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Abstract - This paper presents a virtual sensor for helicopter 

Main Gear Box (MGB) oil pressure. It is developed for 

anticipating failures of systems related to MGB lubrication. 

The virtual sensor is built using Machine Learning and 

massive in-service flight data collected from Airbus helicopters 

flying world-wide. The correlation between oil pressure values 

and other flight parameters is learnt during stable phases of 

flights in which the system is in its nominal state. 

At each flight, the values continuously estimated by the 

virtual sensor are compared to the measured ones, and an alert is 

raised when the difference becomes higher than a statistically 

predefined threshold.  

The virtual sensor was tested using normal and abnormal 

flights, and the results obtained so far in terms of anomaly 

detection performance are promising. 

Keywords - Big Data, Virtual Sensor, Helicopter, HUMS, 

Predictive maintenance, Machine Learning 

I. INTRODUCTION  

Failure anticipation, and more generally predictive 
maintenance, is an important and growing topic in the industry 
[1][2][3][4][5], especially in the aeronautic domain, due to 
strong requirements in terms of safety and high costs of 
unscheduled events [6][7][8][9][10]. Failure anticipation is a 
condition-based maintenance concept and consists in 
anticipating failures - which are unscheduled events - before 
they happen. In addition to obvious safety enhancement 
benefits, anticipating failures is also motivated by economic 
aspects, which may represent a valuable service for customers. 
It allows them to: 1) prepare and plan for the required 
maintenance operation instead of suffering it; 2) order the 
required part in order to have it in stock on time, right before 
the maintenance operation; and 3) avoid operational 
interruptions that imply unexpected financial losses for 
operators, due to mission’s cancellation. In summary, 
increasing helicopters availability at a lower cost is a key 
element for operators.  

Moreover, early failure detection of a component may 
prevent from causing damages to its neighbouring parts, and it 
can also make this component reparable before its complete 

failure. For example, failures of some components of the 
helicopter Main Gear Box (MGB) that are not detected at a 
very early stage may contaminate other non-replaceable 
components. This leads to the removal of that MGB which will 
be definitely lost, at the cost of around 250 K€.  

During decades Airbus Helicopters (AH), like its 
competitors, focused its efforts on anticipating failures mainly 
for ensuring safety of helicopters [9][11]. This is based on 
‘classical’ Health and Usage Monitoring System (HUMS) [12]. 
HUMS mostly consists of counters monitoring quantities 
related to the usage of the machine, and high-frequency 
vibration measurements acquired from multiple sensors, 
typically located in the proximity of critical mechanical 
transmission components and dynamic systems [13]. However, 
from one hand, embedded algorithms for on-board alarming 
and usage monitoring are rather simple since they are 
constrained by embedded hardware processing capabilities. 
They also only analyse “fresh” data generated during the on-
going flight, without any trend monitoring exploiting historical 
flight data. Consequently, alarms and alerts are raised when 
monitored sensors, quantities and systems are already faulty 
(I.e. no longer operational, exceeding a critical threshold limit 
or reaching an advanced level of wear). They either allow an 
emergency landing or cancel future flights until the required 
maintenance is completed. On the other hand, on-ground 
vibration monitoring is restricted to critical mechanical and 
dynamic components, whereas plenty of other systems, which 
are less critical from a safety point of view, are still not 
monitored. However, it is worth noting that whenever they are 
gathered to consolidate a global view of a helicopter in 
operation, they could reveal weak signals very useful to failure 
anticipation. Thus, there is a need for covering more helicopter 
systems and improving early detection of failures. 

Considering harsh market competition and given the 
operational costs of helicopters (2/3 of the total cost), 
helicopters manufacturers are more and more investing beyond 
safety to generate new revenues. To do so, they develop new 
types of services to support their customers in reducing their 
costs. The massive continuous data generated by helicopters 
during every flight represent an important lever for developing 



such services. Analysis of these data might help for improving 
products, offering new services (e.g. to enlarge condition based 
maintenance to helicopter usage data) or gaining additional 
business insights.  

In this setting, Airbus Helicopters gathers more than 
400000 flight hours (FH) data (called in the sequel in-service 
flight data) for more than 10 years from hundreds of connected 
helicopters, operated by several customers worldwide and 
performing a large variety of missions (Figure 1). These time 
series data are recorded from the beginning until the end of 
each flight thanks to the Flight Data Continuous Recorder 
(FDCR) function in HUMS system. Specifically, hundreds of 
parameters are recorded from the FDCR, coming from each of 
the vehicle systems connected to the avionics [13]. 

