
HAL Id: hal-04118337
https://hal.science/hal-04118337v1

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

ExplIQuE: Interactive Databases Exploration with SQL
Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici, Ihab F Ilyas

To cite this version:
Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici, Ihab F Ilyas. ExplIQuE: Interactive
Databases Exploration with SQL. CIKM ’19: The 28th ACM International Conference on Information
and Knowledge Management, Nov 2019, Beijing, France. pp.2877-2880, �10.1145/3357384.3357847�.
�hal-04118337�

https://hal.science/hal-04118337v1
https://hal.archives-ouvertes.fr

ExplIQuE: Interactive Databases Exploration with SQL
Marie Le Guilly

marie.le-guilly@liris.cnrs.fr
Univ Lyon, INSA Lyon, CNRS, LIRIS UMR 5205

Villeurbanne, France

Jean-Marc Petit
jean-marc.petit@liris.cnrs.fr

Univ Lyon, INSA Lyon, CNRS, LIRIS UMR 5205
Villeurbanne, France

Vasile-Marian Scuturici
marian.scuturici@liris.cnrs.fr

Univ Lyon, INSA Lyon, CNRS, LIRIS UMR 5205
Villeurbanne, France

Ihab F. Ilyas
ilyas@uwarteloo.ca

University of Waterloo
Canada

ABSTRACT
To help databases users who have just started learning SQL or are
not familiar with their database, we propose ExplIQuE, an explo-
ration interface with query extensions. Its purpose is to assist users
to smoothly dive into data exploration, and to be able to express
imprecise questions over their data. Indeed, such situations are
more and more current with the increasing desire for users to get
value out of their data. In this configuration, in addition to clas-
sic SQL querying possibilities, ExplIQuE offers the possibility to
extend a given SQL query, by suggesting a set of possible selec-
tion predicates to add to the query, that aim at dividing the initial
answer set to identify interesting exploration zones. In addition,
ExplIQuE proposes some indicators to help the user in choosing its
desire extension and in understanding her data, as well as interac-
tive visualizations of the result set, in two dimensions revealed by
PCA techniques. In this demonstration, we offer the audience the
possibility to try the various functionalities of ExplIQuE by trying
to express an imprecise question over a scientific database on bacte-
rial colonies, through an iterative process. A video of the proposed
demonstration is available at https://youtu.be/oK8xWGCWj_A.

KEYWORDS
SQL, extensions, imprecise queries

ACM Reference Format:
Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici, and Ihab F. Ilyas.
2019. ExplIQuE: Interactive Databases Exploration with SQL. In The 28th
ACM International Conference on Information and Knowledge Management
(CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3357384.3357847

1 INTRODUCTION
SQL is a language that appeared in the 1960s, and is still widely
used nowadays. Over the years, the volume of data that is stored
has increased tremendously, creating new needs for users to be able

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357847

to store, access, and analyze their data. Moreover, with the recent
development and popularity of data analysis techniques, combined
with an easier access to data collecting and storing devices, more
and more users are trying to make sense and get value out of their
data.

As a consequence, the structure of databases tends to change,
with bigger schemas, larger tables, and of course, more and more
tuples. In addition, the use of databases by users is also evolving,
because the data they are looking for is less easy to find, because
they are less experienced, and because the question they are try-
ing to answer is not always totally clear: we call such questions
imprecise queries, that are expressed in natural language but not
easily translatable into SQL. This is especially true in exploratory
contexts, where it is necessary to deeply understand the data, and
to try several different SQL queries, before translating the initial
question into SQL and reaching the desired data. Indeed, when a
user is confronted to a relational database with a question that is
not necessarily clear in the first place, she will go through different
phases. First, she can explore and navigate the database to under-
stand its content and structure better. Then, once more familiar
with the data structure, she can express a first simple and general
query, before refining it over and over, until she answers the initial
question at hand. As a result, the desired tuple set is not reached
with a single query, but with a sequence of iterative refinement
that, one by one, that gets the user closer to what she is looking for,
and gradually builds her final answer set.

This query refinement process is not always easy for users, espe-
cially when they do not know where to start it from, or when for
example their initial query returns an answer set that presents too
many tuples. Tools to assist users in such situations are therefore
necessary, as the one for interactive query refinement presented in
[3].

