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INTRODUCTION

Differentiable time-frequency analysis

Time-frequency representations (TFR) such as the shorttime Fourier transform (STFT) or constant-Q transform (CQT) play a key role in music signal processing [START_REF] Schörkhuber | Constant-Q transform toolbox for music processing[END_REF][START_REF] Müller | Fundamentals of music processing: Audio, analysis, algorithms[END_REF] as they can demodulate the phase of slowly varying complex tones. As a consequence, any two sounds and with equal TFR magnitudes (i.e., spectrograms) are heard as the same by human listeners, even though the underlying waveforms may differ. For this reason, spectrograms can not only serve for visualization, but also for similarity retrieval. Denoting the spectrogram operator by , the Euclidean distance ( ) -( ) 2 is much more informative than the waveform distance -2 , since the waveform distance diverges quickly even when phase differences are small.

In recent years, existing algorithms for STFT and CQT have been ported to deep learning frameworks such as Py-Torch, TensorFlow, MXNet, and JAX [START_REF] Cheuk | nnAudio: An on-the-fly GPU audio to spectrogram conversion toolbox using 1d convolutional neural networks[END_REF][START_REF] Andreux | Music Generation and Transformation with Moment Matching-Scattering Inverse Networks[END_REF][START_REF] Yang | Torchaudio: Building blocks for audio and speech processing[END_REF]. By doing so, the developers have taken advantage of the paradigm of differentiable programming, defined as the ability to compute the gradient of mathematical functions by means of reverse-mode automatic differentiation. In the context of audio processing, differentiable programming may serve to train a neural network for audio encoding, decoding, or both. Hence, we may coin the umbrella term differentiable time-frequency analysis (DTFA) to describe an emerging subfield of deep learning in which stochastic gradient descent involves a composition of neural network layers as well as TFR. Previously, TFR were largely restricted to analysis frontends, but now play an integral part in learning architectures for audio generation.

The simplest example of DTFA is autoencoding. Given an input waveform , the autoencoder is a neural network architecture with weights W, which returns another waveform [START_REF] Engel | DDSP: Differentiable Digital Signal Processing[END_REF][START_REF] Zeghidour | Soundstream: An end-to-end neural audio codec[END_REF]. During training, the neural network aims to minimize the following loss function:

L (W) = ( • ) ( ) -( ) 2 , (1) 
on average over every sample in an unlabeled dataset. The function above is known as spectrogram loss because maps and to the time-frequency domain.

Another example of DTFA is found in audio restoration. This time, the input of is not itself but some degraded version ℎ( ) -noisy or bandlimited, for example [START_REF] Manocha | A Differentiable Perceptual Audio Metric Learned from Just Noticeable Differences[END_REF][START_REF] Su | Bandwidth extension is all you need[END_REF]. The goal of is to invert the degradation operator by producing a restored sound ( • ) ( ) which is close to in terms of spectrogram loss:

L (W) = ( • • ℎ) ( ) -( ) 2 . (2) 
Thirdly, DTFA may serve for sound matching, also known as synthesizer parameter inversion [START_REF] Engel | DDSP: Differentiable Digital Signal Processing[END_REF][START_REF] Esling | Flow synthesizer: Universal audio synthesizer control with normalizing flows[END_REF][START_REF] Masuda | Synthesizer Sound Matching with Differentiable DSP[END_REF]. Given a parametric synthesizer and an audio query , this task consists in retrieving the parameter setting such that = ( ) resembles . In practice, sound matching may be trained on synthetic data by sampling at random, generating = ( ), and measuring the spectrogram loss between and :

L (W) = ( • • • ) ( ) -( • ) ( ) 2 . ( 3 
)

Shortcomings of spectrogram loss

Despite its proven merits for generative audio modeling, spectrogram loss suffers from counterintuitive properties when events are unaligned in time or pitch [START_REF] Turian | I'm Sorry for Your Loss: Spectrally-Based Audio Distances Are Bad at Pitch[END_REF]. Although a low spectrogram distance implies a judgment of high perceptual similarity, the converse is not true: one can find examples in which ( ) is far from ( ) yet judged musically similar by a human listener. First, is only sensitive to time shifts up to the scale of the spectrogram window; i.e., around 10-100 milliseconds. We exemplify this in Fig. 3 with a visualization of a multi-scale spectrogram's loss surface under time-shifts. In the case of autoencoding, if ( ) ( ) = ( -) with , L (W) may be as large as 2 ( ) 2 even though the output of would be easily realigned onto by cross-correlation. In the case of audio restoration of pitched sounds, listeners are more sensitive to artifacts near the onset (e.g., pre-echo) [START_REF] Brandenburg | MP3 and AAC explained[END_REF], even though most of the spectrogram energy is contained in the sustain and release parts of the temporal profile.