 

Figure 1: Data collection in the Big Data platform at AH 

The overall objective of this paper is to take benefits from a 
broad variety of collected in-service flight data in order to 
anticipate and early detect MGB failures, using machine 
learning techniques. The idea is to build virtual sensors 
predicting different parameters from other measures as an 
alternative to physical sensors. 

Problem statement: Given huge amount of in-service 
flight data, the objective is to build a virtual sensor for MGB 
oil pressure at each timestamp of the flight, in order to raise an 
alert as early as possible when a significant deviation between 
values measured by the physical sensor and those provided by 
the virtual sensor occurs. 

The choice of MGB is motivated both for its criticality with 
respect to safety requirements and for economic reasons, i.e.  
especially in case of unscheduled and non-anticipated 
removals. Moreover, MGB turns out to be a highly monitored 
system with many physical sensors producing continuous data 
at high frequency, helpful for building a virtual sensor. 

A supervised machine learning based anomaly detection 
approach is devised to build this virtual sensor. It is built 
thanks to learning on multi-varied time series data representing 
flight parameters. The parameter to be predicted is the MGB 
oil pressure, for which a physical sensor does exist in every 
helicopter MGB. To strengthen this data-centric approach, 
“domain knowledge” of experts is taken into account to 

understand the main parameters that should influence the oil 
pressure of an MGB. Starting from these parameters we have 
been able to come up with a new relationship, not known from 
a physical point of view, between the MGB oil pressure and a 
subset of other indicated flight parameters during a stabilized 
flight phase

1
. The idea of monitoring MGB oil pressure allows 

several systems to be covered that are not covered by vibration 
monitoring, including lubrication system, oil cooling system, 
oil pump, oil injectors and radiator filter. The point is that any 
anomaly in the operation of that MGB system should normally 
be detected by monitoring MGB oil pressure. 

The proposed approach presented several challenges. First, 
correlation and analysis of big amounts of time series data 
require a very good knowledge of latest big data technologies 
and an adequate big data platform. At AIRBUS such platforms 
and tools are available, which facilitates helicopter big data 
processing and analytics [13]. The second challenge consists in 
the constitution of a curated training dataset. In the aeronautic 
domain, failures remain very few compared to the number of 
flights. Hence, anomaly detection proposed here consists in 
modelling the normal state of the MGB. Fortunately, most data 
used for learning the model is composed of “healthy flights”. 
Moreover maintenance actions exist since they are tagged by 
customers in their Maintenance Information Systems (MIS). 
The third challenge lies in the constitution of a complete 
training dataset covering all flight conditions. As an example, 
one of the impacting parameters of the MGB oil pressure is the 
Outside Air Temperature (OAT). Consequently, if a new flight 
is operated in a different region / continent with an OAT which 
has never been seen in the past, then the virtual sensor model is 
likely to diverge. The retained solution consists in learning on 
the whole fleet data already collected, and monitoring the drift 
of the model during the execution phase, in order to re-learn it 
when new and different data is collected. 

To sum up, we have made the following contributions: 

- A principled approach to address the problem of failure 
anticipation of an MGB in time series data using state of the art 
supervised machine learning techniques (Gradient Boosting). 

- Integrating domain knowledge as early as possible into 
the virtual sensor’s construction, to get domain expert as 
involved and confident as possible in its industrialization 
process.  

- Ongoing deployment of the virtual sensor in the “Flyscan 
predictive maintenance program” of Airbus Helicopters

2
. 

Regarding related work, virtual sensing has been developed 
in other domains but they do not rely on Machine Learning and 
big data [14][15][16]. However, similar anomaly detection 
methods exist, like in [6][7][29], even if they are not presented 
in the form of virtual sensors. We exploit massive time series 
data collected from Airbus Helicopters customers, without any 
reduction as done for example in [9]. 

