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TOWARDS A THEORY OF NATURAL DIRECTED PATHS

PHILIPPE GAUCHER

Abstract. We introduce the abstract setting of presheaf category on a thick category

of cubes. Precubical sets, symmetric transverse sets, symmetric precubical sets and the

new category of (non-symmetric) transverse sets are examples of this structure. All these

presheaf categories share the same metric and homotopical properties from a directed

homotopy point of view. This enables us to extend Raussen’s notion of natural d-path for

each of them. Finally, we adapt Ziemiański’s notion of cube chain to this abstract setting

and we prove that it has the expected behavior on precubical sets. As an application, we

verify that the formalization of the parallel composition with synchronization of process

algebra using the coskeleton functor of the category of symmetric transverse sets has a

category of cube chains with the correct homotopy type.
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1. Introduction

Precubical sets are de facto the standard geometric model for directed homotopy for

concurrency [2]. In fact, most of them are even non-positively curved in the sense of

[12, Definition 1.28 and Proposition 1.29], or in the worst case proper in the sense of

[19, page 499]. The motivation for introducing symmetric transverse sets in [6] is to

formalize the parallel product with synchronization for process algebra using the associ-

ated coskeleton functor [6, Theorem 4.1.8]. Indeed, it is impossible to use the coskeleton

functor associated with the category of precubical sets because of its pathological be-

havior (see [5, Proposition 3.15] and [6, Definition 3.1.3]). However, precubical sets still

remain sufficient to model this parallel product by tweaking the coskeleton functor of this

category (see [5, Section 3.3]).

Symmetric transverse sets share with precubical sets similar metric and homotopical

properties by [11]. Indeed, their geometric realization carries a Lawvere metric structure

which enables us to extend Raussen’s notion of (tame) natural d-path originally defined

for precubical sets [17, Definition 2.14] [19, Definition 5.3] [20, Section 2.9]. Moreover, the

2020 Mathematics Subject Classification. 55U35,68Q85.
Key words and phrases. precubical set, directed path, presheaf, Reedy category, Lawvere metric space,
process algebra.
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full subcategory of representable objects of this presheaf category is c-Reedy in the sense

of [18, Definition 8.25], like the box category (see Definition 2.3) for the precubical sets

(the box category is even direct Reedy in the sense of [14, Definition 15.1.2]). This makes

possible to compare in [11, Theorem 7.4] the natural realization of a symmetric transverse

set with other realization functors and to generalize homotopical results proved in [4] and

[9] for precubical sets.

The technical contribution of this note is threefold. Firstly, we explain why precubical

sets and symmetric transverse sets belong to a larger family of presheaf categories on a

thick category of cubes (see Definition 2.10). This family of presheaf categories contains

also the symmetric precubical sets of [13] and a new category of non-symmetric transverse

sets. Symmetric transverse sets are presheaves on a thick category of cubes which turns

out to be, for tautological reasons, the greatest one for the inclusion.

Theorem. (Proposition 2.13, Theorem 2.16 and Theorem 2.17) There exists a greatest

thick category of cubes for the inclusion not containing the symmetry maps.

Secondly, we prove that all results of [11] are valid for all presheaf categories on a thick

category of cubes.

Theorem. (Section 3 and more specifically Theorem 3.14) All metric and homotopical

results of [11] are valid for the category AopSet of A-sets when A is a thick category of

cubes.

Thirdly, we obtain a statement which coincides with (a part of) [20, Theorem 7.5] when

A is the box category used to define the precubical sets:

Theorem. (Corollary 4.11) Let K be a precubical set. Let A be a thick category of cubes.

The space of tame natural d-paths of the free A-set LA(K) generated by K is homotopy

equivalent to the classifying space of the small category of Ziemiański’s cube chains of the

free A-set LA(K) generated by K.

This leads to the following application:

Theorem. (Section 5) The formalization of the parallel composition with synchronisa-

tion of [6] using the coskeleton functor of the category of symmetric transverse sets has

a category of cube chains which gives the correct space of tame natural d-paths up to

homotopy.

The formal setting of presheaf category on a thick category of cubes is a first step

towards an axiomatization of the notion of tame natural d-path. The next step would be

to find a way of taking into account the globular version of this notion as it is introduced

in [10]. This could lead to a general framework unifying all geometric approaches of

directed homotopy for concurrency 1.