Lastly, in the case of sound matching, certain synthesizers contain parameters which govern periodic structures at larger time scales while being independent of local spectral variations. In additive synthesis, periodic modulation techniques such as vibrato, tremolo, or trill have a "rate" parameter which is neither predictable from isolated spectrogram frames, nor reducible to a sequence of discrete sound events. A small perturbation to synthesis parameters of will induce a ( + ) globally dilated or compressed but locally misaligned in time, rendering ( • ) ( + ) -( • ) ( ) not indicative of the magnitude of . Comparison of timbre similarity is no longer possible at the time scale of isolated spectrogram frames.

Modular synthesizers shape sound via an interaction between control modules (sequencers, function generator) and sound processing & generating modules (oscillators, filters, waveshapers) [START_REF] Subotnick | The Use of the Buchla Synthesizer in Musical Composition[END_REF]. In a "patch", sequencers determine the playback speed and actuate events, while amplitude envelopes, oscillator waveshapes and filters sculpt the timbre. Changing the clock speed of a patch would cause events to be unaligned in time, but not alter the spectral composition of isolated events.

Musical timescales: micro, meso, macro

The shortcomings of modelling music similarity solely at the microscale of short-time spectra is exemplified by the terminology of musical structure used in algorithmic composition. Curtis Roads outlines the challenge of coherently modeling multiscale structures in algorithmic composition [START_REF] Roads | From grains to forms[END_REF]. Computer musicians refer to musical structures at a hierarchy of time scales. At one end is the micro scale; from sound particles of few samples up to the milliseconds of short-time spectral analysis [START_REF] Roads | Microsound[END_REF]. Further up the hierarchy of time is the meso scale; structures that emerge from the grouping of sound objects and their complex spectrotemporal evolution [START_REF] Roads | Rhythmic Processes in Electronic Music[END_REF]. While the macro scale broadly includes the arrangement of a whole composition or performance. In granular synthesis, microstructure arises from individual grains, while their rate of playback forms texture clouds at the level of mesostructure. Beyond the micro scale and spectrogram analysis are sound structures that emerge from complex spectral and temporal envelopes, such as sound textures and instrumental playing techniques [START_REF] Lostanlen | Fourier at the heart of computer music: From harmonic sounds to texture[END_REF].

Contributions

In this paper, we pave the way towards differentiable time-frequency analysis of mesostructure. The key idea is to compute a 2D wavelet decomposition ("scattering") in the time-frequency domain for a sound . The result, named joint time-frequency scattering transform (JTFS), is sensitive to relative time lags and frequency intervals between musical events. Meanwhile, JTFS remains stable to global time shifts: going back to the example of autoencoding, ( ) ( ) = ( -) leads to ( JTFS • ) ( ) ≈ JTFS ( ), which is in line with human perception.

To illustrate the potential of JTFS in DTFA, we present an example of differentiable sound matching in which microscale distance is a poor indicator of parameter distance. In our example, the target sound = ( ) is an arpeggio of short glissandi events ("chirplets") which spans a scale of two octaves. The two unknowns of the problem are the number of chirplets per unit of time and the total duration of the arpeggio. We show that it is possible to retrieve these two unknowns without any feature engineering, simply by formulating a least squares inverse problem in JTFS space of the form: * = arg min L ( )