                                                           
1
 In this paper, a stabilized flight phase is one during which the helicopter 

altitude, the speed and the direction are maintained around specific value. 
2
 https://www.airbus.com/content/dam/corporate-topics/publications/rotor/ 

ROTOR_116_UK.pdf 
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The remainder of the paper is organized as follows: first an 
overview of helicopter data is provided as well as a general 
view of the problem and the proposed solution. Then, the 
proposed method is detailed, including validation results and 
tests on real ‘known’ failures. After that, the deployment in 
production within FlyScan service, which is the Airbus 
Helicopters service for predictive maintenance proposed to 
customers, is described. Finally, the obtained results are 
discussed and some perspectives are presented. 

II. A PRINCIPLED APPROACH FOR MGB MAINTENANCE 

A. Available data  

The data used in this study comes from measures produced 
by the sensors installed on Airbus’s helicopters. They are 
recorded continuously during each flight and then transferred, 
processed and analysed according to the different AH services. 
The FDCR data collected are recorded at the frequencies of 2 
Hz. These time series are gathered on a Big Data platform 
(Hadoop / Spark). 

We focused on a recent aircraft type, for which more than 
60 000 FH are already collected. For this helicopter fleet, 
which encompasses more than 30 different aircraft serial 
numbers, a dataset has been created with flights data related to 
the MGB system. The size of the data extracted for the 
experimentation reported here is around ~180 gigabytes. Table 
1 sketches how such data are structured and represented. Each 
parameter (f0, …fp) is measured at the same frequency (2 Hz) 
and the elapsed time is represented as the number of 500 
millisecond steps from the beginning of the flight ("time_step") 
identified by the “flight id”. Additional information is available 
concerning for example the operating region, the specific 
helicopter associated to a flightID etc. 

TABLE I.  TIME SERIES COMPOSING THE USED DATASET. THE NAME OF 

ATTRIBUTS IS ANONYMISED 

Flight 

id 

time 

step 
f0 f1 f2 f3 … fp 

1 1 f0(1,1) f1(1,1) f2(1,1) f3(1,1) f4(1,1) fp(1,1) 

1 2 f0(1,2) f1(1,2) f2(1,2) f3(1,2) f4(1,2) fp(1,2) 

.. … … … … … … … 

2 1 f0(2,1) f1(2,1) f2(2,1) f3(2,1) f4(2,1) fp(2,1) 

2 2 f0(2,2) f1(2,2) f2(2,2) f3(2,2) f4(2,2) fp(2,2) 

2 3 f0(2,3) f1(2,3) f2(2,3) f3(2,3) f4(2,3) fp(2,3) 

… … … … … … … … 

3 1 f0(3,1) f0(3,1) f2(3,1) f3(3,1) f4(3,1) fp(3,1) 

… … … … … … … … 

 

B. Data pre-processing 

Since the objective is to build a dataset corresponding to 
data issued from helicopters operating with a known “normal” 
state of the MGB. 

Significant work was required to address the corresponding 
issues. Two main approaches are used to reduce the variance in 
the virtual sensor model. From one hand, abnormal flights are 
identified in the data cleaning phase and, from the other hand, 
variations of contextual parameters during a flight in the 
contextualization step.  

 

 

Data cleaning 

Identifying abnormal flight (regarding the MGB system) on 
the complete historical data is not an easy task. This has been 
done in collaboration with the MGB system designer. Several 
workshops have been organized to identify the types of flights 
that influence the normal operation of the MGB. As a 
consequence, this process cannot be automated. We started by 
removing from the dataset flights associated with system 
failures that were reported in the MIS database. Then, a sub-set 
of flights preceding each failure was also excluded from the 
dataset. The number of flights to exclude before each failure 
tagged in MIS depends on the type of the failure itself.  

Data contextualization 

As a matter of fact, the MGB system responds in different 
ways depending on usage and environmental conditions of the 
flight. Indeed, the systems such as the MGB are followed 
differently according to the different phases of the flight such 
as take-offs, hovers, turns, climbs, descents or landings and 
therefore react differently. In order to reduce the variance of 
the virtual sensor model and to maximize the chances of 
finding a representative model of the normal operation of the 
MGB system, an intelligent filtering of each time series based 
on expert knowledge has been applied. Thus, only sub-
sequences of each flight have been selected. These sub-
sequences, less influenced by the climatic conditions and the 
usage of a helicopter, correspond to the level flight phase, 
where the helicopter flies almost at the same speed, same 
altitude and same direction (stabilized flight). Other 
contextualisation strategies (expert-based), more restrictive on 
the flight behaviour, have been tested in order to obtain the 
more accurate model possible. However, they were leading to 
very small stable sequences of the flight which were not often 
repeatable over the flights history. For these reasons, it was 
decided to contextualize the training data relying on the flight 
sequences corresponding to level flight phase (long and 
repeatable sequences). This work on contextualization allowed 
analysing each flight according to the similar context. 
Consequently, we reduced some parameter variability.  