More specifically, there is a gap to bridge to help SQL users to
get confident about their data and queries, and to tackle real life
problems. Such users have often just started to master its basic func-
tionalities, and have been trained with well-defined questions on
small datasets. But whenever they are confronted to fuzzy questions
on new databases, they can get lost. This situation is common, for
examples students confronted to their first internship experiences,
or for freshly trained employees in companies that are implement-
ing new data analysis processes to make use of the data they collect
daily. Helping these new users to smoothly dive into data explo-
ration is therefore an important challenge that would be beneficial
in many domains.

https://youtu.be/oK8xWGCWj_A
https://doi.org/10.1145/3357384.3357847
https://doi.org/10.1145/3357384.3357847

In this paper, we present ExplIQuE, our exploration interface of
SQL databases with query extension. The purpose of this interface
is to help users in refining an initial SQL query over a database,
through an iterative process, by suggesting a set of possible ex-
tensions of this query, that consist in possible additional selection
conditions for its where clause. These extensions give new queries,
that can then be explored and extended, until the desired result is
reached. Assistance is provided to understand and select the de-
sired extensions, with metrics and visual representations. These
extensions have several objectives:
• Help the user understand her database by paying attention to
some interesting attributes they might have overlooked, and
observing how the query result is divided and distributed,
using 2D visualizations.
• Unblock the user when she does not know where to go
or where to start, by providing suggestions even to a very
general query.
• Provide a semantic helpwheremost SQL editors only provide
syntactic help that is not helpful to understand the content
of the database itself.

ExplIQuE is an interface aimed to connect to any database, and to
provide, in addition to classic querying options in SQL, extensions
to queries, with interactive and intuitive visual support. we offer
the audience the possibility to try the various functionalities of Ex-
plIQuE by trying to express an imprecise question over a scientific
database on bacterial colonies, through an iterative process.

2 SYSTEM OVERVIEW
2.1 Query extensions
The purpose of extensions is to give suggestions to the user, so
that she has directions to refine her initial query Q , by adding
additional selection predicates in the Where clause of the query.
More specifically, we propose, given a query Q , to compute a k
extensions set, such that the extensions in this set do not overlap
in terms of results, but also cover all the initial tuples returned
by Q . Our solution, to compute such extensions, presently being
patented1, is based on two machine learning algorithms:

Clustering In order to identify interesting zone of refinement
in Q’s answer set (denoted by ans (Q,d)), we propose to
group similar tuples together using a clustering algorithm.
ans (Q,d) is thus divided into k clusters, and each cluster be-
comes a possible refinement zone for the user. The intuition
between this process is that users are formulating queries in
order to reach a specific set of tuples, answering a question,
and that the results to be found are not random, but likely
to contain tuples that fit together and have similar charac-
teristics. We therefore chose to base the identification of
refinement zone of the k-means algorithm with a Euclidean
distance (see [2]).

Decision tree The second part of our extension process con-
sists in finding a query to describe each refinement zone iden-
tified by clustering. To do so, an additional column label
is added to the dataset from ans (Q,d), and filled with the
number of the cluster each tuple has been assigned to. A

1Patent number FR1757682 from the 14/08/2017 in France

binary decision tree is then built to discriminate between the
different clusters. For each leaf of the tree, the decision path
from the root of the tree to this leaf is computed, and the
conjunction of decision clause gives a new selection predi-
cate. In order to get as many extensions as clusters, we offer
two possibilities. We either limit the depth of the tree to only
obtain k leaves, and therefore each leaf gives exactly one ex-
tension. Otherwise, we do not limit the depth of the tree, but
all the leaves corresponding to the same cluster are joined
by a disjunction, forming together a unique extension.

These algorithms require some parameters. Predefined ones are
proposed to the user, who can then personalize them using the
ExplIQuE’s interface. For the clustering, several values of k are used
(by default for k = 2 to k = 10), each giving an extension set of
different size. These sets are presented to the user, ranked according
to well-known clustering score of the silhouette coefficient [5].
Inside a single extension set, extensions are ranked according to
the size of their result, by showing the most general extension first
(with the most tuples), and the most specific one last.