2. Thick category of cubes

2.1. Definition. A small category enriched over ([0,∞],>,+, 0) [15] is called a Lawvere

metric space. The category of Lawvere metric spaces is denoted by LvMet.

1The expression “directed homotopy” has several quite distinct meanings. It is the reason why I add “for
concurrency” on purpose.
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A Lawvere metric space (X, d) is a set X equipped with a map d : X × X → [0,∞]

called a Lawvere metric such that:

• ∀x ∈ X, d(x, x) = 0

• ∀(x, y, z) ∈ X ×X ×X, d(x, y) 6 d(x, z) + d(z, y).

A map f : (X, d) → (Y, d) of Lawvere metric spaces is a set map f : X → Y which is

non-expansive, i.e. ∀(x, y) ∈ X ×X, d(f(x), f(y)) 6 d(x, y).

2.2. Notation. The category of partially ordered sets or posets together with the strictly

increasing maps is denoted by PoSet+.

Let [0] = {()} and [n] = {0 < 1}n for n > 1 equipped with the product order. Let

0n = (0, . . . , 0) (n times) and 1n = (1, . . . , 1) (n times) with n > 0. By convention, one

has {0 < 1}0 = [0] = {()}. In the sequel, for all n > 1, both the sets [n] and [0, 1]n are

equipped with the product order. By convention, [0, 1]0 is a singleton.

Let δαi : [n− 1]→ [n] be the coface map defined for 1 6 i 6 n and α ∈ {0, 1} by

δαi (x1, . . . , xn−1) = (x1, . . . , xi−1, α, xi, . . . , xn−1).

2.3. Definition. The box category � is the subcategory of PoSet+ generated by the

coface maps δαi .

Let x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) be two elements of [0, 1]n with n > 1. Let

−→
d1 : [0, 1]n × [0, 1]n → [0,∞] be the set map defined by

−→
d1(x, x′) =





n∑

i=1

|xi − x
′
i| if x 6 x′

∞ otherwise.

Let n > 0. The set map
−→
d1 : [0, 1]n × [0, 1]n → [0,∞] is a Lawvere metric by [11,

Proposition 1.5]. It restricts to a Lawvere metric on {0 < 1}n.

2.4. Definition. [6, Definition 2.1.5] A map f : [m]→ [n] of PoSet+ is cotransverse if

For all x, y ∈ [m],
−→
d1(x, y) = 1 implies

−→
d1(f(x), f(y)) = 1.

Denote by �̂S the subcategory of PoSet+ generated by the cotransverse maps.

A cotransverse degeneracy map is a cotransverse map [n]→ [n] for n > 2 which is not

one-to-one. Proposition 2.5 and Proposition 2.6 are important for the sequel.

2.5. Proposition. [6, Proposition 3.1.14] Let 0 6 m 6 n. Every cotransverse map

f : [m] → [n] factors uniquely as a composite [m]
ψ
−→ [m]

φ
−→ [n] with φ ∈ � and ψ

cotransverse.

2.6. Proposition. Let f : [m] → [n] be a cotransverse map. Let δ : [n] → [p] be a map

of �. Suppose that δf ∈ �. Then f ∈ �.

Proof. There exists a set map s : [p] → [n] obtained by removing some coordinates such

that sδ = Id[n]. We deduce that f = s(δf). From δf ∈ �, we then deduce that f ∈ �. �

Let σi : [n]→ [n] be the set map defined for 1 6 i 6 n− 1 and n > 2 by

σi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn).
3



These maps are called the symmetry maps [13]. The symmetry maps are clearly cotrans-

verse. This is the reason of the S in the notation �̂S.

2.7. Notation. The subcategory of PoSet+ generated by the coface maps and the sym-

metry maps is denoted by �S.

2.8. Definition. [6, Definition 2.1.7 and Definition 2.1.12] A category of cubes is a small

category A satisfying the inclusions

� ⊂ A ⊂ �̂S.

A presheaf on A is called an A-set. The category of A-sets is denoted by AopSet.

The category �, �S and �̂S are examples of categories of cubes. The �-sets are the

precubical sets [1]. The �S-sets are the symmetric precubical sets (see [13]). The �̂S-sets

are the symmetric transverse sets introduced in [11].