= arg min ( • ) ( ) -( • ) ( ) 2 2 (4)
Intuitively, for the inverse problem above to be solvable by gradient descent, the gradient of L should point towards when evaluated at any initial guess . Our main finding is that such is the case if is JTFS, but not if is the multi-scale spectrogram (MSS). Moreover, we find that the gradient of L remains informative even if the target sound is subject to random time lags of several hundred milliseconds. To explain this discrepancy, we define the concept of differentiable mesostructural operator as yielding the Jacobian matrix of ( • ) at , i.e., the composition between audio synthesis and JTFS analysis at the parameter setting of interest. This concept is not limited to sound matching but also finds equivalents when training neural networks for autoencoding and audio restoration. and time-frequency scattering (black) domains, respectively. We observe that when the chirp rates governing mesostructure are equal, the JTFS distance is at a minimum, while spectrogram distance is around its maximum. JTFS distance correlates well with distance in . We give a more detailed discussion of the importance of a time-invariant differentiable mesostructural operator in Section 4.

We release a differentiable implementation of JTFS in Kymatio v0.4 1 , an open-source software for DTFA on GPU, which is interoperable with modern deep learning libraries [START_REF] Andreux | Kymatio: Scattering transforms in Python[END_REF]. To encourage reproducibility of numerical experiments, we supplement this paper with open-source code 2 .

MOTIVATING EXAMPLE

Comparing time-delayed chirps

Fig. [START_REF] Schörkhuber | Constant-Q transform toolbox for music processing[END_REF] illustrates the challenge in DTFA of reliably computing similarity between chirps synthesized by . In the example, the first-order moments of two chirps in the time-frequency domain are equal, regardless of frequency modulation (FM) rate. Consider two chirps that are displaced from one another in time. Their spectrogram distance is at a maximum when the mesostructure is identical, i.e. the FM rates are equal and the two signals are disjoint. As the FM rate increases, the two chirps overlap in the time-frequency domain, resulting in a reduction of the spectrogram distance that does not correlate with correct prediction of . The spectrogram loss changes little as is varied. Moreover, local micro segments of a chirp are periodically shifted in both time and frequency under , implying that comparison of microstructure is an inadequate indicator of similarity. A possible solution would be to dynamically realign the chirps, however this operation is numerically unstable and not differentiable. In the following sections, we outline a differentiable operator that is capable of modelling distance in and stable to time shifts. A representation that is well-equipped to disentangle these three factors of variability should provide neighbourhood distance metrics in acoustic space that reflect distance in parameter space.

Chirplet synthesizer

A chirplet is a short sound event which produces a diagonal line in the time-frequency plane. Generally speaking, chirplets follow an equation of the form ( ) = ( ) cos(2 ( )) where and denote instantaneous amplitude and phase respectively. In this paper, we generate 1 Kymatio v0.4: https://github.com/kymatio/kymatio 2 Experiments repository: https://github.com/ cyrusvahidi/meso-dtfa chirplets whose instantaneous frequency grows exponentially with time, so that their perceived pitch (roughly proportional to log-frequency) grows linearly. We parametrize this frequency modulation (FM) in terms of a chirp rate , measured in octaves per second. Denoting by c the instantaneous frequency of the chirplet at its onset, we obtain:

( ) = c log 2 2 . (5) 
Then, we define the instantaneous amplitude of the chirplet as the half-period of a sine function, over a time support of t . We parameterise this half-period in terms of amplitude modulation (AM) frequency m = 1 2 t . Hence:

( ) = sin(2 m ) if 0 ≤ m < 1
2 and 0 otherwise. ( 6) At its offset, the instantaneous frequency of the chirplet is equal to m = c 2 t = m 2 / m . We use the notation as a shorthand for the AM/FM tuple ( m , ).

Differentiable arpeggiator

We now define an ascending "arpeggio" such that the offset of the previous event coincides with the onset of the next event in the time-frequency domain. To do so, we shift the chirplet by in time and multiply its phase by 2 f = 2 t for integer . Lastly, we apply a global temporal envelope to the arpeggio, by means of a Gaussian window ( ↦ → ( )/ ) of width where the bandwidth parameter is expressed in octaves. Hence:

( ) = 1 ( ) +∞ =-∞ - m cos 2 m - m = ( ), where = ( m , ). (7) 
In the equation above, the number of events with nonnegligible energy is proportional to:

( ) = m , (8) 
which is not necessarily an integer number since it varies continuously with respect to . Here we see that our parametric model , despite being very simple, controls an auditory sensation whose definition only makes sense at the mesoscale: namely, the number of notes in the arpeggio that form a sequential stream. Furthermore, this number results from the entanglement between AM ( m ) and FM ( ) and would remain unchanged after time shifts (replacing by ( -)) or frequency transposition (varying c ). Thus, although the differentiable arpeggiator has limited flexibility, we believe that it offers an insightful test bed for the DTFA of mesostructure.