Data sampling 

Furthermore, to perform the splitting of flight history data, 
a sampling method has been developed to generate the training 
and a test dataset. The creation of these datasets is one of the 
most important steps, because it directly impacts the model's 
performance and robustness. To provide a representative 
dataset for all flights performed by AH customers (regardless 
of the geographical operation area, the weather conditions, the 
season of the year and the type of mission); a methodology of 
sampling flight data has been set up also for the creation of the 
test dataset. In this phase, we sampled the complete flight 
history performed by all AH customers. Consequently, we 
have carried out this step with a random sampling based on 
periodicity, geographical and mission type criteria. 

C.  Features selection 

The features selection of the virtual sensor model has been 
conducted with the collaboration of experts. Initially, this made 
it possible to considerably reduce the scope of the analysis and 
allowed the obvious relationships from the expert's point of 



view to be verified through the operational data. The initial 
motivation for this study was to check the physical laws 
regarding this system and understand relationships between 
different contextual parameters. 

D. Regression with Gradient Boosting 

As stated above, the goal is to define a virtual sensor model 
(regression) from flight data set in normal operation. Then, the 
algorithm presented here uses this model to detect the moment 
that the operating system deviates from the normality. The 
regression was modelled with Gradient Boosting. The Boosting 
gradient introduced by Friedman [23] is a generalization of 
Boosting in which a loss function is used in a manner that can 
be assimilated to a gradient descent. The trees are thus added 
by reinforcement to the model to minimize the loss function. 

The Gradient Boosting regression model has performed well 
on flight data compared to other usual regression models. An 
exploratory analysis has been conducted to test the 
performance of Gradient Boosting in comparison with other 
regression models. Table 2 represents the results obtained for 
Random Forest [24], linear regression [26][27][28] and 
Gradient Boosting on our dataset, using training datasets of 
different sizes. The two comparison indicators are the 
coefficient of determination (R²) and the mean squared error 
(MSE). The ideal values are R

2
 = 1 and MSE = 0. For these 

two indicators, the Gradient Boosting obtains the highest 
scores. This is reflected both in the accuracy of the estimate 
with lowest MSE values regardless of the size of the data 
sample, and in the prediction quality of the model with the R² 
always the highest. 

TABLE II.  PERFORMANCES OF DIFFERENT REGRESSION MODELS. FOR 

EACH TRAINING DATASET SIZE THE EXPERIMENT HAS BEEN REPEATED 10 TIMES 

WITH DIFFERENT RANDOM DATA RESPECTING OUR CONSTRAINTS AND THE 

AVERAGE VALUE IS REPORTED IN THE TABLE. 

E. Context influence on model performance 

To complete the exploratory analysis, different data 
samples have been tested in similar ways according to a 
particular context. The graph shown in the figure below 
(Figure 2), illustrates the results obtained for different 
helicopters. Each bar represents the distribution of the R² 
observed on 5 samples analysed from different training and test 
datasets. We observe in all the different helicopters that the R² 
corresponding to the Gradient Boosting (in green) is higher 
than the other models. Only two exceptions represented by 
helicopters 6 and 9 do not validate this observation. These two 
helicopters obtain low R² values for all models. One of the 
explanations for this anomaly is the change in the geographical 
area of intervention of these two helicopters. For example, we 

have observed changes in operating areas from Asia to 
Northern Europe. 

 

Figure 2: Boxplot represents R² calculated for 10 different aircrafts. 

(Random Forest: blue; Gradient Boosting: orange; Linear 

Regression: green) 

In the same type of analysis, we have compared the 
Gradient Boosting with the Random Forest as well as the linear 
regression on different data samples according to the season. 
We reproduced 5 different samples for winter and summer in 
the boxplot Figure 3. With respect to other models, Gradients 
Boosting obtains good results on the R² regardless of the 
season. 