The inclusion of small categories jA : � ⊂ A induces by precomposition a forgetful

functor

ωA : AopSet −→ �opSet

which has a left adjoint

LA : �opSet −→ AopSet

given by the left Kan extension along jA. For a precubical set K, the A-set LA(K) is

called the free A-set generated by K.

2.9. Proposition. The functor LA : �opSet→ AopSet is faithful.

Proof. By [6, Proposition 2.1.15], the identity map IdLA(K) induces for all precubical sets

K a natural inclusion of precubical sets K ⊂ ωALA(K). Let f, g : K → L be two maps

of precubical sets such that LA(f) = LA(g). Then ωALA(f) = ωALA(g). Thus

f = ωALA(f)↾K = ωALA(g)↾K = g.

�

Let K be an object of AopSet. The set K([n]) is denoted by Kn. An element x ∈ Kn

corresponds by the Yoneda lemma to a map of A-sets x : A[n] → K. The vertex of

x(0n) ∈ K0 is called the initial state of the n-cube c and the vertex x(1n) ∈ K0 is called

the final state of the n-cube c. For any map k : [m]→ [n] of A and any A-set K, denote

by k∗ : Kn → Km the set map induced by k. Let p > 0. The p-cube A[p] is by definition

the presheaf A(−, [p]). For any A-set K, the data

(K6n)p =




Kp if p 6 n

∅ if p > n.

assemble into an A-set denoted by K6n because A([m], [n]) = ∅ when m > n. Let

∂A[n] = A6n−1

for all n > 0. Let A = a1 < · · · < ak ⊂ {1, . . . , n} and ǫ ∈ {0, 1}. The iterated face map

is defined by ∂ǫA = ∂ǫa1
∂ǫa2

. . . ∂ǫak
with ∂ǫp = (δǫp)

∗.

2.10. Definition. A category of cubes A is thick if the factorization of Proposition 2.5 is

a factorization in A, i.e f ∈ A implies ψ ∈ A.
4



The category of cubes �̂S is thick for tautological reasons. The terminology must

be understood as follows. A thick category of cubes A is morally a thick subcategory

of the category of cubes �̂S: it is an analogy with the notion of thick subcategory of a

triangulated category. Theorem 2.16 provides other examples of thick categories of cubes.

2.11. Proposition. Let A be a thick category of cubes. For n > 0, let

jnA : (�↓[n])
⊂
−→ (A↓[n])

be the functor between comma categories induced by the inclusion jA : � ⊂ A. Then

for all n > 0 and for all objects k of (A↓[n]), the comma category (k↓jnA) has an initial

object.

Proof. Let k : [p] → [n]. Using Proposition 2.5 and since A is thick by hypothesis, we

obtain the commutative diagram of A

[p]

k

��

f
// [p]

δ∈�

��

[n] [n]

which is an element of the comma category (k↓jnA). Consider another element of (k↓jnA)

depicted by the following commutative diagram of solid arrows of A:

[p]
g

//❴❴❴❴ [p]

δ′′∈�

��
✤

✤

✤

✤

[p]

k

��

f ′

// [q]

δ′∈�

��

[n] [n]

Since A is thick, write f ′ = δ′′g with δ′′ ∈ �. We obtain δf = k = δ′f ′ = δ′δ′′g. By

uniqueness of the factorization of Proposition 2.5, we obtain δ = δ′δ′′ and f = g. We

have obtain the map of (k↓jnA)

[p]
❆

❆

❆

❆

❆

❆

❆

❆

k

��

f
// [p]

δ′′

  
❆

❆

❆

❆

δ
��

[p]
f ′

//

k

��

[q]

δ′

��

[n]
❆

❆

❆

❆

❆

❆

❆

❆

[n]
❆

❆

❆

❆

❆

❆

❆

❆

[n] [n]

Moreover, the map δ′′ : [p] → [q] is unique because it is given by the factorization of f ′

using Proposition 2.5. Hence the proof is complete. �
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2.12. Proposition. Let A be a category of cubes. For all n > 0, one has the isomorphism

of A-sets

LA(�[n]) ∼= A[n].