TIME-FREQUENCY SCATTERING

Joint time-frequency scattering (JTFS) is a convolutional operator in the time-frequency domain [START_REF] Andén | Joint Time-Frequency Scattering[END_REF]. Via twodimensional wavelet filters applied in the time-frequency domain at various scales and rates, JTFS extracts multiscale spectrotemporal modulations from digital audio. When used as a frontend to a 2D convolutional neural network, JTFS enables state-of-the-art musical instrument classification with limited annotated training data [START_REF] Muradeli | Differentiable Time-Frequency Scattering On GPU[END_REF]. Florian Hecker's compositions, e.g FAVN in 2016, mark JTFS's capability of computer music resynthesis (see a full list of compositions from [START_REF] Lostanlen | The Shape of RemiXXXes to Come: Audio Texture Synthesis with Timefrequency Scattering[END_REF]).

Wavelet scalogram

Let ∈ L 2 (R, C) be a complex-valued wavelet filter of unit center frequency and bandwidth 1/ 1 . We define a constant-filterbank of dilations from as : ↦ -→ ( ), with constant quality factor 1 . Each wavelet has a centre frequency and a bandwidth of / 1 . We discretise the frequency variable under a geometric progression of common ratio 2 1 1 , starting from / 1 . For a constant quality factor of 1 = 1, subsequent wavelet centre frequencies are spaced by an octave, i.e. a dyadic wavelet filterbank.

Convolving the filterbank with a waveform ∈ L 2 (R) and applying a pointwise complex modulus gives the wavelet scalogram U 1 :

U 1 ( , ) = | * |( ) (9) 
U 1 is indexed by time and log-frequency, corresponding to the commmonly known constant-Q transform in timefrequency analysis.

Fig. 2. Illustration of the shape of 2D time-frequency wavelets (second-order JTFS). Red and blue indicate higher positive and lower negative values (resp.). Each pattern shows the response of the real part of two-dimensional filters that arise from the outer product between 1D wavelets ( ) and (log ) of various rates and scales (resp.). Orientation is determined by the sign of , otherwise known as the spin variable falling in {-1, 1}. See Section 3 for details on JTFS.

Time-frequency wavelets

Similarly to Section 3.1, we define another two wavelets t and f along the time and log-frequency axes, with quality factors equivalent to 2 and fr , respectively. We then derive two filterbanks t and f , with center frequencies of and , where

t ( ) = t ( ) (10) 
f (log 2 ) = f ( log 2 ) (11) 
As in the computation of U 1 , we discretize and by geometric progressions of common ratios 2 1 2 and 2 1 fr . We interpret the frequency variable and from a perspective of auditory spectrotemporal receptive fields (STRFs) [START_REF] Chi | Multiresolution spectrotemporal analysis of complex sounds[END_REF]:

is the temporal modulation rate measured in Hz, while is the frequential modulation scale measured in cycles per octave.

The outer product between t and f forms a family of 2D wavelets of various rates and scales . We convolve t and f with U 1 in sequence and apply a pointwise complex modulus, resulting in a four-way tensor indexed ( , , , ):

U 2 ( , , , ) = |U 1 ( , ) * t * f | (12) 
In Fig. 2 we visualize the real part of the 2D wavelet filters in the time-frequency domain. The wavelets are of rate , scale and orientation (upward or downward) along log 2 , capturing multiscale oscillatory patterns in time and frequency.

Local averaging

We compute first-order joint time-frequency scattering coefficients by convolving the scalogram U 1 of Eqn. ( 9) with a Gaussian lowpass filter of width , followed by convolution with ( ≥ 0) over the log-frequency axis, then pointwise complex modulus:

S 1 ( , , = 0, ) = |U 1 ( , ) * * | (13) 
Before convolution with , we subsample the output of U 1 ( , ) * along time, resulting in a sampling rate proportional to 1/ . Indeed, Eqn. ( 13) is a special case of Eqn. [START_REF] Turian | I'm Sorry for Your Loss: Spectrally-Based Audio Distances Are Bad at Pitch[END_REF] in which modulation rate = 0 by the use of .

