
HAL Id: hal-04118213
https://hal.science/hal-04118213

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WCET analysis with procedure arguments as parameters
Sandro Grebant, Clément Ballabriga, Julien Forget, Giuseppe Lipari

To cite this version:
Sandro Grebant, Clément Ballabriga, Julien Forget, Giuseppe Lipari. WCET analysis with procedure
arguments as parameters. RTNS 2023: The 31st International Conference on Real-Time Networks
and Systems, Jun 2023, Dortmund, Germany. pp.11-22, �10.1145/3575757.3593655�. �hal-04118213�

https://hal.science/hal-04118213
https://hal.archives-ouvertes.fr

WCET analysis with procedure arguments as parameters

Sandro Grebant, Clément Ballabriga, Julien Forget, Giuseppe Lipari
firstname.lastname@univ-lille.fr

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL
F-59000, Lille

France

Abstract

Parametric Worst-Case Execution Time (WCET) is a
static analysis that computes a WCET formula that de-
pends on various parameters. The formula can be used
off-line for fast parameter space exploration, and on-line
for adaptive scheduling.

In this work, we propose a technique that, by static
analysis of binary code, automatically produces a formula
that represents the WCET of a procedure as a function
of the procedure arguments. The formula captures how
the control-flow, and thus the WCET, depends on the
argument values due to arguments appearing in branch
conditions (loop conditions or if-then-else conditions).

We use the TACLeBench benchmark programs to illus-
trate the impact of procedure arguments on the WCET.
Our tool generates C code with bounded WCET that can
be embedded in the analysed program to evaluate the
formula on-line. We show that, for some programs, the
potential gain is significantly larger than the cost of evalu-
ating the formula, thus opening the possibility of adaptive
scheduling.

1 Introduction

The schedulability analysis of a real-time system re-
quires upper-bounds to the Worst-Case Execution Time
(WCET) of each task. Tasks’ execution times can exhibit
a large variability due to software parameters (e.g. pro-
gram inputs) or hardware parameters (e.g. cache state).
Static WCET analysis aims at providing a safe upper-
bound to the execution time of a task for any possible
combination of the software and hardware parameters.
The estimated WCET must also be tight (close to the
actual WCET) to keep resource over-provisioning to a
minimum.

Instead of producing a single numeric WCET that
upper-bounds any possible parameter combination, para-
metric WCET analysis produces a formula that repre-
sents the WCET as a function of the parameters. The
formula can later be instantiated with concrete param-
eter values to provide an upper-bound to the execution
time for those parameter values.

Parametric WCET formulae have two main uses. First,
when doing design space exploration, a formula can be
instantiated repeatedly off-line to quickly explore the pa-
rameters space with low execution cost. This can for in-
stance be combined with sensitivity analysis [13, 27] to de-
termine which parameter values make the system schedu-

lable.

Second, a formula can be instantiated on-line to effi-
ciently implement adaptive real-time systems. As many
parameter values become known only at run-time (e.g.
program inputs), on-line instantiation can produce a
lower WCET than a single WCET computed off-line.
This can benefit many adaptive scheduling techniques,
such as energy-aware scheduling based on Dynamic Volt-
age and Frequency Scaling (DVFS) [35], slack reclaim-
ing [17, 32, 36], or the recent semi-clairvoyant scheduling
for mixed-criticality systems [1, 15, 10].

In this paper, we present a novel parametric WCET
analysis, which analyzes the binary code of a procedure
to produce a WCET formula that represents the WCET
of the procedure as a function of its arguments.

1.1 Motivating example

We motivate our work with the example of Figure 1.
This procedure is part of an implementation of the
G.723 speech encoding standard, taken verbatim from
TACLeBench [25].

The G.723 codec is based on Adaptive Differential Pulse
Code Modulation (ADPCM). During the signal encoding,
each sample sl of the input signal is compared against a
value se predicted based on previous samples. The dif-
ference d=sl-se is quantized to a logarithmic factor rep-
resented by argument dqln. The procedure reconstructs
the difference signal based on that value (it also takes the
sign of the value and the adaptive quantization step y as
arguments). If the difference dqln is low1 compared to the
quantization step y (line 6), the reconstructed difference
is set to 0 (line 72). Otherwise (else branch), the proce-
dure computes the antilog of dql, assuming a fixed-point
signed representation of the real value dqln.

Our analysis applied to the corresponding assembly
code detects that the branching instruction correspond-
ing to source line 6 depends on two procedure arguments
and infers the branch conditions 4 × arg2 + arg3 ≤ −1
for the then case and 4 × arg2 + arg3 ≥ 0 for the else

case. Then, it produces a WCET formula that depends
on those branch conditions.

Let us emphasize that the WCET variations are neither
due to aberrant values, nor predictable before runtime, as
they depend on the shape of the input signal.

1Addition on logarithmic values (dqln and y) amounts to mul-
tiplication.

2dql is signed, in two’s complement, which explains the test at
line 7.

1

1 int reconstruct(int sign , int dqln , int y)
2 {
3 short dql , dex , dqt , dq;
4

5 dql = dqln + (y >> 2);
6 if (dql < 0)
7 return ((sign) ? -0x8000 : 0);
8 else {
9 dex = (dql >> 7) & 15;

10 dqt = 128 + (dql & 127);
11 dq = (dqt << 7) >> (14 - dex);
12 return ((sign) ? (dq - 0x8000) : dq);
13 }
14 }

Figure 1: Speech encoding, reconstructing the difference
signal

This example has been chosen for illustrative purposes
thanks to its simplicity. It shows that we can characterize
the impact of argument values on the WCET of a pro-
cedure. The variation of WCET for such small function
is a few tenths of processor cycles, hence it is not useful
to instantiate its WCET formula on-line: the evaluation
function takes almost as much time as the potential max-
imum variability (see line g723 enc reconstruct in Table 2
in Section 8.3.3). However, other more complex functions
show a much larger variability and computing the formula
on-line may make sense for those functions (see Section 8
for a complete set of experiments).

We underline the fact that, although procedure
reconstruct is only a part of the complete encoder pro-
gram, it is representative of many signal processing al-
gorithms, which are pervasive in real-time systems, and
whose computations and WCET vary depending on the
input signal.

1.2 Contributions

Our approach is based on two previous works on symbolic
WCET computation [9] and abstract interpretation [8].
In a nutshell, symbolic WCET computation starts from
the Control-Flow Graph of the program (CFG), translates
it into a Control-Flow Tree (CFT), transforms the CFT
into a WCET formula, and finally simplifies the formula
to reduce its size.

Although our methodology relies on foundations pre-
sented in the two papers mentioned above, many novel
contributions and extensions were necessary to make it
work in a coherent and automatic way. In this paper we
present these extensions.

First, we devise an analysis that infers input condition-
als, that is to say predicates on procedure arguments that
serve as branch conditions, either in conditional state-
ments or in loops. This analysis extends the relational
abstract interpretation of binary code proposed in [8] and
is presented in Section 6. Also, we introduce a new type of
node in the CFT to represent conditional branches sub-
ject to input conditionals. This is presented in Section
7.1

Second, in Section 5 we show how to apply a hardware
analysis previously proposed for the IPET approach[38]

to the tree-based approach of [9].
Third, in Section 7.2 we extend the symbolic compu-

tation to support formulae where the input conditionals
appear as parameters. Furthermore, in Section 7.3 we
propose extensive simplification procedures to reduce the
size of the formulae. Finally, we provide a compiler that
generates C code, which is optimized to have low WCET,
to evaluate the formula on-line (Section 7.4).

As demonstrated with our experiments on
TACLeBench, our approach is adaptive, embed-
dable, and also automated:

• Adaptivity : the instantiated WCET can vary signif-
icantly when we take into account the value of the
procedure arguments. Our approach detects dynam-
ically infeasible paths, that is to say paths that are
infeasible because of the current procedure argument
values.

• Embeddability : the size of the WCET formula and
the instantiation time are kept to a minimum, so as
to enable on-line execution.

• Automation: our approach takes the binary code of
a procedure as input and produces a WCET formula
dependent on the procedure arguments as output,
without requiring assistance from the programmer.

2 Related works

The most widely usedWCET analysis technique is the Im-
plicit Path Enumeration Technique (IPET) [31]. It takes
a representation of the compiled program in the form of a
graph (the Control-Flow Graph – CFG), and explores it
to build an Integer Linear Programming (ILP) problem.
The graph structure and the hardware features (pipeline,
cache, etc.) are encoded by linear constraints, and the so-
lution of the problem is a numerical upper bound to the
execution time of the program. An extensive survey on
WCET and IPET is presented in [43].