 

Figure 3: Boxplot represents MSE calculated for summer and winter. 

(Summer: blue; winter: orange) 

F. General methodology  

The methodology implemented is fairly classical but each 
step has been developed in depth according to business 
application. 

As illustrated in the Figure 4, the first step is dedicated to 
the creation of a database for the learning stage of the model 
and a second for the test step. Gradient Boosting is used on a 
subset of the data to form the learning stage database. The 
performance indicators are then evaluated on the test dataset. 
We use the coefficient of determination and mean squared 
error to evaluate the best regression model. Once the model 
performance evaluation step is completed, an anomaly score is 
calculated from the results obtained with the test dataset. 

 

MSE R² 

Gradient Boosting 0.030 0.757 

Linear Regression 0.050 0.619 

Random Forest 0.057 0.544 



In order to distinguish flights showing signs of failure from 
healthy flights, a measurement way has been set up to evaluate 
the evolution of the results returned by the prediction of the 
model (virtual sensor) and the values of the real sensor. This 
measurement, called here "anomaly score", allows us to obtain 
the distribution of the prediction errors observed within the 
learning base. For this purpose, we compute the absolute 
difference between the value predicted by the model and the 
measured value. The analysis of this distribution is necessary 
to introduce a threshold that will indicate a divergence between 
the real sensor and the virtual sensor. 

The following figures (Figure 5 and Figure 6) illustrate 
results obtained with a Gradient Boosting regression for a 
normal flight and an abnormal flight. In both examples the oil 
pressure values are represented in blue, the values predicted by 
the Gradient Boosting in orange and the anomaly score in 
green. We can easily observe a difference in the distance 
between the curves representing the virtual sensor and the real 
sensor depending on the case of a normal or abnormal flight. 
We have therefore decided to use the anomaly score as a 
parameter that will indicate whether a flight is normal or 
abnormal. Thus, when we are in a normal flight situation, the 
anomaly score is close to zero and when we move away from 
this value, the flight has a tendency to deviate from normality.  

 

Figure 5: Oil pressure sensor (blue line), virtual sensor (orange line) 

and anomaly score (red line) for a normal flight 

 
Figure 6: Oil pressure sensor (blue line), virtual sensor (orange line) 

and anomaly score (red line) for an abnormal 

 
Then, a threshold on this score allows us to detect the 

flights coming out of the normal operating criteria. In this 
thresholding step, the "false alarms" question is the main 
constraint for monitoring tools in the aerospace industry due to 
the costs they induce. 

III. ANOMALY DETECTION 

A. Principle 

The anomaly detection based on a predictive model 
consists in identifying atypical observations compared to a 
reference model. According to [19], an anomaly is an 
observation that does not conform to the expected standard 
pattern.  The threshold set on anomaly scores calculated from 
the historical data allows for the model to be validated using 
samples of real cases regarded as normal. 

B. Threshold  

To set an anomaly detection threshold on the base of the 
distribution of the anomaly score, the principle of Extreme 
Values Theory (EVT) was applied. Particularly in recent years, 
a growing interest has been observed for the application of 
Extreme Values Theory in the modelling of such events. For a 
fairly complete presentation of the topic, let us refer to the 
reference work of Embrechts, Klüppelberg and Mikosch [20] 
giving the main theoretical results on the EVT and to Reiss and 
Thomas [21] who proposed a number of practical examples in 
finance, insurance and environment domains. 
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Figure 4: General methodology for the virtual sensor 



In this section we are interested in the anomaly score 
distribution and more precisely the distribution tail of extreme 
values. The detection method implemented in this article is 
based on the notion of extreme quantiles. In order to 
approximate the lowest frequencies representing rare events 
and therefore abnormal occurrences, we use the classical 
techniques of EVT. We have used the Generalized Pareto 
Distribution (GPD) [22][25] to fit the distribution of the 
frequencies furthest from the graph below (Figure 7). The 
generalized Pareto distribution is a useful tool in this context 
because, in addition to accurately reproducing the shape of the 
empirical distribution above a threshold, the GPD makes it 
possible to estimate the high quantiles of the distribution. This 
means that the data can be extrapolated beyond the available 
sample. 

 

Figure 7: Distribution of the anomaly score calculated on the test 

dataset. The x-axis represents the values of the absolute difference 

between the virtual and real sensors and the y-axis corresponds to 

their frequency. 