We define the second-order joint time-frequency scattering transform of as:

S 2 ( , , , ) = U 2 ( , ) * * ( 14 
)
where is a Gaussian lowpass filter over the logfrequency dimension of width . For the special case of = 0 in Eqn. 12, performs the role of , yielding:

S 2 ( , , , = 0) = |U 1 ( , ) * t * | * (15) 
In both Eqns. ( 14) and ( 15), we subsample S 2 to sampling rates of -1 and -1 over the time and log-frequency axes, respectively. Lowpass filtering with and provides invariance to time shifts and frequency transpositions up to a scale of and respectively. The combination of S 1 and S 2 , i.e. S = {S 1 , S 2 }, allows us to cover all paths DRAFT combining the variables ( , , ). In Section 4 we introduce the use of S as a DTFA operator for mesostructures.

In Fig. 1, we highlighted the need for a operator that models mesostructures. The stream of chirplets is displaced in frequency at a particular rate. At second-order, JTFS describes the larger scale spectrotemporal structure that is not captured by S 1 . Moreover, JTFS is time-invariant, making it a reliable measure of mesostructural similarity up to time scale .

DIFFERENTIABLE MESOSTRUCTURAL OPERATOR

In this section, we introduce a differentiable mesostructural operator for time-frequency analysis. Such an operator is needed in optimization scenarios that require a differentiable measure of similarity, such as autoencoding.

In Section 2, we defined a differentiable arpeggiator whose parameters govern the mesostructure in . We now seek a differentiable operator • that provides a model to control the low-dimensional parameter space . By way of distance and gradient visualization under • , we set out to assess the suitability of for modelling in a sound matching task.

We consider two DTFA operators in the role of : (i) the multiscale spectrogram (MSS) (approximately U 1 ) and (ii) time-frequency scattering (S = {S 1 , S 2 }) (JTFS).

JTFS MSS

Fig. 3. Loss surface and gradient field visualization under as JTFS (left) and MSS (right) for sounds synthesized by (see Section 2). Sounds are sampled from a logarithmically spaced grid on m and . We plot the target sound as a green dot and compute the loss between the target and a sound generated at every point on the grid. We time shift the generated sound relative to the target by a constant of = 2 10 samples. In the quiver plots, we evaluate the gradient of the loss operator with respect to synthesis parameters m and . The direction of the arrows is indicative of the informativeness of the distance computed on • with respect to . In the case of JTFS , we observe a 3D loss surface whose global minimum is centred around the target sound, while gradients point towards the target. Contrarily, the global minimum of MSS does not centre around the target or reach 0. In the presence of small time shifts, the MSS loss appears insensitive to differences in AM and uninformative with respect to .

In case (i), we deem a small distance between two sounds to be an indication of same microstructure. On the contrary, similarity in case (ii) suggests the same mesostructure. Although identical U 1 implies equality in mesostructure, the reverse is not true, e.g. in the case of time shifts and nonstationary frequency.

Previously, JTFS has offered assessment of similarity between musical instrument playing techniques that underlie mesostructure. With the DTFA operator , there is potential to model mesostructures by their similarity as expressed in terms of the raw audio waveform, synthesis parameters or neural network weights. In cases such as granular synthesis, it may be desirable to control mesostructure, while allowing microstructure to stochastically vary.

Gradient computation & visualization

We evaluate a distance objective under the operator • as a proxy for distance in :

L ( ˜ ) = ( • ) ( ) -( • ) ( ˜ ) 2 2 (16)
For a given parameter estimate ˜ , the gradient ∇L of the distance to the target is:

∇L ( ˜ ) = -2 ( • ) ( ) -( • ) ( ˜ ) • ∇( • ) ( ˜ ) (17)
The first term in Eqn. ( 17) is a row vector of length = dim ( • ) ( ) and the second term is a matrix of dimension × dim( ˜ ). The dot product between the row vector in the first term and each column vector in the high-dimensional Jacobian matrix ∇( • ) yields a lowdimensional vector of dim( ). Each column of the Jacobian matrix can be seen as the direction of steepest descent in the parameter space, such that distance in is minimized. Therefore the operator • should result in distances that reflect sensitivity and direction of changes in .