If moreover A is thick, then there is the isomorphism of A-sets

LA(∂�[n]) ∼= ∂A[n]

for all n > 0.

Proof. The first statement is [6, Proposition 2.1.14]. Let n > 0. Since LA is colimit-

preserving, there is a natural map of A-sets (�<n and A<n are the full subcategory of �

and A respectively containing only [0], . . . , [n− 1]):

LA(∂�[n]) ∼= lim
−→

(�<n↓[n])

LA(�[p]) ∼= lim
−→

(�<n↓[n])

A[p]→ lim
−→

(A<n↓[n])

A[p] ∼= ∂A[n].

The above arrow is an isomorphism by Proposition 2.11 and [16, Theorem 1 p. 213]. �

2.13. Proposition. The set of maps

�̂ = {φ : [m]→ [n] ∈ �̂S | ∀δ : [p]→ [m] ∈ �, φδ one-to-one ⇒ φδ ∈ �}

is closed under composition and contains all identities of �̂S. There are the inclusions

� ⊂ �̂ ⊂ �̂S. In other terms, the set of maps �̂ yields a well-defined category of cubes.

The only one-to-one set maps of �̂ are the maps of �.

Proof. Let φ1, φ2 ∈ �̂ such that φ1φ2 exists. Let δ ∈ � such that φ1φ2δ exists and is

one-to-one. Then φ2δ is a one-to-one set map. Thus φ2δ ∈ �, φ2 belonging to �̂. We

deduce that φ1φ2δ = φ1(φ2δ) ∈ � since φ1 ∈ �̂. This means that φ1φ2 ∈ �̂. For all

φ = Id, one has φδ = δ ∈ �. Hence �̂ contains all identity maps. Finally suppose

that f : [m] → [n] ∈ �̂ is one-to-one. Then f Id[m] is one-to-one, which implies that

f ∈ �. �

2.14. Definition. The �̂-sets are called transverse sets.

The following maps, introduced in [6, Definition 3.1.11], are examples of cotransverse

degeneracy maps. Let γi : [n]→ [n] be the set map defined for 1 6 i 6 n− 1 and n > 2

by

γi(x1, . . . , xn) = (x1, . . . , xi−1,max(xi, xi+1),min(xi, xi+1), xi+2, . . . , xn).

2.15. Notation. [6, Theorem 3.1.16] The category of cubes generated by the δαi , σi and

γi is denoted by �.

Unlike �̂, the category of cubes � has a conjectural presentation by generators and

relations [6, Proposition 3.1.20 and Conjecture 3.1.21].

2.16. Theorem. The categories of cubes �, �S, �̂ and � are thick.

Proof. Every map f : [m]→ [n] of � factors uniquely in �̂S as a composite [m]→ [m]→

[n] such that the right-hand map [m] → [n] belongs to �. Since f = f Id[m], we deduce

by uniqueness that the left-hand map belongs to �. Hence the category � is thick.

Every map f : [m]→ [n] of �S factors uniquely in �̂S as a composite [m]→ [m]→ [n]

such that the right-hand map [m] → [n] belongs to �. Since all maps of �S are one-to-

one, the left-hand map [m] → [m] is one-to-one, hence bijective for cardinality reason.
6



We deduce that the left-hand map is a composite of symmetry maps, which means that

it belongs to �S. Thus the category �S is thick.

Consider a map f : [m] → [n] of �̂. It factors in �̂S as a composite [m] → [m] → [n]

such that the right-hand map δ : [m] → [n] belongs to the box category. Denote by

g : [m] → [m] the left-hand map. Let δ′ : [p] → [m] ∈ � such that gδ′ exists and is

one-to-one. Then fδ′ = δ(gδ′) is one-to-one, being the composite of two one-to-one set

maps. Since f ∈ �̂, we deduce that δgδ′ ∈ �. Using Proposition 2.6, we deduce that

gδ′ ∈ �. We have proved that g ∈ �̂. This means that the category of cubes �̂ is thick.