Symbolic techniques have been considered in WCET
analysis for different purposes. [11, 12, 19] uses symbolic
techniques to speed up the analysis. In [33], symbolic
analysis is used to trade off analysis time against tight-
ness. Wilhelm et al. [44] model the effect of pipelines
on the WCET using symbolic states. Reineke et al. [37]
demonstrate how to represent various architectural ef-
fects, e.g. processor frequency, memory latencies or mem-
ory sizes, using parametric WCET analysis. However,
even though these approaches are symbolic, their results
are not parametric.

The problem of computing WCET formulae that de-
pend on various parameters has been studied before. Ap-
proaches that rely on source code analysis have been pro-
posed [42, 34, 20, 35]. One limitation of source code
analysis is the need to account for compiler optimizations
that may change the structure of the Control-Flow Graph,
making the resulting WCET more pessimistic. Concern-
ing binary-level analyses, in [5] Altmeyer et al. rely on
parametric ILP [26] to adapt IPET analysis to the para-
metric case, but the approach is computationally ineffi-
cient. In [16], Bygde et al. propose a different non-IPET

2

approach, which is more efficient but less tight. Althaus
et al. [3, 4] try to improve on both efficiency and tightness.

Tree-based parametric WCET analyses have also been
considered as a parametric alternative to IPET. Colin et
al. [22] introduced a tree-based model of programs dedi-
cated to symbolic WCET analysis. However, they did not
consider the problem of producing such a model from a
program. Ballabriga et al. [9] proposed a tree-based sym-
bolic WCET computation approach and detailed how to
produce the tree model from a CFG. Their approach can
represent a wider range of hardware and software tim-
ing effects than previous tree-based WCET analyses: it
supports parametric loop bounds and parametric execu-
tion blocks (blocks of code whose WCET is a parame-
ter). However, the programmer needs to manually spec-
ify which elements of the program are parameters. We
could use parametric execution blocks to represent para-
metric conditional statements: replace each conditional
statement by a parametric execution block, where the pa-
rameter represents the WCET of the different alternatives
of the conditional statement. This would however cause
space explosion for nested conditional statements.

Our work is indirectly related to infeasible paths anal-
ysis, for which several approaches have been proposed in
the WCET analysis community: using abstract interpre-
tation [30, 41, 18], symbolic execution [28, 29], or SMT
solvers [14, 39, 40]. A survey about infeasible paths anal-
ysis can be found in [24]. These works focus on detect-
ing statically infeasible paths, i.e. a program path that
can never be executed because of some exclusive branch
conditions and assignments. In comparison, our approach
detects dynamically infeasible paths (paths that are infea-
sible because of the current procedure argument values).

We conclude this section with a summary of how our
work compares with existing works. First, existing works
mostly consider parametric loop bounds, none consider
conditional statements with parametric conditions. Our
experiments show that programs containing loop bounds
that depend on procedure arguments are rarer than pro-
grams containing conditional statements that depend on
procedure arguments. Second, existing works usually sup-
port a single parameter, or additions between a single pa-
rameter and a constant, which is insufficient to represent
many input conditionals, such as for instance that of the
motivating example of Figure 1. In comparison, we sup-
port conjunctions on linear inequalities on parameters.
Finally, no existing work is simultaneously adaptive, au-
tomated and embeddable.

3 Overview

We illustrate the workflow of our approach on the program
of Figure 2. Starting from the binary code of function f ,
the analysis proceeds as follows.

CFG extraction the binary code is translated into a
Control-Flow Graph, where nodes are basic blocks3 and
edges represent the program control-flow. We obtain a

3A basic block is a sequence of instructions such that if the
first instruction of this sequence is executed, then the remaining
instructions of that sequence are executed as well.

1 f: @ int f(int n) {
2 @ ... @ // A
3 str r0, [fp, #-32] @ // A
4 @ ... @ // A
5 ldr r3, [fp, #-32] @ // A
6 cmp r3, #10 @ if (n <= 10) // A
7 bgt .L2 @ { // still A
8 @ ... @ // C
9 b .L3 @ } // C

10 .L2: @ else {
11 @ ... @ // B
12 .L3: @ }
13 @ ... @ // D
14 ldr r3, [fp, #-32] @ // D
15 cmp r3, #-1 @ if (n <= -1) // D
16 bgt .L4 @ { // still D
17 @ ... @ // F
18 b .L5 @ } // F
19 .L4: @ else {
20 @ ... @ // E
21 .L5: @ }
22 @ ... @ // G
23 bx lr @ return; // still G
24 .global main @ }
25 main: @ int main() {
26 @... @ // ...
27 ldr r0, [fp, #-8] @ // Set arguments
28 bl f @ f(i); // call
29 @ ... @ }

Figure 2: Running example

CFG with basic blocks A to G. We rely on OTAWA [7]
for this step.

Hardware analysis the hardware analysis infers the
WCET of each basic block. Let us assume that the re-
sulting WCET obtained for A,E, F is 10, for C,G is 5,
and that the WCET of B and D are symbolic (denoted
ω(B), ω(D)). We extended the existing analysis to take
into account the effect of the pipeline between blocks in
the CFT (see Section 5).

Inferring input conditionals the abstract interpreter
identifies the value stored in r0 as an argument (a.k.a. n)
of procedure f at line 1 (as per function call conventions).
At line 7, it infers r0 ≥ 11 as the input conditional for
branching to label L2 (a.k.a. block B) and r0 ≤ 10 if we
do not branch. Similarly, the input conditionals r0 ≥ 0
and r0 ≤ −1 are inferred at line 16. Note that we use the
notation r0 for the sake of simplicity, but it corresponds
to the value contained in register r0 at the beginning of
the procedure here, which is an invariant. We extended
the abstract interpretation analysis of [8] to infer predi-
cates on conditional branches and loops which depend on
function arguments (see Section 6).

CFT with symbolic input conditionals the CFG is
translated into the Control-Flow Tree (CFT) depicted in
Figure 3. It consists of a sequence (the root node Seq)
of basic blocks (A, D, G) and of alternatives (Alt1 , Alt2)
between two subtrees (B or C, resp. E or F). Output
edges of alternative nodes are annotated with the input
conditionals inferred by the abstract interpreter. We ex-

3

Seq

A Alt1

B

r0 ≥ 11

C

r0 ≤ 10

D Alt2

E

r0 ≥ 0

F

r0 ≤ −1

G

Figure 3: Control-Flow Tree for function f of Figure 2

tended the CFT of [9] with a new type of alternative node
to model conditional branches (see Section 7.1).

WCET formula The CFT is translated into a WCET
formula. Essentially: the WCET of a Seq node is the sum
of the WCETs of its subtrees (denoted ⊕); the WCET of
an Alt node is the maximum among theWCETs of its sub-
trees (denoted ⊎); the WCET of an alternatives’ subtree
is multiplied by its input conditional (denoted ⊛, where
the input conditional can be seen as its binary equivalent,
i.e. 1 if the input conditional is true, 0 otherwise). Thus,
we obtain:

10⊕ (((r0 ≥ 11)⊛ ω(B)) ⊎ ((r0 ≤ 10)⊛ 5))⊕ ω(D) ⊕
(((r0 ≥ 0)⊛ 10) ⊎ ((r0 ≤ −1)⊛ 10))⊕ 5

With respect to [9], we introduce input conditionals and
the ⊛ operator, as described in Section 7.2.

Formula simplification The formula contains sym-
bolic values, therefore it cannot be reduced to a numeric
value. Instead, we reduce its size using special simplifica-
tion rules. We obtain:

25⊕ (((r0 ≥ 11)⊛ ω(B)) ⊎ ((r0 ≤ 10)⊛ 5))⊕ ω(D)

It is important to underline that, for the sake of clar-
ity, in this example we show a simplified version of the
formula. In reality, in order to correctly model the im-
pact of caches, each WCET is represented by a list (see
Section 4). Therefore, the operators used in the symbolic
formula are special operators defined on lists. This means
that, unfortunately, we could not reuse classical simplifi-
cation procedures for integer formulae; instead, we had to
establish and prove the correctness of our own simplifica-
tion rules. This work is described in Section 7.3.