The algorithm to compute a k extension set given a fixed value
of k and a tree with k-leaves is given in algorithm 1. It should be
noted that the data is preprocessed and normalized for clustering,
and that the projection of the query is removed, to allow other
attributes, that the user might have overlooked, to be included in
the extensions.

procedure Extension (Q,d,k);
Input :A query Q over R,

d a database over R,
k the number of extensions

Output :Sc a set of k extensions of Q
if Q = πX (Q ′) ; // remove the projection

then
Q = Q’

end
wd = ans (Q,d) ; // wd: working data

lwd = kmeans (wd, k) ; // lwd: labelled wd
tree = DecisionTree (lwd, k)
conjunctions = дetRules (tree)
Sc = {}
foreach c in conjunctions do

Sc = Sc ∪ σc (Q)
end
return Sc ;

Algorithm 1: Query extension procedure

2.2 Data visualization
To understand the extensions, and assist the user in choosing or
refining one, ExplIQuE offers several hints. First, for each exten-
sion, two scores are displayed, in addition to the ranking among
extension sets with the silhouette coefficient.
• The narrowing ratio, which is the percentage of tuples re-
moved from the initial query when adding the extension.
• The result set size of the extension, when added to the initial
query.

In addition, two visualizations are available to assist the user in
choosing an interesting extension. The first is a scatterplot of the
results of the query being extended, where the tuples are grouped by
extension. The data is projected on two dimensions using principal
component analysis (PCA), and each extension is presented using a
different color. Moreover, the visualization is interactive, as the user
can see the extension corresponding to the datapoints by moving
the mouse over the scatterplot. The purpose of this visualization
is to show in one glance to the user the size and dispersion of an
extension, as well as how separated each extension is with respect
to the others. Such a visualization is presented on figure 2.

In the specific case of image databases, where tuples are asso-
ciated with images, another visualization is possible. The images
associated to the results of an extension can be displayed as a mo-
saic in ExplIQuE. This is useful for the user to easily identify the
diversity of data that an extension represents: she might see visu-
ally that the extension contains homogeneous images, or on the
opposite easily identify outliers. In this demonstration, we propose
to use such a database to demonstrate this additional functionality.

2.3 Implementation
ExplIQuE’s is implemented as a web interface. The backend relies
on Flask2 framework, and is therefore implemented using Python
3. The clustering and decision trees algorithms are the ones from
the scikit-learn library [4].

Data is stored in a relational database that can be either MySQL
or Oracle. Optional external files can be stored outside the database
in a dedicated folder. The user has access to a web interface that
is implemented using the React3 javascript library. A first page
allows to connect to the desired database, before accessing to the
second page that allows to extend queries over it. A snapshot of
this page is presented on figure 2, showing the main functionalities.
On the left panel, the user can query the database using SQL, and
when needed, ask to extend the current query. If necessary, the
schema can be displayed using the link on the top left corner. On
the right panel, the extensions are displayed. For a given value
of k , a global visualization is displayed, and the corresponding
extension is highlighted when the mouse is over a cluster, to link the
visualization to the SQL extension it represents. For each extension,
additional information such as the reduction ratio is given to the
user when she clicks on it. Finally, the extension can be added
to the current query in just one click, it can be updated in the
query writing zone, and the process can be repeated iteratively
until convergence.

As this is an online system, the extensions have to be computed
in a reasonable amount of time. This can be challenging on large
instances: as a result, we use random sampling, that allows to reach
a trade-off between the computing time and the quality of the
results. The experimentations on this specific problem are out of
the scope of this demonstration paper.

2.4 Experimentation results
A preliminary version of ExplIQuE (see [1]) was experimented with
a group of 70 computer science students, who had just started their

2http://flask.pocoo.org/
3https://reactjs.org/

Figure 1: Boxplot of answering time for students with (EXT)
and without extensions (NoEXT)

lessons on SQL4. They were divided in two groups, one with access
to ExplIQuE (group EXT), the other with a similar interface but with
only classic SQL querying possibilities (group NoEXT). They were
asked to answer a series of ten questions over a database designed
for the test:
• The first three questions were precise and easy to translate
into SQL. They were used to assess the participant’s level
in SQL, and to ensure that the performances of both groups
were balanced.
• The other were imprecise questions that had been designed
to be deliberately fuzzy with a more exploratory purpose. As
such, they where not easily translatable to SQL, and required
some fumbling around and playing with SQL to answer them
using only classic SQL tools.