Finally, one has γiδ
α
j = δαj γi for j 6 i − 1 and j > i + 2, γiδ

0
i = δ0

i+1, γiδ
1
i = δ1

i ,

γiδ
0
i+1 = δ0

i+1 and γiδ
1
i+1 = δ1

i . Thus, � is thick. �

It is possible to obtain even more examples of thick categories of cubes by removing the

symmetry maps from �, and also by adding one by one other cotransverse degeneracy

maps in the set of generators. The only interest of the category of cubes � for this note

is to show that it is really easy to construct other thick categories of cubes. Theorem 2.17

gives a characterization of �̂.

2.17. Theorem. Let A be a thick category of cubes which does not contain the symmetry

maps. Then A ⊂ �̂. In other terms, �̂ is the greatest thick category of cubes for the

inclusion which does not contain the symmetry maps.

Proof. Let φ : [m]→ [n] be a map of A. Let δ : [p]→ [m] ∈ � such that φδ is one-to-one.

Write φδ = δ′φ′ with δ′ : [p] → [n] ∈ � and φ′ : [p] → [p] ∈ A, the category of cubes A

being thick by hypothesis. Since φδ is one-to-one, the set map φ′ : [p]→ [p] is one-to-one.

By hypothesis, this implies that φ′ is the identity map. Thus φδ = δ′ ∈ �. We have

proved that φ ∈ �̂. �

To summarize, �̂ is the greatest thick category of cubes for the inclusion not containing

the symmetry maps and �̂S is the greatest thick category of cubes for the inclusion.

For the sequel, A denotes a fixed thick category of cubes. Note that with the choice

A = � (the least thick category of cubes), all following results remain valid. However,

their formulation is not necessarily the best one.

3. Metric and homotopical study

3.1. Notation. Let
−→
A = A,
←→
A =

←−
A =

∐

n>0

{f : [n]→ [n] | f ∈ A}.

We consider the degree function d([n]) = n for all n > 0.

Every morphism f : [m] → [n] of A is basic in the sense of [18, Definition 6.12] since

every factorization of f as a composite [m] → [p] → [n] implies that m 6 p 6 n, and

therefore that every factorization is not fundamental in the sense of [18, Definition 6.12]:

p < min(m,n) = m is impossible indeed. Hence, for all n > 0, the subcategory A=n

of A generated by the objects of degree n and the basic morphisms in the sense of [18,

Definition 6.12] between them is the full subcategory of A having one object [n]. In

particular, one has A=n([n], [n]) = A([n], [n]).
7



3.2. Proposition. The small category A is c-Reedy in the sense of [18, Definition 8.25].

Proof. Let f be a map of A. Consider the category of factorizations of f : its objects are

the pairs of morphisms (h, g) such that hg = f with h ∈
−→
A and g ∈

←−
A and its morphisms

k : (h, g)→ (h′, g′) are morphisms k (which are called connecting morphisms) such that

there is a commutative diagram

•
g

// •
h

// •

•
g′

// •

k

OO

h′

// •

By [11, Proposition 5.8] and since the factorization of Proposition 2.5 restricts to a

factorization in A, the category of factorization of f has a final object. The rest of the

proof goes like the proof of [11, Proposition 5.9]. Let us summarize the argument. One has
←→
A ⊂

−→
A ∩

←−
A (first axiom). Every morphism of

←→
A is degree-preserving (second axiom).

Every morphism of
−→
A\
←→
A strictly raises degree and every morphism of

←−
A\
←→
A = ∅ strictly

lowers degree (third axiom). The category of factorizations of f with connecting maps

in
←→
A is connected since it has a final object (fourth axiom). For every n > 0, and any

degree m < n, the functor
←−
A([n],−) : A=m → Set is an (empty) coproduct of retracts

of representables because A([n], [m]) = ∅ (fifth axiom). �

3.3. Notation. Let C be a small category. Let M be a locally small category. The

category of functors from C to M together with the natural transformations is denoted

by MC.

3.4. Notation. Let n > 0. Following the notations of [18, page 37], let

∂nA([p], [q]) =
∫ [m]∈A<n

A([m], [q])×A([p], [m])

The latching and matching object functors Ln,Mn :MA →MA=n are given by

(MnA)[n] =
∫

[m]∈A
A([m])∂nA([n],[m])

(LnA)[n] =
∫ [p]∈A

∂nA([p], [n]).A([p])

We obtain:

3.5. Theorem. Let M be a model category. Suppose that the projective model structure

on MA=n exists for all n > 0. There exists a unique model structure on MA such that

• The weak equivalences are objectwise.

