5m
and W of the generated sound. In the case of both no time shifts, JTFS gradients point towards the target and the distance around 0 when
is at the target. Without time shifts, MSS computes distance between objects that intersect in the time–frequency domain. Its gradients
appear to lead to the target, however it suffers from local minima along AM, as demonstrated by convergence in Fig. 4. In the presence
of random time shifts, JTFS is appears robust while MSS is highly unstable and prone to local minima.

Fig. 6. Parameter distance | |) − ˜) | |2 over gradient descent it-
erations with � as MSS and JTFS. The target sound has pa-
rameters ) = [8.49,1.49]. We initialize the predicted sound at
˜)0 = [4,0.5]. The line plots the mean distance at each itera-
tion for multiple runs that shift the predicted sample in time
by g = {22,24,27,210} samples. The shaded region indicates the
range across different time shifts.

indeed converge in the best case, but on average it is close
to the worst case which does not converge.
Fig. 5 shows the loss surface and gradient fields for�JTFS

and�MSSwith no time shifts and random time shifts applied
to the predicted sound. Despite MSS reaching the global
minimum when the predicted sound is centred at the target,
our experiments in gradient descent demonstrate that it is
only stablewhen˜) is initialisedwithin the local region of the
target ) .Whenwe apply a random time shift to the predicted
sound, the MSS loss is highly unstable and produces many
local minima that are not located at the target sound. As

Fig. 7. Final parameter distance | |) − ˜) | |2 after gradient descent
for g()) (C) and g(˜)) (C − g), for ) = [8.49,1.49], ˜)0 = [4,0.5].
Each run (x-axis) is optimized under a different time shift g on the
predicted audio. JTFS is invariant up to the support ) = 213 of its
lowpass filter. We observe that convergence in parameter recovery
is stable to time shifts under our differentiable mesostructural
operator� ◦ g, in the case that� is JTFS.Optimization is unstable
when � is a spectrogram operator.

expected, the JTFS gradient is highly stable with no time
shifts. Even in the presence of random time shifts, JTFS is
an invariant representation of spectrotemporal modulations
upto time shifts ) .

5 CONCLUSION

Differentiable time–frequency analysis (DTFA) is an
emerging direction for audio deep learning tasks. The cur-
rent state-of-the-art for autoencoding, audio restoration and
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sound matching predominantly perform DTFA in the spec-
trogram domain. However, spectrogram loss suffers from
numerical instabilities when computing similarity in the
context of: (i) time shifts beyond the scale of the spec-
trogram window and (ii) nonstationarity that arises from
synthesis parameters. These prohibit the reliability of spec-
trogram loss as a similarity metric for modelling multiscale
musical structures.

In this paper, we introduced the differentiable mesostruc-
tural operator, comprising of modelling synthesis parame-
ters that generatemesostructure byway ofDTFAwith time–
frequency scattering. We model synthesis parameters for a
sound matching task using the joint time–frequency scat-
tering (JTFS) for DTFA of structures that are identifiable
beyond the locality of microstructure; i.e. amplitude and
frequency modulations of a chirplet synthesizer. Notably,
JTFS offers a differentiable and scalable implementation of:
auditory spectrotemporal receptive fields, multiscale anal-
ysis in the time–frequency domain and invariance to time
shifts.

However, despite prior evidence that JTFS accurately
models similarities in signals containing spectrotemporal
modulations, JTFS is yet to be assessed in DTFA for in-
verse problems and control in sound synthesis. By analysis
of the gradient of our DTFAoperator with respect to synthe-
sis parameters, we showed that in contrast to spectrogram
losses, JTFS distance is suitable for modelling similarity
in synthesis parameters that describe mesostructure. We
demonstrated the stability of JTFS as a DTFA operator in
soundmatching by gradient descent, particularly in the case
of time shifts.

This work lays the foundations for further experiments
in DTFA for autoencoding, sound matching, resynthesis
and computer music composition. Indeed, our differen-
tiable mesostructural operator could be used as a model
of the raw audio waveform directly, however this approach
is prone to resynthesis artifacts [24, 22]. We have shown
that by means of DTFA, we can model low-dimensional
synthesis parameters that shape sequential audio events.
We are yet to investigate the mesostructural operator’s in-
variance under frequency translations. Frequency invariant
differentiable digital signal processing warrants an investi-
gation of its own; we plan to address this in future work.
Another direction for future work lies in differentiable para-
metric texture synthesis, in which texture similarity may be
optimized in terms of parameters that derive larger scale
structures; e.g. beyond the definition of individual grains in
granular synthesis.
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