In L of Eqn. ( 16), we adopt time-frequency scattering ( ) (see Section 3) in the role of . Otherwise, we refer to L when using the multi-scale spectrogram (MSS). In the JTFS transform, we set = 12, = 5, 1 = 8, 2 = 2, = 2, and set = 0 to disable frequency averaging. Alternatively, we refer to L when using the multiscale spectrogram (MSS). Let ( ) STFT be the short-time fourier transform coefficients computed with a window size of 2 . We compute the MSS loss in Eqn. [START_REF] Lostanlen | Fourier at the heart of computer music: From harmonic sounds to texture[END_REF], which is the average of L1 distances between spectrograms at multiple STFT resolutions:

L ( ˜ ) = 1 10 =5 |( ( ) STFT • ) ( ) -( ( ) STFT • ) ( ˜ )| (18) 
The chosen resolutions account for the sampling rate of 8192 Hz used by . We set = 2 octaves in all subsequent experiments and normalize the amplitude of each .

For this experiment, we uniformly sample a grid of 20 × 20 AM/FM rates ( m , ) on a log-scale ranging from 4 to 16 Hz and 0.5 to 4 octaves per second, leading to 400 signals with a carrier frequency of c = 512 Hz. We designate the centre of the grid m = 8.29 Hz and = 1.49 octaves / second as the target sound. We introduce a constant time shift = 2 10 samples to the target sound in order to test the stability of gradients under perturbations in microstructures. We evaluate L and ∇L associated to each sound for the two DTFA operators STFT and JTFS .

We visualize the loss surfaces and gradient fields with respect to in Fig. 3. We observe that the JTFS operator forms a loss surface with a single local minimum that is located at the target sound's . Meanwhile gradients across the sampled parameters consistently point towards the target, despite certain exceptions at high , which acoustically correspond to very high FM rate. Contrarily, MSS loss gradient suffers from multiple local minima and does not reach the global minimum when is located at the target due to time shift equivariance. We highlight that the MSS distance is insensitive to variation along AM, making it unsuitable for modelling mesostructures.

In line with our findings, previous work [START_REF] Muradeli | Differentiable Time-Frequency Scattering On GPU[END_REF] found that 3D visualizations of the manifold embedding of JTFS' nearest neighbour graph revealed a 3D mesh whose principal components correlated with parameters describing carrier frequency, AM and FM. Moreover, -nearest neighbours regression using a nearest neighbours graph in JTFS space produced error ratios close to unity for each of the three parameters.

Sound Matching by gradient descent

Unlike classic sound matching literature, where ˜ is estimated from a forward pass through trainable (i.e., neural network weights), we formulate sound matching as an inverse problem in ( • ). For the sake of simplicity, we do not learn any weights to approximate .

Using the gradients derived in Section 4.1, we attempt sound matching of a target state in using a simple gradient descent scheme with bold driver heuristics. We perform additive updates to ˜ along the direction dictated by gradient

∇ ˜ L : ˜ ← ˜ -∇ ˜ L (19) 
Our bold driver heuristic increases the learning rate by a factor of 1.2 when L decreases it by a factor of 2 otherwise. Our evaluation metric in parameter space is defined as:

L ( ) = - 2 2 (20) 
Fig. 6 shows the mean L2 parameter error over gradient descent steps for each . We select a fixed target and initial prediction. We run multiple optimizations that consider time shifts between 0 and 2 10 samples on the target audio. Across time-shifts within the support of the lowpass filter in , convergence is stable and reaches close to 0. We observe that MSS does not converge and L ( ) does not advance far from its initial value, including the case of no time shifts. In Fig. 7, we further illustrate the effects of time shifts for DTFA, validating that JTFS is a time-invariant mesostructural operator up to support .