• A map A → B of MA is a fibration (trivial fibration resp.) if for all n > 0, the

map A([n]) → (MnA)[n] ×(MnB)[n]
B([n]) is a fibration (trivial fibration resp.) of

M.

• A map A → B of MA is a cofibration (trivial cofibration resp.)if for all n > 0,

LnB ⊔LnA A → B is a projective cofibration (trivial cofibration resp.) of the

projective model structure of MA=n.

This model structure is called the c-Reedy model structure of MA.
8



Proof. By Proposition 3.2 and [18, Theorem 8.26], the small category A is almost c-Reedy

in the sense of [18, Definition 8.8]. The proof is complete thanks to [18, Theorem 8.9]. �

3.6. Proposition. One has

∂nA([p], [q]) =




∅ if p > q or n 6 p

A([p], [q]) if p 6 q and p < n

Proof. It is mutatis mutandis the proof of [11, Proposition 5.13]: it suffices to change the

category of cubes in the proof and to use Proposition 2.5 which restricts to a factorization

in A by definition of a thick category of cubes. �

3.7. Theorem. Let M be a model category. Suppose that the projective model structure

on MA=n exists for all n > 0. Then the projective model structure on MA exists and

coincides with the c-Reedy model structure.

Proof. The proof follows the road map of the proof of [11, Theorem 5.17] and makes use

of Theorem 3.5 and Proposition 3.6. �

3.8. Notation. The category of ∆-generated spaces or of ∆-Hausdorff ∆-generated spaces

(cf. [7, Section 2 and Appendix B]) is denoted by Top .

3.9. Definition. [11, Definition 3.2] Let f = (f1, . . . , fn) : [n] → [n] be a cotransverse

map. Let T(f) : [0, 1]n → [0, 1]n be the map defined by

T(f)(x1, . . . , xn) = (T(f)1(x1, . . . , xn), . . . ,T(f)n(x1, . . . , xn))

with

T(f)i(x1, . . . , xn) = max
(ǫ1,...,ǫn)∈f−1

i
(1)

min{xk | ǫk = 1}

for all 1 6 i 6 n.

3.10. Notation. For δαi : [n− 1]→ [n] ∈ �, let

T(δαi ) =





[0, 1]n−1 → [0, 1]n

(ǫ1, . . . , ǫn−1) 7→ (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1)

for all n > 1 and α ∈ {0, 1}.

The three mappings [n] 7→ [0, 1]n for n > 0, f : [n] → [n] ∈ A 7→ T(f) and δαi :

[n − 1] → [n] 7→ T(δαi ) for n > 1 give rise to a functor from A ⊂ �̂S to Top denoted

by |A[∗]|geom by [11, Theorem 3.9] and to a functor from A ⊂ �̂S to LvMet denoted by

|A[∗]|−→
d1

by [11, Theorem 3.16]. Let K be an A-set. Let

|K|geom =
∫ [n]∈A

Kn.|A[n]|geom and |K|−→
d1

=
∫ [n]∈A

Kn.|A[n]|−→
d1
.

These give rise to two colimit-preserving functors from A-sets to topological spaces and

Lawvere metric spaces respectively. The latter functor factoring as a compositeAopSet→

�̂
op
S Set→ LvMet, we define the notion of (tame or not) natural d-path in the geometric

realization |K|geom like in [11, Section 4]. In fact, by using the inclusion A ⊂ �̂S and

the fact that A is thick, we can mimick all constructions of [11] and recover, thanks to

Theorem 3.7, the results already proved for �̂S. More precisely, we obtain what follows.
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3.11. Definition. [3, Definition 4.11] A flow is a small semicategory enriched over the

closed monoidal category (Top,×). The corresponding category is denoted by Flow.

The objects are called states and the morphisms execution paths.

There is an inclusion functor PoSet+ ⊂ Flow such that there is an execution path

from α to β if and only if α < β. Let r ∈ {q,m, h}. The category Flow is equipped with

its r-model structure [8, Theorem 7.4]. The weak equivalences of the r-model structure

are the maps of flows f : X → Y inducing a bijection on states and a weak equivalence

of the r-model structure of Top on execution paths.