C. Experimentations 

The use of the virtual sensor to detect abnormal events in 
the operation of the MGB is essentially based on the 
hypotheses that the training data represent all normal operating 
conditions of the helicopter.  

The graphical representation below on Figure 8 represents 
the anomaly score calculated from a set of flight points and the 
threshold defined to detect the atypical points. The time stamp 
is represented on the x-axis of the graph and the anomaly score 
values on the y-axis. The anomaly score is displayed as 
negative values to be in conformity with the usage of Scikit-
Learn python library.  

 Figure 8 displays the results associated with the anomaly 
score calculated for each time stamp of the filtered flight 
sequence on level flight phase. The detection threshold for an 
abnormal event is set for the complete fleet and represented in 
red dotted lines. To initialize the anomaly detection step for all 
helicopters in this study, the threshold was set at an absolute 
difference of 1.2 bar pressure between the values of the real 
sensor and the virtual sensor. This threshold has been also 
validated by the domain expert. Testing with this threshold 
level is quite "conservative", i.e. it voluntarily detects events 
more rarely. 

 

Figure 8: Graphic with the anomaly score and the threshold for a 

normal flight filtered in level flight phases. The x-axis represents the 

time-step and the y-axis represents the anomaly score measured in 

bars (negative value). 

On the other hand, the detection model has been evaluated 
on cases identified as abnormal during the data preparation 
stage and more precisely, the data cleaning. 

Following this data cleaning work, different forms of 
detections have appeared. For these abnormal cases, we have 
identified, for example, anomalies with a relatively slow 
evolution, observed on several consecutive flights before a 
maintenance operation. We have also identified anomalies 
impacting only a few flights before the maintenance 
intervention with a special pattern for the anomaly score. 

IV. MODEL VALIDATION 

Data sampling work for the creation of test and training 
datasets via multiple temporal train-test splits and the 
application of cross-validation made it possible to check the 
learning capabilities of the Gradient Boosting model.  

In addition, to validate the model's detection performance, 
different cases of anomalies have been selected by domain 
experts. These are cases of failures that cannot be detected with 
vibration analysis. We are particularly interested in anomalies 
produced by: lubrication system, oil pump and radiator filter. 
Three flights containing anomalies of this kind are represented 
in the Figure 9

3
. All these cases are correctly identified by our 

algorithm.  

Several flights considered as normal flights are also 
proposed by domain experts. All cases are identified as normal 
by our system (Figure 10), except one. After discussion with 
domain experts, this case seems to have a real anomaly, 
probably detected by the maintenance team later after the 
flight. 
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Figure 9: Oil pressure sensor (blue line) and virtual sensor (orange 

line) for three normal flights 

 

Figure 10: Oil pressure sensor (blue line) and virtual sensor (orange 

line) for three abnormal flights, corresponding to failures related to 

lubrication system, oil pump and radiator filter 

V. TESTS WITH MIS DATA 

 The illustration of an anomaly detection case is shown in 
Figure 11. The three scatterplots correspond respectively to the 
anomaly scores calculated on flights before the occurrence of a 
failure, with the failure and after a corrective maintenance 
operation. The first figure shows the flight performed by a 
helicopter shortly before the change of the MGB system. This 
operation was completed as part of AH's scheduled 
maintenance plan, which involves changing the system after a 
number of flight hours performed by the helicopter (TBO: 
Time Between Overhauls). The second figure shows the first 
flight operated after the same maintenance operation by the 
same helicopter. The detection of an abnormal event is 
obvious. most of the anomaly score points from this flight are 
below the threshold. The third graphical representation 
displays the flight performed after the new change of the MGB 
after an on-board alarm has been triggered.   

This helicopter had been flying for one month after the first 
maintenance operation and had not triggered an on-board alarm 
for exceeding the critical damage threshold of the system. 
Although the severity of this failure allowed the helicopter's 
missions have been performed without incident, the failure 
propagation was damaging the MGB system and required the 
removal of the system only one month after its installation. In 
this example, we were able to detect the anomaly from the first 
flight operated by the helicopter.  