Formula instantiation The formula is instantiated
when symbolic values become known. For instance, as-
suming n = 0 (i.e. r0 = 0), ω(B) = ω(D) = 8, we
obtain a WCET of 38. Note that a non-parametric anal-
ysis would produce a higher WCET in this case, namely
41. The instantiated WCET reflects the fact that execu-
tion paths that include B are infeasible when n = 0. In
Section 7.4, we present a simple compiler that, starting
from a (previously simplified) formula, produces C code
whose WCET is low and can be easily bounded. It can be
embedded in the program to enable adaptive scheduling.

4 Background on symbolic WCET

We start by recalling the main concepts of symbolic
WCET computation [9]. It starts from a CFG represen-
tation of the binary program under analysis. First, it
translates the CFG into a control-flow tree (CFT), whose
nodes can be one of:

• Leaf(b), which holds the basic block b of the program;

• Seq(t1, . . . , tn), which represents the sequential exe-
cution of trees (t1, . . . , tn);

• Alt(t1, . . . , tn), which represents the execution of one
tree among (t1, . . . , tn);

• Loop(l, tb, n, te), which represents the loop, identified
uniquely by l, that repeats the execution of tb at max-
imum n times and exits by executing the tree te.

When located inside a loop, successive iterations of a
CFT node can yield different WCETs. We represent the
WCET of a CFT as an abstract WCET, defined as a pair
(l, w), where l is a loop identifier and w is a list of inte-
gers sorted in non-increasing order. The list can contain
duplicates and its smallest element is implicitly repeated
infinitely. So for instance (l, [10, 10, 5, 3]) represents the
WCET of a node inside loop l, whose WCET is at most
twice 10, once 5, and 3 for all other iterations of loop l.
In the following, ⊤ refers to the program top-level scope,
and θ is the null WCET, where θ = (⊤, [0]). The abstract
WCET ω(t) of a CFT t is computed inductively on the
CFT structure as follows:

ω(Leaf(b)) = ω(b)

ω(Seq(t1, . . . , tn)) = ω(t1)⊕ . . .⊕ ω(tn)

ω(Alt(t1, . . . , tn)) = ω(t1) ⊎ . . . ⊎ ω(tn)

ω(Loop(l, tb, n, te)) = ω(tb)
n,l ⊕ ω(te)

The operator ⊕ is a point-wise sum, for instance:
(l, [5, 3])⊕ (l, [4]) = (l, [9, 7]) (recall that the smallest ele-
ment is implicitly repeated infinitely). The operator ⊎ is a
list union, except that elements smaller than infinitely re-
peated ones are dropped, for instance: (l, [5, 3])⊎(l, [4]) =

(l, [5, 4]). Concerning operation (l, w)n,l′ , there are two
possible cases. When l′ = l, the execution time is always
the same, in this case we sum the first n elements of w;
for instance: (l, [5, 4])4,l = (⊤, [17]). When l′ ̸= l, l′ refers
to a loop that contains l, thus successive executions yield
different execution times, so we sum the elements of w by
packs of n; for instance (l, [5, 4])4,l

′
= (l, [17, 16]).

The abstract WCET representation is a bit involved,
but it enables to represent a wide range of hardware and
software facts. For instance, the CFT model can represent
the effect of the instruction cache categorization technique
of [2], as illustrated in the following example.

Example 1. Figure 4a shows a simple CFT, which loops
over basic block A. Node H is the loop test, repeated at
the beginning of each iteration and also when exiting the
loop (the dashed edge indicates the exit node). Assume
that the miss-penalty of the instruction cache is of 10 and
that the basic block A contains a first-miss cache access,
i.e. the instruction is in the cache at all iterations except

4

Loop(l)

Seq

H A

H

(a) Before transformation

Loop(l)

Seq

H fm A

H

(l′, [10, 0])

(b) After transformation

Figure 4: Instruction cache transformation

the first one. The effect of the instruction cache miss is
modeled in Figure 4b by a new leaf fm, which represents
the miss penalty of the cache at the first iteration only.
The WCET of this leaf is expressed as (l′, [10, 0]), which
means that the execution time of fm is 10 at one iteration
and 0 for all the other iterations of l′.

In the specific case of a first-miss cache access, that is
to say the access is a miss each time we enter a certain
loop, the abstract WCET loop identifier might not corre-
spond to the loop that directly encloses the miss-penalty
block, because the miss may not occur each time we en-
ter this loop but each time we enter an outer loop. This
corresponds to the l ̸= l′ case presented above.

When some parameters of the CFT are unknown, ω(t)
produces a formula containing symbolic values. In [9],
symbols can be of two kinds: a symbolic WCET (e.g. X⊎
(l, [4]), whereX is an unknownWCET) or a symbolic loop

bound (e.g. (l, [5, 3])N,l′ , where N is an unknown integer
loop bound). In order to decrease their size and evaluation
time, WCET formulae are reduced using simplification
rules. For instance, ((l, [5]) ⊕ X) ⊎ ((l, [4]) ⊕ X) reduces
to (l, [5])⊕X. Finally, the reduced formula is translated
into C code, that can either be used off-line or on-line
to instantiate the formula when symbol values become
known.

5 Improving hardware analysis

Computation of the WCET of each basic block of the CFG
is performed during the hardware analysis step. We rely
on the hardware analyses implementations of OTAWA [7].
In this section, we describe how we improved the represen-
tation of the effect of the processor pipeline in the CFT
model. Note that those improvements are not required
for our technique to be safe, but they greatly reduce its
pessimism and provide more realistic results in our exper-
iments.

The processor pipeline causes the execution time of an
instruction to vary depending on the execution path that
was taken before it. To model this dependency, the execu-
tion graphs method (Exegraph [38]) represents the WCET
of a basic block of a CFG on its incoming edges. For in-
stance, in Figure 5a, d1 is the WCET of block D when it is
preceded by the execution of B. In [9], the pipeline mod-
eling with execution graphs is already supported. How-
ever, it does not consider the timing overlap between ba-
sic blocks, which is pessimistic. We adapt the Exegraph

A

B C

D

a

b

d1

c

d2

(a) CFG

Seq

A Alt

B C

D

(a)

(b + d1) (c + d2)

(θ)

(b) CFT

Figure 5: An alternative between two paths

H

B

e

b h

(a) CFG

Loop

Seq

Hbd B

Hex

(h) (b)

(e)

(b) CFT

Figure 6: Particular case of loops

method to the CFT model as follows. First, we run the
Exegraph analysis on the CFG. Then, whenever a basic
block in the CFG has more than a single incoming edge,
there are two possible cases:

1. The basic block is a loop header. In the corresponding
CFT, the loop header appears twice: in the loop body
(for each iteration) and in the loop exit (the last test
of the loop condition, see for instance Figure 6). We
take the WCET of the back-edge in the CFG for the
WCET of the loop header in the loop body in the
CFT. We take the WCET of the entry-edge in the
CFG for the WCET of the loop header in the loop
exit in the CFT.

2. Otherwise. In the corresponding CFT, the considered
basic block is the successor of an Alt node. In that
case, we add the WCET of each edge to the WCET
of its source basic block.

Example 2. In the CFG of Figure 5, the WCET of D
is either d1 or d2 depending on the execution path. In the
corresponding CFT, we set ω(B) = b+ d1, ω(D) = c+ d2
and ω(D) = θ. The result is sound since the WCET of
path B.D is b+ d1, while that of path C.D is c+ d2.

Example 3. In the CFG of Figure 6, the WCET of H
is either e or h depending on the execution path. In the
corresponding CFT, we set ω(Hbd) = h and ω(Hex) = e.
The total WCET of the loop is n× (h+ b) + e (assuming
n iterations).

5

6 Inferring input conditionals

In this section, we explain how we extended the abstract
interpretation analysis from [8] to infer the input con-
ditionals of a binary program. We consider 32-bit ARM
programs, but the analysis can easily be extended to other
architectures with similar procedure call conventions.

6.1 Background

We start by recalling the main concepts of the interpre-
tation procedure of [8]. Abstract interpretation [23] is a
general static analysis method that infers program invari-
ants. It propagates an abstract state of the program that
overapproximates the set of all possible concrete states,
until a fixpoint is reached. It is sound, in the sense that
the invariants it infers hold for any possible concrete pro-
gram state.