3.12. Definition. Let r ∈ {q,m, h}. A functor F : AopSet → Flow is a r-realization

functor if it satisfies the following properties:

• F is colimit-preserving.

• For all n > 0, the map F (∂A[n])→ F (A[n]) is a r-cofibration of Flow.

• There is a map F (A[∗]) → {0 < 1}∗ in FlowA which is an objectwise weak

equivalence of the r-model structure of Flow.

3.13. Definition. An A-set K is cellular if the canonical map ∅ → K is a transfinite

composition of pushouts of the maps ∂A[n] → A[n] for n > 0. An A-set K is cofibrant

if it is a retract of a cellular A-set.

The composite functor A ⊂ �̂S → Flow taking [n] to the flow |�S[n]|nat defined in

[11, Proposition 7.1] induces a colimit-preserving functor

|K|nat =
∫ [n]∈A

Kn.|�S[n]|nat

from AopSet to Flow which is a m-realization functor by [11, Theorem 7.4]. The com-

posite functor A ⊂ �̂S → Flow taking [n] to the flow ({0 < 1}n)cof , where (−)cof is a

q-cofibrant replacement of Flow, induces a colimit-preserving functor

|K|q =
∫ [n]∈A

Kn.({0 < 1}n)cof

from AopSet to Flow which is a q-realization functor by [11, Theorem 6.7].

3.14. Theorem. There exists an m-realization functor F : AopSet → Flow and two

natural transformations inducing bijections on the sets of states

| − |q ⇐= F (−) =⇒ | − |nat

such that for all cofibrant A-sets K and all (α, β) ∈ K0×K0, there is the zigzag of natural

homotopy equivalences between m-cofibrant topological spaces

Pα,β|K|q Pα,βF (K)
≃

oo
≃

// Pα,β|K|nat .

Proof. We follow the proof of [11, Theorem 7.4]. Details are left to the reader. �

4. Ziemiański’s cube chain

We define at first the category of cube chains of an A-set. We make the link with

Ziemiański’s original notion in Corollary 4.6.
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4.1. Notation. Let n > 0. Let Seq(n) be the set of sequences of positive integers

n = (n1, . . . , np) with n1 + · · ·+ np = n. For n ∈ Seq(n), let

Vert(n) =

{
i=j∑

i=1

nj | 0 6 j 6 p

}

the set of vertices of n. The number |n| = n is the length of n and ℓ(n) = p is the number

of elements of n.

4.2. Definition. Let n ∈ Seq(n) with n > 0. The n-cube is the A-set

A[n] = A[n1] ∗ · · · ∗ A[np]

where the notation ∗ means that the final state 1ni
of the A-set A[ni] is identified with

the initial state 0ni+1
of the A-set A[ni+1] for 1 6 i 6 p− 1.

4.3. Definition. Let K be an A-set. Let α, β ∈ K0. Let n > 0. The small category

Chα,β(K,n)

of cube chains of K is defined as follows. The objects are the maps of A-sets

A[n] −→ K

with n = (n1, . . . , np) and |n| = n where the initial state of A[n1] is mapped to α and

the final state of A[np] is mapped to β. The morphisms are the commutative diagrams

of A-sets of the form

A[na]

��

a
// K

A[nb]
b

// K

such that |na| = |nb| and Vert(nb) ⊂ Vert(na). Let

Ch(K) =
∐

(α,β)∈K0×K0

Chα,β(K).

To give an explicit description of the morphisms in the category of cube chains, we

introduce two families of maps of A-sets δi,A,B and δf in what follows. Let A ⊔ B =

{1, . . . , m1 +m2} be a partition with the cardinal of A equal to m1 > 0 and the cardinal

of B equal to m2 > 0. Let

φA,B : A[m1] ∗ A[m2] −→ A[m1 +m2]

be the unique map of A-sets such that

φA,B(Id[m1]) = ∂0
B(Id[m1+m2]),

φA,B(Id[m2]) = ∂1
A(Id[m1+m2]).

For i ∈ {1, . . . , ℓ(n)} and a partition A ⊔ B = {1, . . . , ni}, let

δi,A,B = IdA[n1] ∗ · · · ∗ IdA[ni−1] ∗φA,B ∗ IdA[ni+1] ∗ · · · ∗ IdA[nℓ(n)].