The proposed detection method can thus prevent a 
malfunction of the monitored system and can prevent its 
advanced degradation as an expensive system such as the 
MGB. In this example, threshold detection is easily 
interpretable and effective. However, the abnormal flights that 
are detected by this method involving the virtual sensor may 
have different patterns. Indeed, some cases of detection are not 
as obvious as the latter example and require analysis to identify 
the phenomena explaining this variety of patterns. 

The two graphs on Figure 12 show other cases of abnormal 
flight detection which are less obvious than the previous 
example. Indeed, in both cases, the points representing the 
anomaly scores calculated on the flights do not all exceed the 
limit threshold. However, the point distributions in both graphs 
are very distinctive. For each of these patterns, the following 

Figure 11: Anomaly detection starting from the first flight operated after the removal of the MGB system. Anomaly Score is represented 

by the blue points and the threshold by the horizontal red dashed line. 



flights have a similar distribution. In some cases, we were able 
to identify a maintenance operation that allowed us to observe 
a return to normal system operation. This is the case for the 
first pattern described by a very noisy distribution of the 
scatterplot. The second pattern which is observed to follow a 
trend does not necessarily allow associating this pattern to a 
type of failure in the MGB system. 

 

Figure 12: Different abnormal flight pattern. The anomaly score is 

represented on the y-axis and the time step for each flight on the x-

axis.  

VI. DEPLOYMENT WITHIN AIRBUS HELICOPTERS FLYSCAN 

SERVICE 

Since 2007, HUMS / flight data has been collected from 
various aircrafts during different missions. Since 2012, all data 
has been automatically treated by HUMS information systems 
in order to return validated analysis results back to customers 
via a web portal. For now, valorised results are related to 
statistics, vibration indicators, KPI, flight spectrum, etc. In 
addition, HUMS information systems now aims to add 
predictive maintenance results to their capability. Airbus 
Helicopters aims to be the first to propose predictive services to 
customers in order to anticipate issues impacting helicopter 
availability. 

Predictive services consist in monitoring the trend of the 
results computed by HUMS / Flight data algorithms deployed 
in the customer oriented data chain. An alerting based on that 
monitoring is added in order to allow the support team to 
validate the alert and eventually advise the concerned customer 
on the maintenance action to perform (Figure 13).  

 

Figure 13: The integration of the virtual sensor in an AH service 

A. Virtual Sensor Integration in HUMS / FlyScan Industrial 

Process 

The virtual sensor presented here is a way to achieve the 
failure anticipation industrial objective in an aeronautical 
context. The virtual sensor has been deployed recently in 
FlyScan. With the predictive model presented, it is possible to 
detect abnormal usage of the helicopter and predict some 
failures. However, when an alert is raised no decision will be 
made automatically. For the moment this step is under the 
responsibility of a dedicated support team, able to understand 
the alert, troubleshoot the issue and provide advice to 
customers in terms of maintenance actions. Nevertheless, on-

going research projects are exploring methodologies to make 
decisions more rapid and optimal in the future (Figure 14). 

 

Figure 14: From raw data to autonomous decision making 

B. Operational HUMS Support Room 

FlyScan supports operators who have subscribed to the 
service. Thus, Airbus Helicopters brings its expertise to 
customers, by monitoring their helicopter fleets based on 
collected data. This service aims to maximize the customer's 
operational efficiency through data analytics, enhancing flight 
safety and increasing fleet availability (eg. decreasing the 
number of Aircraft On Ground events per aircraft per year).  

FlyScan is part of HCare Technical Support
4
, offering 24/7 

technical support service, continuous airworthiness 
management and global technical assistance. An operational 
control room is able to display all events detected by predictive 
algorithms (Figure 15). The alerted support team analyses the 
event and validates the relevance of the detection. Algorithms 
results combined with experts’ knowledge about the monitored 
systems enable the right decision to be made on whether or not 
to trigger a maintenance action at the customer end. 

 

Figure 15: FlyScan Interface 

This human step allows a validation of the algorithm output 
but it is also a means to improve and adjust deployed predictive 
models. In fact, this allows a labelling of the case as true or 
false positive. Then, each detected case, rejected or validated 
by the support team, reinforces the model. Design office 
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engineers can then re-launch the learning phase and deploy a 
new version of the model in production. 

VII. DISCUSSION 

The aim of the proposed method is to automatically detect 
malfunctions in the helicopter MGB, by exploiting operational 
data and business knowledge provided by experts. 