While abstract interpretation usually targets source
code, we rely on the abstract interpretation procedure
for binary code proposed by Ballabriga et al. [8], because
we want to inject the inferred invariants into our WCET
analysis, which is applied to binary code. In abstract
interpretation of binary code, the abstract state associ-
ated to a program location represents the set of reachable
values for registers and memory addresses at this pro-
gram location. The term data location is used to refer
indistinctly to registers or memory addresses. We sum-
marize the main features of the interpretation procedure
proposed in [8] below.

Polyhedra The abstract domain used by an abstract
interpreter defines the type of invariants it can infer. The
analyzer of [8] relies on polyhedra, thus an invariant con-
sists in a conjunction of inequalities on data locations.

Dimension-to-data-location mapping In [8], each
dimension of a polyhedron represents the value of a data-
location. The correspondence, or mapping, between di-
mensions and data-locations changes as the interpreter
progresses. For instance, consider the assembly instruc-
tion add r0, r0, #1, which corresponds to incrementing a
variable in the C source code. Suppose that, before this
instruction, the dimension d0 is mapped to register r0. In
the polyhedron resulting from the interpretation of this
instruction, r0 is mapped to a new dimension d1, with
constraint d1 = d0 + 1. As the interpreter progresses,
new dimensions are added and old dimensions that are
not referred anymore are removed to reduce the size of
the polyhedron.

6.2 Identifying procedure arguments

By convention [6], 32-bit ARM programs pass the first
four arguments of a procedure call through registers r0,
r1, r2 and r3. Additional arguments are passed through
the stack. In our experiments, we found that few proce-
dures use more than four arguments. Therefore, in the fol-
lowing we only consider arguments passed through these
registers, which we call input registers.

We modify the abstract interpreter so that it identi-
fies the polyhedra dimensions that are associated to in-
put registers. As the dimension-to-data-location map-
ping evolves during the interpreter progression, a dimen-
sion represents a procedure argument if and only if it is
mapped to one of the input registers in the abstract state
at the starting location of the procedure.

Example 4. In Figure 2, we identify the dimension to
which r0 is associated in the abstract state at line 1, say
d0. Assume that the block A assigns a new value into r0

at line 4. As a consequence, r0 is associated to a different
dimension, say d1, in the subsequent abstract states (e.g.
at the branch at line 7). The analysis identifies that d0
corresponds to an argument of the procedure, not d1.

6.3 From filtering conditions to input condi-
tionals

When the interpreter analyses a conditional branching in-
struction, it adds the corresponding condition to the ab-
stract state of the branch target; this is called filtering.
We modify the analysis so that, whenever a filtering oc-
curs, we project4 the resulting polyhedron over the dimen-
sions previously identified as procedure arguments. As a
result, we obtain a polyhedron corresponding to the con-
straints that the input registers must satisfy in order to
branch to the corresponding location. These constraints
consist in a conjunction of inequations on input registers,
which we call input conditionals.

Example 5. In Figure 2, in the abstract state at line 7,
assume that r3 is associated to dimension d3. Then, the
filtering condition is d3 ≥ 11. After adding the filtering
condition, the constraints at line 10 contain d3 ≥ 11∧d3 =
d0. The projection on procedure inputs reduces these con-
straints to the input conditional d0 ≥ 11, or equivalently
r0 ≥ 11.

In the general case, the input conditionals are passed
unchanged to the CFT builder. There are however a few
particular cases to consider. First, if the projected polyhe-
dron has no constraints (universe polyhedron), this either
means that the branch condition contains no constraints
on procedure arguments, or that the constraints cannot
be represented by a polyhedron (e.g. a disjunction of con-
straints). From a WCET point-of-view, we can safely
over-approximate the input conditional to true. Second,
if the projected polyhedron has unsatisfiable constraints
(empty polyhedron), the branch target is dead code, then
the input conditional is set to false.

Finally, if the branch instruction targets a loop header,
we compute a loop bound as follows. As in [8], a “ghost”
register is added for each loop to count its number of
iterations. It is set to 0 when entering the loop and incre-
mented at each loop iteration. To obtain the loop bound,
we project the polyhedron of the loop header over the di-
mensions of the procedure arguments (say d0, . . . , d3) and

4To get the intuition behind a projection, think of geometric
figures in a 3D space: a projection on the dimensions (x, y) of a
cube in (x, y, z) is simply the geometric projection of the cube on
the plane (x, y).

6

Commutativity

(ek ∧ el)⊛ w1 7→ (el ∧ ek)⊛ w1 if el ◁ ek (1)

ek ⊛ w1 ⊕ el ⊛ w2 7→ el ⊛ w2 ⊕ ek ⊛ w1 if el ◁ ek (2)

ek ⊛ w1 ⊎ el ⊛ w2 7→ el ⊛ w2 ⊎ ek ⊛ w2 if el ◁ ek (3)

Factorization

ek ⊛ w1 ⊕ el ⊛ w1 7→ w1 if el ⇔ ¬ek (4)

ek ⊛ w1 ⊎ el ⊛ w1 7→ w1 if el ⇔ ¬ek (5)

ek ⊛ w1 ⊕ el ⊛ w2 7→ ek ⊛ (w1 ⊕ w2) if ek ⇔ el
(6)

ek ⊛ w1 ⊎ el ⊛ w2 7→ ek ⊛ (w1 ⊎ w2) if ek ⇔ el
(7)

ek ⊛ w1 ⊕ (ek ∧ el)⊛ w2 7→ ek ⊛ (w1 ⊕ el ⊛ w2) (8)

ek ⊛ w1 ⊎ (ek ∧ el)⊛ w2 7→ ek ⊛ (w1 ⊎ el ⊛ w2) (9)

Multiplication

ek ⊛ θ 7→ θ (10)

ek ⊛ w1 7→ θ if ek ⇔ false (11)

ek ⊛ w1 7→ w1 if ek ⇔ true (12)

ek ⊛ (el ⊛ w1) 7→ ek ⊛ w1 if ek ⇔ el (13)

Loops

(ek ⊛ w1)
it,l 7→ ek ⊛ (w1)

it,l (14)

Figure 7: Rewriting rules with input conditionals

of the ghost register (say dc). If we obtain a single lin-
ear inequation, we transform it so that it is of the form
dc ≤ linexpr(d0, . . . , d3), and then the linear expression
linexpr(d0, . . . , d3) is the loop bound. If we obtain a con-
junction of inequations, we are unable to bound the loop,
in which case a numeric bound must be provided by the
user.

7 Symbolic WCET with input condition-
als

In this section, we detail how we extend the symbolic
WCET computation approach from [9] to support input
conditionals.

7.1 Control-flow Tree with input conditionals

We extend the previous definition of alternative nodes so
that an input conditional is associated to each alternative.

Definition 1. Let (t1, . . . , tn) be a set of CFTs,
(e1, . . . , en) be a set of input conditionals and 1 ≤ k ≤ n.
The deterministic alternative node Alt(e1 → t1, . . . , en →
tn) represents an alternative between the execution of trees
(t1, . . . , tn), such that the tree tk can be executed only if
ek is true.

Example 6. Figure 3 depicts the CFT obtained for the
program of Figure 2. For instance, we can see that the
input conditional r0 ≥ 11, whose inference was detailed

in Example 5, appears as an input conditional to execute
B in the deterministic alternative node Alt1 .

Concerning loop nodes, their definition remains un-
changed, except that the loop bound n can now be a linear
expression on procedure arguments.

Example 7. The node Loop(l, t1, 4 × r0 + r1, t2) repre-
sents a loop identified by l, that executes 4×r0+r1 times
the tree t1 and exits by executing the tree t2.

7.2 WCET formulas with input conditionals

We define a new operator ⊛ that multiplies a WCET by
an input conditional. It is used to compute the WCET of
an Alt node:

ω(Alt(e1 � t1, . . . , en � tn)) = e1⊛ω(t1)⊎ . . .⊎en⊛ω(tn)

Definition 2. Let e be an input conditional and w be an
abstract WCET.

e⊛ w =

{
w if e is true

θ otherwise

Example 8. The subtree Alt1 of Figure 3 is translated
into the formula (r0 ≥ 11) ⊛ ω(B) ⊎ (r0 ≤ 10) ⊛ (⊤, [5]).
This corresponds to ω(B) if r0 ≥ 11, or to (⊤, [5]) other-
wise.

7.3 Simplifying WCET formulas

The size of the formula ω(t) is linear in the number of
nodes of t. In this section, we detail simplification rules
to reduce the size of WCET formulae. The simplification
procedure applies simplification rules in an order that fol-
lows the classic integer arithmetic simplification strategy
described in [21].