The answering time of each participant to each question was
monitored, in order to compare the performances of both groups.
The results are presented on figure 1, that shows the boxplot of
answering time per question for each group, only when student
correctly answered the question. On the first three questions, the
results are very similar for both groups, which is what was ex-
pected: this questions were easy, and did not require the use of
extensions. However, on the other ones, impressive differences can
be observed, as students who had access to extensions performed
much faster (the difference on question 10 is due to the fact that
very few students from group NoEXT had the time to answer it
correctly). This experiment therefore showed how extensions can
help users in better understanding their data, and to write their SQL
queries faster. This is what we want to show in this demonstration.

3 DEMONSTRATION SCENARIO
The audience will have the opportunity to use ExplIQuE’s web
interface, over a scientific database, in order to answer a list of
imprecise questions on the database. The interface is presented on
figure 2, showing its main features.
4more details at https://marielgy.github.io/sql_experimentation/

http://flask.pocoo.org/
https://reactjs.org/
https://marielgy.github.io/sql_experimentation/

Figure 2: Web interface for ExplIQuE

3.1 Running database
The database used for the demonstration comes from a study where
colonies of different bacteria grow on solid plates5. It contains
10000 tuples over 29 columns, that correspond to measures on the
development of the bacteria. It is both simple (only one table) and
difficult, as the content of its columns is not easy to under at first
glance, with some confusing column names. It describes the shape,
texture, and color of the colonies. Scientists use it to detect colonies
with specific characteristics, for example bacteria belonging to the
same species. Each tuple is also associated to an image representing
the bacteria. We chose this dataset for the audience to be in the
conditions where ExplIQuE can be useful, as they are not likely to
have prior knowledge on this subject. Moreover, the 29 columns,
with names that are not so expressive except for domain experts,
will make the extensions useful to understand what they contain
and the type of data they represent.

3.2 Audience interaction
The audience will have the opportunity to experience the various
features of ExplIQuE. First, as with any DBMS, the audience will be
able to browse the database’s schema, to understand its structure
and content. Moreover, ExplIQuE allows user to evaluate queries
like any other DBMS’s interface. The audience will then be allowed

5The authors would like to thank Christopher Pease from Darlington EURL for releas-
ing the dataset

to play with the dataset, by querying it in a traditional setting.
Second, the audience will be asked to answer questions, like the
following one:What are the bacteria that have a very similar texture,
and all have a circular shape ? Using our query extensions, the
answer to this question can be found in three iterations, and in less
than five minutes. Users will be invited to start with a very general
query, and to use the suggestions of the extensions to reach the
desired result set. They will also be invited to play with the several
visualizations to understand and select the most useful extensions.
Finally, we also propose to play with several parameters available
to tune the extensions. They will therefore have the possibility to
change the number of clusters to produce, and to change how the
decision tree is computed.

REFERENCES
[1] Marie Le Guilly, Ihab Ilyas, Jean-Marc Petit, and Vasile-Marian Scuturici. 2018.

Partitioning queries for data exploration using query extensions. In BDA 2018
34ème conférence sur la Gestion de Données. Principes, Technologies et Applications.

[2] S. Lloyd. 2006. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 28, 2
(Sept. 2006), 129–137. https://doi.org/10.1109/TIT.1982.1056489

[3] Chaitanya Mishra and Nick Koudas. 2009. Interactive query refinement. In Pro-
ceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology. ACM, 862–873.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[5] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics
20 (1987), 53–65.

https://doi.org/10.1109/TIT.1982.1056489

	Abstract
	1 Introduction
	2 System overview
	2.1 Query extensions
	2.2 Data visualization
	2.3 Implementation
	2.4 Experimentation results

	3 Demonstration scenario
	3.1 Running database
	3.2 Audience interaction

	References