Time invariance

In Fig. 4, we explore the gradient convergence for different initialisations of but without time shifting the predicted sound. In each plot, we perform gradient descent for 5 different initialisations of : (i) far away from the target sound, (ii) in the local neighbourhood of the target sound and (iii) broadly across the parameter grid. We highlight that JTFS is able to converge to the solution in each of the 3 initialisation schemes, as corroborated by its gradients in Fig. 5. We observe that even without time shifts, MSS fails to recover the target sound in the case that the parameter initialisation is far from the target. MSS does indeed recover the target sound if is initialised in the neighbourhood of the target. Although when starting anywhere, MSS does ), sampled from a logarithmically spaced grid on m and . Each sound is randomly shifted in time relative to the target by 2 samples, where is sampled uniformly between [START_REF] Manocha | A Differentiable Perceptual Audio Metric Learned from Just Noticeable Differences[END_REF][START_REF] Turian | I'm Sorry for Your Loss: Spectrally-Based Audio Distances Are Bad at Pitch[END_REF]. We plot the target sound as a green dot and compute the loss under JTFS and MSS between each sound and the target. In the quiver plots, we evaluate the gradient of the loss operator with respect to the synthesis parameters m and of the generated sound. In the case of both no time shifts, JTFS gradients point towards the target and the distance around 0 when is at the target. Without time shifts, MSS computes distance between objects that intersect in the time-frequency domain. Its gradients appear to lead to the target, however it suffers from local minima along AM, as demonstrated by convergence in Fig. 4. In the presence of random time shifts, JTFS is appears robust while MSS is highly unstable and prone to local minima. indeed converge in the best case, but on average it is close to the worst case which does not converge. Fig. 5 shows the loss surface and gradient fields for JTFS and MSS with no time shifts and random time shifts applied to the predicted sound. Despite MSS reaching the global minimum when the predicted sound is centred at the target, our experiments in gradient descent demonstrate that it is only stable when is initialised within the local region of the target . When we apply a random time shift to the predicted sound, the MSS loss is highly unstable and produces many local minima that are not located at the target sound. As Each run (x-axis) is optimized under a different time shift on the predicted audio. JTFS is invariant up to the support = 2 13 of its lowpass filter. We observe that convergence in parameter recovery is stable to time shifts under our differentiable mesostructural operator • , in the case that is JTFS. Optimization is unstable when is a spectrogram operator.

expected, the JTFS gradient is highly stable with no time shifts. Even in the presence of random time shifts, JTFS is an invariant representation of spectrotemporal modulations upto time shifts .

CONCLUSION

Differentiable time-frequency analysis (DTFA) is an emerging direction for audio deep learning tasks. The current state-of-the-art for autoencoding, audio restoration and DRAFT sound matching predominantly perform DTFA in the spectrogram domain. However, spectrogram loss suffers from numerical instabilities when computing similarity in the context of: (i) time shifts beyond the scale of the spectrogram window and (ii) nonstationarity that arises from synthesis parameters. These prohibit the reliability of spectrogram loss as a similarity metric for modelling multiscale musical structures.

In this paper, we introduced the differentiable mesostructural operator, comprising of modelling synthesis parameters that generate mesostructure by way of DTFA with timefrequency scattering. We model synthesis parameters for a sound matching task using the joint time-frequency scattering (JTFS) for DTFA of structures that are identifiable beyond the locality of microstructure; i.e. amplitude and frequency modulations of a chirplet synthesizer. Notably, JTFS offers a differentiable and scalable implementation of: auditory spectrotemporal receptive fields, multiscale analysis in the time-frequency domain and invariance to time shifts.

However, despite prior evidence that JTFS accurately models similarities in signals containing spectrotemporal modulations, JTFS is yet to be assessed in DTFA for inverse problems and control in sound synthesis. By analysis of the gradient of our DTFA operator with respect to synthesis parameters, we showed that in contrast to spectrogram losses, JTFS distance is suitable for modelling similarity in synthesis parameters that describe mesostructure. We demonstrated the stability of JTFS as a DTFA operator in sound matching by gradient descent, particularly in the case of time shifts.