7.3.1 Simplification rules

The new simplification rules for WCET formulae that con-
tain input conditionals are detailed in Figure 7. ek and el
are input conditionals, w1 and w2 are abstract WCETs,
it is an integer and l is a loop identifier. These rules are
added to the rules of [9]. For each rule of the form l 7→ r
we must prove that l = r. We illustrate the general proof
principle for rule (8) below.

Property 1. ek⊛w1⊕(ek∧el)⊛w2 = ek⊛(w1⊕el⊛w2)

Proof. Case by case on the possible values of ek and el.
We write 0 (resp. 1) as a shorthand for false (resp. true).

1. Case: ek = 0

0⊛ w1 ⊕ (0 ∧ el)⊛ w2 = θ ⊕ 0⊛ w2 = θ

0⊛ (w1 ⊕ el ⊛ w2) = θ

2. Case: el = 0

ek ⊛ w1 ⊕ (ek ∧ 0)⊛ w2 = ek ⊛ w1 ⊕ 0⊛ w2 = ek ⊛ w1

ek ⊛ (w1 ⊕ 0⊛ w2) = ek ⊛ (w1 ⊕ θ) = ek ⊛ w1

7

3. Case: ek = el = 1

1⊛ w1 ⊕ (1 ∧ 1)⊛ w2 = w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ (w1 ⊕ 1⊛ w2) = 1⊛ (w1 ⊕ w2) = w1 ⊕ w2

Factorization rules require to test the equivalence of
input conditionals. The equivalence test is detailed in
Section 7.3.2. For distributivity, we rely on an order rela-
tion ◁ on input conditionals (see Section 7.3.3 below) so
that they can only be applied in one direction, to ensure
termination of the simplification. Multiplication rules are
direct consequences of the definition of the operator ⊛.

7.3.2 Testing input conditionals equivalence

Checking the equivalence of an input conditional to either
true or false is straightforward. No simplification rule can
create a new predicate that is equivalent to true or false.
Therefore, we can simply check (syntactically) that the
input conditional is the predicate true or the predicate
false.

In other cases, to test the equivalence of two input con-
ditionals, we first put them in normal form. Then, equiv-
alence amounts to a syntactic equality. An input condi-
tional is in normal form iff:

1. The left-hand side of comparison operators is 0;

2. Comparison operators are either ≤ or =;

3. Terms are ordered by increasing parameter identi-
fiers;

4. The last term is a constant.

Example 9. The normal form of input conditional 10 ≥
15 + r1+ r0 is 0 ≤ −r0− r1− 5.

7.3.3 Termination of the simplification proce-
dure

The orientation of each rule is such that either of the fol-
lowing holds: 1) r has less operands than l; 2) r has less
parentheses than l; 3) input conditionals in l are “smaller”
than those in r according to relation ◁ (defined below).
Based on these properties, we can define a strict order
relation ≺ such that we have l ≺ r for each rule. This en-
sures that the simplification procedure terminates. The
ordering relation on input conditionals is defined as fol-
lows:

ek ◁ el ⇔(lid(ek) < lid(el)) ∨
(lid(ek) = lid(el) ∧ size(ek) < size(el)) ∨
((conj(ek) = false ∧ conj(el) = false) ∧ (15)

(lid(ek) = lid(el)) ∧ (size(ek) = size(el)) ∧
(linconst(ek) < linconst(el)))

Where lid returns the lowest parameter identifier (or −1 if
there is no parameter), size returns the number of terms
in an input conditional, linconst returns the constant (−1
for a conjunction), of the input conditional and conj is
true iff the input conditional is a conjunction of input
conditionals.

Example 10. Consider the input conditionals 0 ≤ r0 +
r1+ 10 ∧ 0 ≤ r2. We have:

lid(0 ≤ r0+ r1+ 10 ∧ 0 ≤ r2) = 0

size(0 ≤ r0+ r1+ 10 ∧ 0 ≤ r2) = 6

linconst(0 ≤ r0+ r1+ 10) = 10

conj(0 ≤ r0+ r1+ 10 ∧ 0 ≤ r2) = true

7.4 Formula instantiation

We compile the simplified formula into a C procedure,
whose arguments correspond to the arguments of the pro-
cedure under analysis. This procedure can be executed
off-line, e.g. for sensitivity analysis, or on-line, e.g. to
implement an adaptive real-time system.

In order to improve the performance for on-line usage,
we ensured that the C compiler optimizations could be
applied efficiently thanks to the following rules: 1) the
resulting program is standalone, i.e. no library depen-
dencies; 2) WCET lists are represented by several integer
variables, one for each list value; 3) only simple condi-
tional statements are allowed: no loops, no pointers and
no function calls. In this way, we can easily bound the
execution time of the evaluation formula, and its WCET
is very low.

Note that since the WCETs are computed for any pos-
sible hardware state, the sequential execution of the in-
stantiation WCET and the procedure code is lower (if for
any reason the hardware state is favorable) or equals to
winstantiation ⊕wprocedure. Thus, it can be safely used as
the global WCET for this procedure

8 Evaluation

In this section we present the experiments we conducted
to evaluate our approach. We first detail our experimen-
tal setup, to enable the reproduction of our experiments.
Then, we detail our benchmarks selection process. Fi-
nally, we provide metrics obtained by running our tool on
the selected benchmarks.

8.1 Experimental setup

We implemented our approach5 as an extension to
OTAWA, an open-source WCET analysis tool [7]. We
used the following hardware setup:

• Modeled processor: 1 ALU, 1 FPU, 1 MU. Integer
addition costs 1 cycle, floating point addition 3 cy-
cles, multiplication 6 cycles, division 15 cycles. It has
a 4 stages pipeline (fetch, decode, execute, commit),
a fetch queue of size 3, fetches 2 instructions per cy-
cle, and executes up to 4 instructions in parallel;

5An artifact of our prototype can be found at https://gitlab.
cristal.univ-lille.fr/sgrebant/rtns_2023_artifact. The reposi-
tories of the tools developped are also available:

• POLYMALYS (abstract interpretation): https://gitlab.
cristal.univ-lille.fr/otawa-plugins/polymalys;

• WSymb (symbolic WCET computation): https://gitlab.
cristal.univ-lille.fr/otawa-plugins/WSymb.

8

Table 1: Analysis time and WCET adaptivity

Procedure
IPET CFT

WCET Time WCET (cyc) Time (s)
(cyc) (s) Lowest Highest Diff (%) Polyhedra Symb WCET

audiobeam adjust delays 9,261 1.120 1,718 9,383 81.7 1.006 1.096
audiobeam calc distances 174,295 222.809 340 176,550 98.1 20.881 216.863
audiobeam calculate energy 303 0.242 303 303 0.0 0.099 0.246
audiobeam find max in arr 5,274 0.869 1,331 5,366 75.2 0.346 0.827
audiobeam find min in arr 5,327 0.852 1,384 5,429 74.5 0.471 0.820
audiobeam wrapped dec 525 0.303 490 525 6.7 0.034 0.297
audiobeam wrapped dec -
offset

316 0.163 281 316 11.1 0.022 0.162

audiobeam wrapped inc 563 0.463 528 563 6.2 0.039 0.455
audiobeam wrapped inc -
offset

344 0.241 309 344 10.2 0.015 0.238

cjpeg wrbmp write colormap 1,266,466 7.234 1,188,091 1,288,709 7.8 113.109 7.383
fft modff 319 0.140 319 319 0.0 0.007 0.141
g723 enc quan 4,621 0.247 341 5,291 93.6 0.598 0.244
g723 enc reconstruct 702 24.510 335 702 52.3 0.045 24.790
gsm dec APCM inverse -
quantization

15,024 6.551 15,259 15,297 0.2 8.199 6.441

gsm dec APCM quantization -
xmaxc to exp mant

1,311 1.067 1235 1,353 8.7 0.184 1.033

gsm dec asl 855 0.495 268 855 68.7 0.059 0.484
gsm dec asr 420 0.272 290 420 31.0 0.028 0.266
gsm dec Long Term -
Synthesis Filtering