The principle of the virtual sensor, in the context of 
anomaly detection, is based on the use of parameters recorded 
during flights to model an already existing sensor. The 
presented MGB oil sensor model, which is based on a Machine 
Learning approach, allows simulating the oil pressure values 
from other parameters monitored during flight. Subsequently, 
an anomaly score is developed, which consists in measuring 
the difference between the virtual sensor values and the 
measured ones during flight. Finally, a threshold has been set 
to allow the detection of abnormal flights. 

The method could be improved with respect to several 
aspects. First, the learning data base cleaning is based only on 
MIS data, which could be incomplete since it is not mandatory 
for customers to record/complete it. Another option could be 
the use of unsupervised machine learning in order to 
automatically isolate faulty cases. Moreover, data cleaning was 
a tedious and long task. In fact, MIS data is textual inputs from 
customers' technicians for describing their maintenance actions 
on helicopters. It is often difficult for a non expert to 
understand all technical terms used, especially when some 
terms are interchangeable. To use the data we needed the help 
from an expert in order to identify maintenance actions as well 
as key terms referring to MGB sub-systems' failures. Thus, use 
of this data was not optimal and not reusable. Moreover, the 
process was long due to unavailability of the expert. Actually, 
Airbus Helicopters team responsible of MIS data is developing 
a natural language and text processing based tool for better use 
and more automated analysis of the data. This will allow for a 
better and easier cleaning of our learning database, and 
consequently results presented here to be improved. 

 The learning phase is based on the Gradient Boosting 
algorithm which is recognized and confirmed as a efficient 
machine learning algorithm compared to classical supervised 
algorithms. This step, however, could be improved by 
exploring the latest progress in deep learning. In fact, the 
presented learning problem could also be modeled using deep 
learning, based for example on the Long Short Term Memory 
(LSTM) architecture.  

 The flight phase actually considered is the one specified by 
the expert, namely the level flight phase. It could be interesting 
to use a data analysis approach to identify the best and 
acceptable flight phase to consider which may improve the 
results, and where different contextual parameters have less 
variation. 

 The influence of the geographical area of operations on the 
MGB oil pressure requires considering the changes of missions 
in the learning process. Actually, the solutions considered to 
deal with these issues would be to integrate helicopters location 
parameters such as geographical positions among the input 
parameters or to trigger the relearning of the model when a 
change in geographical area is identified. 

During tests performed on real failures tagged in MIS, we 
have observed different patterns when a flight is detected as 
abnormal. Sometimes dispersion is observed (Figure 12), some 
other times ascending trends are also observed. Actually these 
different shapes are not analysed in depth, but would be useful 
in order to study the possibility of enlarging anticipation 
intervals based on these shapes. 

We have chosen to develop the same detection model for 
the complete fleet of a helicopter type by integrating the 
identifier of the aircraft into the input variables. This choice is 
justifiable because of the hypothesis that the systems are 
designed identically and therefore are supposed to respond in 
the same way depending on the use of the helicopter. However, 
operations may differ from one customer to another and the 
model may be less effective for less standard helicopter use. 
This problem could be solved by duplicating the detection 
model for each helicopter.  

Finally, features (contextual parameters) considered in the 
implemented model were selected according to the expert 
knowledge. This step could be automated using recent works 
about features selection that maximize the performance of a 
Gradient Boosting regression [23]. Further experimentation of 
automatic features selection would be likely to identify 
additional parameters in order to model the oil pressure sensor 
more accurately. Moreover, this would also allow for the 
generalization of this method to other sensors and other 
helicopter systems. 

VIII. CONCLUSION 

This article presents the end-to-end solution for detecting 
anomalies in industrial preventive maintenance. It addresses 
the different steps and difficulties in the processing of huge 
amounts of data for the development of a failure anticipation 
method. The initial objective of defining the normal operation 
of a helicopter system was achieved through the cooperation of 
aeronautical experts. This expert knowledge has been used to 
exploit HUMS flight data with machine learning methods to 
model a form of normal operation of the MGB system through 
the virtual oil pressure sensor. This is a pragmatic solution that 
allows AH customer support to improve the maintenance 
service offered to customers.  

We are currently working on the drift monitoring of the 
deployed virtual sensor, in order to trigger its update when new 
and different data is collected. 
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