This work lays the foundations for further experiments in DTFA for autoencoding, sound matching, resynthesis and computer music composition. Indeed, our differentiable mesostructural operator could be used as a model of the raw audio waveform directly, however this approach is prone to resynthesis artifacts [START_REF] Engel | Neural audio synthesis of musical notes with wavenet autoencoders[END_REF][START_REF] Lostanlen | The Shape of RemiXXXes to Come: Audio Texture Synthesis with Timefrequency Scattering[END_REF]. We have shown that by means of DTFA, we can model low-dimensional synthesis parameters that shape sequential audio events.

We are yet to investigate the mesostructural operator's invariance under frequency translations. Frequency invariant differentiable digital signal processing warrants an investigation of its own; we plan to address this in future work. Another direction for future work lies in differentiable parametric texture synthesis, in which texture similarity may be optimized in terms of parameters that derive larger scale structures; e.g. beyond the definition of individual grains in granular synthesis.
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 1 Fig. 1. Illustration of chirps overlapping in time and log-frequency. The red chirps are of equal chirp rate . The blue chirps are displaced in time from red and of increasing (left to right). The bars indicate the distance between two chirps in the multiscale spectrogram (grey)and time-frequency scattering (black) domains, respectively. We observe that when the chirp rates governing mesostructure are equal, the JTFS distance is at a minimum, while spectrogram distance is around its maximum. JTFS distance correlates well with distance in . We give a more detailed discussion of the importance of a time-invariant differentiable mesostructural operator in Section 4.

Fig. 4 .

 4 Fig. 4. Parameter distance || -|| (log-scale) over gradient descent iterations with as MSS and JTFS in 3 scenarios: (left) 5 initialisations of far from the target, (centre) 5 initialisations of in the neighbourhood of the target and (right) 5 initialisations of across the range of the grid. We do not apply a time shift to the predicted sound (see Fig. 3 for gradient visualisation). The target sound has parameters = [8.49, 1.49]. The lines indicate the mean distance at each iteration across 5 runs of different initialisation. The shaded region indicates the range across the 5 initialisations. The titles indicate the range of the initial .We highlight that even with no time shifts, MSS only recovers well when is initialised in its local neighbourhood (centre). When is initialised far from the target (left), MSS fails to converge. Starting anywhere (right), converges in the best case, but on average fails to converge and is close to the worst case.

Fig. 5 .

 5 Fig.5. Loss surfaces (top) and gradient fields (bottom) under JTFS and the MSS for sounds synthesized by (see Section 2), sampled from a logarithmically spaced grid on m and . Each sound is randomly shifted in time relative to the target by 2 samples, where is sampled uniformly between[START_REF] Manocha | A Differentiable Perceptual Audio Metric Learned from Just Noticeable Differences[END_REF][START_REF] Turian | I'm Sorry for Your Loss: Spectrally-Based Audio Distances Are Bad at Pitch[END_REF]. We plot the target sound as a green dot and compute the loss under JTFS and MSS between each sound and the target. In the quiver plots, we evaluate the gradient of the loss operator with respect to the synthesis parameters m and of the generated sound. In the case of both no time shifts, JTFS gradients point towards the target and the distance around 0 when is at the target. Without time shifts, MSS computes distance between objects that intersect in the time-frequency domain. Its gradients appear to lead to the target, however it suffers from local minima along AM, as demonstrated by convergence in Fig.4. In the presence of random time shifts, JTFS is appears robust while MSS is highly unstable and prone to local minima.

Fig. 6 .

 6 Fig. 6. Parameter distance || -|| 2 over gradient descent iterations with as MSS and JTFS. The target sound has parameters = [8.49, 1.49]. We initialize the predicted sound at

Fig. 7 .

 7 Fig. 7. Final parameter distance || -|| 2 after gradient descent for ( )( ) and ( )( -), for = [8.49, 1.49], 0 = [4, 0.5].Each run (x-axis) is optimized under a different time shift on the predicted audio. JTFS is invariant up to the support = 213 of its lowpass filter. We observe that convergence in parameter recovery is stable to time shifts under our differentiable mesostructural operator • , in the case that is JTFS. Optimization is unstable when is a spectrogram operator.
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= [4, 0.5]. The line plots the mean distance at each iteration for multiple runs that shift the predicted sample in time by = {2 2 , 2 4 , 2 7 ,

2 10 } samples. The shaded region indicates the range across different time shifts.