47,389 2.175 48,652 48,703 0.1 2.844 2.095

gsm dec sub 343 0.226 305 343 11.1 0.022 0.220
gsm enc asl 855 0.498 268 855 68.7 0.057 0.483
gsm enc asr 420 0.274 290 420 31.0 0.025 0.266
gsm enc div 5,072 0.904 3,287 5,092 35.4 0.409 0.874
gsm enc sub 343 0.225 305 343 11.1 0.015 0.219
lift do impulse 1,117 0.391 1,135 1,197 5.2 0.058 0.385
ludcmp test 108,705 4.702 9,741 110,841 91.2 21.641 4.636
minver minver 53,356 72.026 359 57,141 99.4 645.606 71.018
minver mmul 12,300 1.714 380 12,492 97.0 6.300 1.640
mpeg2 dist2 134,023 9.410 134,305 134,368 0.0 37.567 9.154
ndes getbit 383 0.381 349 383 8.9 0.035 0.357
rijndael dec fseek 470 0.259 380 470 19.1 0.053 0.252
rijndael enc fseek 449 0.212 381 449 15.1 0.057 0.204

a
u
d
io
b
e
a
m

a
d
ju

st
d
e
la
y
s

a
u
d
io
b
e
a
m

c
a
lc

d
is
ta

n
c
e
s

a
u
d
io
b
e
a
m

c
a
lc
u
la
te

e
n
e
rg

y
a
u
d
io
b
e
a
m

fi
n
d

m
a
x

in
a
rr

a
u
d
io
b
e
a
m

fi
n
d

m
in

in
a
rr

a
u
d
io
b
e
a
m

w
ra

p
p
e
d

d
e
c

a
u
d
io
b
e
a
m

w
ra

p
p
e
d

d
e
c
o
ff
se

t
a
u
d
io
b
e
a
m

w
ra

p
p
e
d

in
c

a
u
d
io
b
e
a
m

w
ra

p
p
e
d

in
c
o
ff
se

t
c
jp

e
g

w
rb

m
p

w
ri
te

c
o
lo
rm

a
p

ff
t
m
o
d
ff

g
7
2
3

e
n
c
q
u
a
n

g
7
2
3

e
n
c
re

c
o
n
st
ru

c
t

g
sm

d
e
c
[.
..
]
q
u
a
n
ti
z
a
ti
o
n

g
sm

d
e
c
[.
..
]
e
x
p

m
a
n
t

g
sm

d
e
c
[.
..
]
F
il
te

ri
n
g

g
sm

d
e
c
a
sl

g
sm

d
e
c
a
sr

g
sm

d
e
c
su

b

g
sm

e
n
c
a
sl

g
sm

e
n
c
a
sr

g
sm

e
n
c
d
iv

g
sm

e
n
c
su

b
li
ft

d
o

im
p
u
ls
e

lu
d
c
m
p

te
st

m
in
v
e
r
m
in
v
e
r

m
in
v
e
r
m
m
u
l

m
p
e
g
2

d
is
t2

n
d
e
s
g
e
tb

it
ri
jn

d
a
e
l
d
e
c
fs
e
e
k

ri
jn

d
a
e
l
e
n
c
fs
e
e
k

0

50

100

150

200

250

300

350

400

450

500

550

N
u
m
b
er

o
f
o
p
er
a
n
d
s

Before simplification

After simplification

Figure 8: Parametric WCET formula size before and after simplification

9

• L1 instruction cache: 64KB, LRU replacement policy,
1-way. The miss penalty is 10 cycles;

• Compilation: each benchmark is compiled as a stan-
dalone binary file using GCC version 10.3.1 for ARM,
with flags -nostdinc -nostdlib -mtune=cortex-a8 -
mfpu=neon -mfloat-abi=hard -g and -O0. Procedure
cjpeg wrbmp uses a custom memcpy implementation
in order to compile with gcc, which does not compile
without standard library otherwise;

• Analyses execution times: they are measured on an
Intel® Core™ i7-8550U CPU @ 1.80GHz × 8 with 16
GB of RAM.

8.2 Benchmark selection

We run our experiments on the TACLeBench benchmarks
suite [25]. We did not analyze all the procedures of the
benchmarks:

• 11 programs are not supported by OTAWA (out of
the 54 of TACLeBench): 2 because of recursions (fac
and recursion), 9 because of the incomplete support
for division instructions (adpcm dec, adpcm enc, am-
munition, cjpeg transupp, epic, h264 dec, huff enc,
quicksort and susan);

• Only 181 procedures have arguments, out of the 1032
procedures of the other programs;

• The polyhedra analysis only supports the inte-
ger data-type. Thus it derives incorrect re-
sults for 4 procedures (gsm enc norm, isqrt usqrt,
st calc Var Stddev and st sqrtf);

• The polyhedra analysis is intractable for 31 proce-
dures: it either executes for more than an hour, or
runs out-of-memory. This happens for procedures
with complex memory access patterns, which lead to
an explosion of the number of dimensions in the poly-
hedra.

Among the remaining procedures, we present in Ta-
ble 1 the procedures for which the polyhedra analy-
sis derived at least one input conditional. Each pro-
cedure name is prefixed with the program it is part
of (e.g. fft modff is from the fft program). Only
gsm dec Long Term Synthesis Filtering and mpeg2 dist2
have more than 4 arguments; we simply ignore the other
arguments.

Four procedures have only parametric
loop bounds: audiobeam adjust delays, au-
diobeam calculate energy, audiobeam find max in array
and audiobeam find min in arr. Five procedures have
both parametric loops bounds and parametric conditional
statements: audiobeam calc distances, g723 enc quan,
ludcmp test, minver minver and minver mmul. The
remaining procedures only have parametric conditional
statements.

8.3 Results

We compare our results with those of non-parametric
IPET (from OTAWA) as a reference. We were unable to
reproduce the results of the related works on parametric
WCET analysis because the prototypes are unavailable,
and results are insufficiently detailed to enable a compar-
ison. Finally, related works can only analyse parametric
loop bounds. Our work is the first to consider parametric
conditional statements.

Table 1 summarizes our results regarding the off-line
WCET analysis. The Procedure column contains the
name of the analyzed procedure. In the IPET sub-
columns, we report the obtained WCET (in cycles) and
analysis time (in seconds). The results for our approach
are reported in the CFT sub-columns. The WCET
sub-columns detail the Lowest and the Highest WCETs
(among a set of instantiated WCETs, see below for more
details), as well as the difference between them in per-
centage (in the Diff column). The Time sub-columns
detail the execution time of the Polyhedra analysis and
of the symbolic WCET computation. The Symb WCET
sub-column is the sum of the execution times for: sym-
bolic WCET analysis, formula simplification, compilation
of the formula into C code.

The results of the Lowest and Highest sub-columns are
obtained by instantiating the formula with different ar-
gument values. They illustrate the impact of argument
values on the WCET. For programs with parametric loop
bounds, the maximum possible value for each loop bound
is specified in TACLeBench. Thus we consider that the
loop bounds can range from 0 to the TACLeBench bound.
This may not correspond to realistic loop bound values,
but nevertheless illustrates WCET adaptivity. For para-
metric conditional statements, we manually pick argu-
ment values such that we ensure that each alternative of
each input conditional is inspected.

8.3.1 WCET adaptivity

For 26 out of 31 procedures, the adaptivity, i.e. the differ-
ence between the highest and the lowest WCET, is more
than 5%. Many examples exhibit from 30% to 70% adap-
tivity, usually due to parametric conditional statements.
Regarding loops, our tool supports linear loop bounds,
which is not the case for related works supporting para-
metric loops bounds: they support only a single parame-
ter or the sum of one parameter and an integer. However,
the presented functions do not rely on bounds other than
a single parameter.

The highest adaptivities (those over 90%) are exhibited
when loop bounds can range down to 0, which can actu-
ally be considered unrealistic. Another case is procedure
minver minver, for which the lowest WCET corresponds
to an unrealistic argument value: it occurs when the size
of the matrix to inverse is lower than 2 or higher than
500, in which case the procedure returns immediately.

Only two functions exhibit no variability even though
their WCET formula contains parameters. The fft modff
formula contains two alternatives, one of which has the
input conditional true because the actual condition in
the program contains a disjunction. The WCET of the

10

true alternative is higher than that of the other alterna-
tive, which explains the absence of adaptivity. The au-
diobeam calculate energy formula contains a parametric
loop bound whose maximum value is 0 in TACLeBench.

The Highest WCET is slightly higher than the WCET
inferred by IPET (1.4% on average, 0% minimum, 12.7%
maximum). This is because: 1) the transformation from
CFG to CFT can introduce execution paths that do not
exist in the CFG (see [9] for details); 2) the hardware
analyses are slightly more pessimistic in our approach (e.g.
loops with multiple exits impair the pipeline analysis, loop
headers duplicated by the transformation to CFT impair
the cache analysis).

8.3.2 Analysis time

For small procedures, the analysis times are similar for the
IPET analysis, the polyhedra analysis, and the symbolic
WCET computation. This is because the execution time
for the CFG reconstruction dominates the execution time
of the actual analysis.

For bigger procedures, the analyses times grow, and un-
expectedly the analysis times of IPET and of the Symbolic
WCET computation (without considering polyhedra anal-
ysis times) are similar. This is because the cache analysis
(performed by both) dominates the rest of the analysis.
Its complexity is exponential in the depth of loop nesting.
In some cases, the polyhedra analysis has higher execution
times. This corresponds to programs with many memory
accesses, which cause the polyhedra to have many dimen-
sions and constraints. Furthermore, we also noticed that
our extensions to support input conditionals have very
little to no impact on the symbolic WCET analysis time.

The major difference between our work and IPET con-
cerning analysis time is the abstract interpretation part
that extracts input conditionals. There remains a lot
of room for improving the scalability of this part of our
approach, by adapting the rich set of optimization tech-
niques developed by the community on abstract interpre-
tation over the past decades. Nonetheless, our approach
is already capable of producing WCET formulas for pro-
grams that are currently out of the scope of other tools
in the literature.

8.3.3 Embeddability

The size of the initial and simplified formulae are reported
in Figure 8. A simplified formula typically contains be-
tween 10 and 50 operands. Its size depends on the number
of input conditionals in the non-simplified formula. The
largest formula (minver minver) is reduced to 15% of its
initial size by our simplification procedure.

Table 2 reports instantiation times (in cycles) for a se-
lection of procedures with various characteristics, in terms
of WCET, adaptivity, and formula size. Instantiation in-
dicates the WCET of the instantiation program computed
by OTAWA. Max gain is the difference between the high-
est and the lowest WCET. WCET reports the Highest
WCET of Table 1. Op reports the number of operands in
the formula, from Figure 8.

On-line instantiation can be considered only when Max
gain is significantly larger than Instantiation. This is

Table 2: Instantiation times (in cycles)

Procedure Inst.
Max

WCET Op
gain

audiobeam -
adjust delays

155 7,665 9,383 5

audiobeam calc -
distances

137 176,210 176,550 19

audiobeam find -
max in arr

119 4,035 5,366 3

audiobeam find -
min in arr

119 4,045 5,429 3

audiobeam -
wrapped dec -
offset

74 35 525 10

cjpeg wrbmp -
write colormap

111 100,612 1,288,709 20

g723 enc quan 143 4,950 5,291 8
g723 enc -
reconstruct

195 313 702 18

gsm dec asl 232 587 855 30
ludcmp test 1,472 101,100 110,841 42
minver minver 2,564 56,782 57,141 87
mpeg2 dist2 100 63 134,368 18

the case for most procedures of Table 1, and the dif-
ference is actually quite large. For instance, for cjpeg -
wrbmp write colormap, the instantiation takes 105 cycles
while there are 100, 513 cycles that can be reclaimed for
other tasks. On the other extreme, the instantiation time
of audiobeam wrapped dec offset is larger than its WCET,
so on-line instantiation has no benefit.

9 Conclusion

We presented a parametric WCET analysis that accounts
for the procedure argument values effect on the control-
flow of the procedure. We used abstract interpretation
to extract input conditionals, that we used to produce a
parametric WCET formula that depends on these argu-
ments, opening the possibility of adaptive scheduling.

In future work, we plan to use this approach to im-
plement a modular WCET analysis. The present work
expresses the WCET of a procedure as a formula of its
arguments. There remains to consider the modular as-
pect for both the abstract interpretation and the symbolic
WCET computation.

Acknowledgement

This work is partially funded by the French National Re-
search Agency, Sywext project (ANR-19-CE25-0002).

References

[1] K. Agrawal, S. Baruah, and A. Burns. Semi-
Clairvoyance in Mixed-Criticality Scheduling. In
2019 IEEE Real-Time Systems Symposium (RTSS),
pages 458–468, Hong Kong, China, Dec. 2019. IEEE.
ISSN: 2576-3172.

[2] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm.
Cache behavior prediction by abstract interpretation.

11

In R. Cousot and D. A. Schmidt, editors, Static Anal-
ysis, Lecture Notes in Computer Science, pages 52–
66, Berlin, Heidelberg, 1996. Springer.

[3] E. Althaus, S. Altmeyer, and R. Naujoks. Precise and
efficient parametric path analysis. SIGPLAN Not.,
46(5):141–150, Apr. 2011.

[4] E. Althaus, S. Altmeyer, and R. Naujoks. Sym-
bolic Worst Case Execution Times. In A. Cerone
and P. Pihlajasaari, editors, Theoretical Aspects of
Computing – ICTAC 2011, Lecture Notes in Com-
puter Science, pages 25–44, Berlin, Heidelberg, 2011.
Springer.

[5] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wil-
helm. Parametric Timing Analysis for Complex Ar-
chitectures. In 2008 14th IEEE International Con-
ference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 367–376, Kaohsiung,
Taiwan, Aug. 2008. IEEE. ISSN: 2325-1301.

[6] Arm. Procedure Call Standard for the Arm® Archi-
tecture, 2023.

[7] C. Ballabriga, H. Cassé, C. Rochange, and P. Sain-
rat. OTAWA: An Open Toolbox for Adaptive WCET
Analysis. In S. L. Min, R. Pettit, P. Puschner,
and T. Ungerer, editors, Software Technologies for
Embedded and Ubiquitous Systems, Lecture Notes in
Computer Science, pages 35–46, Berlin, Heidelberg,
2010. Springer.

[8] C. Ballabriga, J. Forget, L. Gonnord, G. Lipari, and
J. Ruiz. Static Analysis Of Binary Code With Mem-
ory Indirections Using Polyhedra. In VMCAI’19 - In-
ternational Conference on Verification, Model Check-
ing, and Abstract Interpretation, volume 11388 of
LNCS, pages 114–135, Cascais, Portugal, Jan. 2019.
Springer.

[9] C. Ballabriga, J. Forget, and G. Lipari. Symbolic
WCET Computation. ACM Transactions on Em-
bedded Computing Systems, 17(2):1–26, 2017.

[10] S. Baruah and P. Ekberg. Graceful Degradation
in Semi-Clairvoyant Scheduling. In B. B. Branden-
burg, editor, 33rd Euromicro Conference on Real-
Time Systems (ECRTS 2021), volume 196 of Leibniz
International Proceedings in Informatics (LIPIcs),
pages 9:1–9:21, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[11] B. Benhamamouch, B. Monsuez, and F. Védrine.
Computing WCET using symbolic execution. In
Second International Workshop on Verification and
Evaluation of Computer and Communication Sys-
tems (VECoS 2008), pages 1–12, Leeds, UK, July
2008. ScienceOpen. Publisher: BCS Learning & De-
velopment.

[12] A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr.
The Auspicious Couple: Symbolic Execution and
WCET Analysis. In C. Maiza, editor, 13th Inter-
national Workshop on Worst-Case Execution Time

Analysis, volume 30 of OpenAccess Series in Infor-
matics (OASIcs), pages 53–63, Dagstuhl, Germany,
2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[13] E. Bini, M. Di Natale, and G. Buttazzo. Sensitivity
analysis for fixed-priority real-time systems. Real-
Time Syst, 39(1):5–30, Aug. 2008.

[14] B. Blackham, M. Liffiton, and G. Heiser. Trickle: Au-
tomated infeasible path detection using all minimal
unsatisfiable subsets. In 2014 IEEE 19th Real-Time
and Embedded Technology and Applications Sympo-
sium (RTAS), pages 169–178, Berlin, Germany, Apr.
2014. IEEE.

[15] A. Burns and R. I. Davis. Schedulability Analy-
sis for Adaptive Mixed Criticality Systems with Ar-
bitrary Deadlines and Semi-Clairvoyance. In 2020
IEEE Real-Time Systems Symposium (RTSS), pages
12–24, Houston, TX, Dec. 2020. IEEE.

[16] S. Bygde, A. Ermedahl, and B. Lisper. An efficient
algorithm for parametric WCET calculation. Journal
of Systems Architecture, 57(6):614–624, June 2011.

[17] M. Caccamo, G. Buttazzo, and L. Sha. Capacity
sharing for overrun control. In Proceedings 21st IEEE
Real-Time Systems Symposium, pages 295–304, Or-
lando, FL, USA, Nov. 2000. IEEE.

[18] T. Chen, T. Mitra, A. Roychoudhury, and V. Suhen-
dra. Exploiting Branch Constraints without Exhaus-
tive Path Enumeration. In R. Wilhelm, editor, 5th
International Workshop on Worst-Case Execution
Time Analysis (WCET’05), volume 1 of OpenAc-
cess Series in Informatics (OASIcs), pages 46–49,
Dagstuhl, Germany, 2007. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[19] D. Chu and J. Jaffar. Symbolic simulation on com-
plicated loops for WCET Path Analysis. In 2011
Proceedings of the Ninth ACM International Confer-
ence on Embedded Software (EMSOFT), pages 319–
328, New York, NY, USA, Oct. 2011. Association for
Computing Machinery.

[20] J. Coffman, C. Healy, F. Mueller, and D. Whalley.
Generalizing parametric timing analysis. SIGPLAN
Not., 42(7):152–154, June 2007.

[21] J. S. Cohen. Computer alegebra and symbolic com-
putation: mathematical methods. AK Peters, Natick,
Mass, 2003.

[22] A. Colin and G. Bernat. Scope-tree: a program rep-
resentation for symbolic worst-case execution time
analysis. In Proceedings 14th Euromicro Conference
on Real-Time Systems. Euromicro RTS 2002, pages
50–59, Vienna, Austria, June 2002. IEEE.

[23] P. Cousot and R. Cousot. Abstract interpretation:
a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints.
In Proceedings of the 4th ACM SIGACT-SIGPLAN

12

symposium on Principles of programming languages,
POPL ’77, pages 238–252, New York, NY, USA, Jan.
1977. Association for Computing Machinery.

[24] S. Ding and H. B. K. Tan. Detection of Infeasible
Paths: Approaches and Challenges. In L. A. Maci-
aszek and J. Filipe, editors, Evaluation of Novel Ap-
proaches to Software Engineering, Communications
in Computer and Information Science, pages 64–78,
Berlin, Heidelberg, 2013. Springer.

[25] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper,
W. Puffitsch, C. Rochange, M. Schoeberl,
R. B. Sørensen, P. Wägemann, and S. Wegener.
TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In 16th Inter-
national Workshop on Worst-Case Execution Time
Analysis, pages 2:1–2:10, Toulouse, France, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[26] P. Feautrier. Parametric integer programming.
RAIRO - Operations Research, 22(3):243–268, 1988.

[27] L. George and P. Courbin. Reconfiguration of
Uniprocessor Sporadic Real-Time Systems: The Sen-
sitivity Approach. In Reconfigurable Embedded Con-
trol Systems: Applications for Flexibility and Agility.
IGI Global, Hershey, PA, 2011. Publication Title:
Reconfigurable Embedded Control Systems: Appli-
cations for Flexibility and Agility.

[28] J. Gustaffson, A. Ermedahl, and B. Lisper. Algo-
rithms for Infeasible Path Calculation. In F. Mueller,
editor, 6th International Workshop on Worst-Case
Execution Time Analysis (WCET’06), volume 4 of
OpenAccess Series in Informatics (OASIcs), pages
1–6, Dagstuhl, Germany, 2006. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[29] J. Gustafsson, A. Ermedahl, C. Sandberg, and
B. Lisper. Automatic Derivation of Loop Bounds and
Infeasible Paths for WCET Analysis Using Abstract
Execution. In 2006 27th IEEE International Real-
Time Systems Symposium (RTSS’06), pages 57–66,
Rio de Janeiro, Brazil, Dec. 2006. IEEE.

[30] C. Healy and D. Whalley. Automatic detection and
exploitation of branch constraints for timing anal-
ysis. IEEE Transactions on Software Engineering,
28(8):763–781, Aug. 2002.

[31] Y.-T. S. Li and S. Malik. Performance analysis of em-
bedded software using implicit path enumeration. In
Proceedings of the ACM SIGPLAN 1995 workshop on
Languages, compilers, & tools for real-time systems,
LCTES ’95, pages 88–98, New York, NY, USA, Nov.
1995. Association for Computing Machinery.

[32] G. Lipari and S. Baruah. Greedy reclamation of
unused bandwidth in constant-bandwidth servers.
In Proceedings 12th Euromicro Conference on Real-
Time Systems. Euromicro RTS 2000, pages 193–200,
Stockholm, Sweden, June 2000. IEEE. ISSN: 1068-
3070.

[33] R. Metta, M. Becker, P. Bokil, S. Chakraborty, and
R. Venkatesh. TIC: a scalable model checking based
approach to WCET estimation. ACM SIGPLAN No-
tices, 51(5):72–81, June 2016.

[34] S. Mohan, F. Mueller, W. Hawkins, M. Root,
C. Healy, and D. Whalley. ParaScale: exploiting
parametric timing analysis for real-time schedulers
and dynamic voltage scaling. In 26th IEEE Inter-
national Real-Time Systems Symposium (RTSS’05),
pages 10 pp.–242, Miami, FL, USA, Dec. 2005. IEEE.
ISSN: 1052-8725.

[35] S. Mohan, F. Mueller, M. Root, W. Hawkins,
C. Healy, D. Whalley, and E. Vivancos. Paramet-
ric timing analysis and its application to dynamic
voltage scaling. ACM Trans. Embed. Comput. Syst.,
10(2):25:1–25:34, Jan. 2011.

[36] L. Palopoli, L. Abeni, T. Cucinotta, G. Lipari, and
S. K. Baruah. Weighted feedback reclaiming for
multimedia applications. In 2008 IEEE/ACM/IFIP
Workshop on Embedded Systems for Real-Time Mul-
timedia, pages 121–126, Atlanta, GA, USA, Oct.
2008. IEEE. ISSN: 2325-1301.

[37] J. Reineke and J. Doerfert. Architecture-parametric
timing analysis. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium
(RTAS), pages 189–200, Berlin, Germany, Apr. 2014.
IEEE. ISSN: 1545-3421.

[38] C. Rochange and P. Sainrat. A Context-
Parameterized Model for Static Analysis of Execu-
tion Times. In P. Stenström, editor, Transactions
on High-Performance Embedded Architectures and
Compilers II, volume 5470, pages 222–241. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[39] J. Ruiz and H. Cassé. Using SMT Solving for the
Lookup of Infeasible Paths in Binary Programs. In
F. J. Cazorla, editor, 15th International Workshop
on Worst-Case Execution Time Analysis (WCET
2015), volume 47 ofOpenAccess Series in Informatics
(OASIcs), pages 95–104, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[40] J. Ruiz, H. Cassé, and M. de Michiel. Working
Around Loops for Infeasible Path Detection in Bi-
nary Programs. In 2017 IEEE 17th International
Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 1–10, Shanghai, China,
Sept. 2017. IEEE. ISSN: 2470-6892.

[41] V. Suhendra, T. Mitra, A. Roychoudhury, and
T. Chen. Efficient detection and exploitation of infea-
sible paths for software timing analysis. In Proceed-
ings of the 43rd annual Design Automation Confer-
ence, DAC ’06, pages 358–363, New York, NY, USA,
July 2006. Association for Computing Machinery.

[42] E. Vivancos, C. Healy, F. Mueller, and D. Whalley.
Parametric Timing Analysis. In Proceedings of the
2001 ACM SIGPLAN workshop on Optimization of

13

middleware and distributed systems, OM ’01, pages
88–93, New York, NY, USA, Aug. 2001. Association
for Computing Machinery.

[43] R. Wilhelm, J. Engblom, A. Ermedahl, N. Hol-
sti, S. Thesing, D. Whalley, G. Bernat, C. Ferdi-
nand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström.
The worst-case execution-time problem—overview of
methods and survey of tools. ACM Transactions on
Embedded Computing Systems, 7(3):1–53, Apr. 2008.

[44] S. Wilhelm and B. Wachter. Symbolic state traversal
for WCET analysis. In Proceedings of the seventh
ACM international conference on Embedded software
- EMSOFT ’09, page 137, Grenoble, France, 2009.
ACM Press.

14