For f = (f1, . . . , fp) with fi ∈ A([ni], [ni]) for 1 6 i 6 p, let

δf = f1 ∗ · · · ∗ fp : A[n] −→ A[n].
11



4.4. Proposition. Let A be a thick category of cubes. Let 0 6 m 6 n. Every map of A-

sets f : A[m]→ A[n] factors uniquely as a composite f = LA(h)g with g : A[m]→ A[m]

and h : �[m]→ �[n].

Proof. It is a rephrasing of Proposition 2.5 using the Yoneda lemma. �

4.5. Theorem. Let n1 ∈ Seq(n1) and n2 ∈ Seq(n2). A map of A-sets from A[n1] to

A[n2] is a composite of maps of the form δi,A,B and δf if and only if n1 = n2 and

Vert(n2) ⊂ Vert(n1).

Proof. The “only if” direction is a consequence of the definitions of δi,A,B and δf : note

that only a map of the form δi,A,B removes vertices. Let us treat the “if” part. Let

n = n1 = n2. Since Vert(n2) ⊂ Vert(n1) by hypothesis, a map of A-sets from A[n1] to

A[n2] is of the form k1 ∗ · · · ∗ kr with ℓ(n2) = r and where

kj : �[mj ] −→ �[|mj |]

is a map of A-sets for all 1 6 j 6 r with n1 being the concatenation of the [mj ] for

1 6 j 6 r and with n2 = [|m1|, . . . , |mr|]. We are then reduced to studying the case of a

map of A-sets

f : A[n] −→ A[n]

with n = (n1, . . . , np), p > 2 and n = n1 + · · ·+ np. By precomposing f by the inclusion

maps A[ni] ⊂ A[n], we obtain a map of A-sets

fi : A[ni]
⊂

// A[n]
f

// A[n]

for all i ∈ {1, . . . , p}. By Proposition 4.4, there exists a unique factorization

A[ni]

fi

((⊂
// A[n]

f
// A[n]

A[ni]
gi

// A[ni]
LA(hi)

// A[n]

for all i ∈ {1, . . . , p}. We obtain a factorization of f : A[n]→ A[n] as a composite

A[n]
δ(g1,...,gp)

// A[n]
LA(h1)∗···∗LA(hp)

// A[n]

The right-hand map

LA(h1) ∗ · · · ∗ LA(hp) : A[n]→ A[n]

is the image by the functor LA : �opSet→ AopSet of a map of precubical sets from �[n]

to �[n]. It suffices to prove that it is a composite of maps of precubical sets of the form

δi,A,B to complete the proof. There is nothing to prove when ℓ(n) = 1. We make an

induction on ℓ(n) > 2. Assume first that n = (n1, n2). Consider a map of precubical sets

f : �[n] → �[n]. By precomposing f by the inclusion maps �[ni] ⊂ �[n], we obtain a

map of precubical sets

fi : �[ni] ⊂ �[n]
f
−→ �[n]

12



for i ∈ {1, 2}. Each map fi corresponds by the Yoneda lemma to an element ci of

�[n]ni
= �([ni], [n]) such that the final state of c1 is the initial state of c2 and such that

the initial state of c1 is 0n and such that the final state of c2 is 1n. Thus there exists a

partition A1⊔A2 = {1, . . . , n} such that ∂0
A1

(c1) = 0n, ∂1
A1

(c1) = ∂0
A2

(c2) and ∂1
A2

(c2) = 1n.

This implies that c1 = ∂0
A2

(Id[n]) and c2 = ∂1
A1

(Id[n]). We have proved that

f = φA1,A2

which is the induction hypothesis for p = 2. Consider now for some p > 2 a map of

precubical sets

f : �[n] = (�[n1] ∗ · · · ∗�[np]) ∗�[np+1] −→ �[n]

with n = n1 + · · ·+np+1 and n = (n1, . . . , np+1). The
−→
d1 distance from the initial state of

�[n1] to the final state of �[np] in �[n] being n1+· · ·+np, all cubes of f(�[n1]∗· · ·∗�[np])

are included in a subcube of �[n] of dimension n1 + · · · + np. This implies that the

composite map

�[n1] ∗ · · · ∗�[np] ⊂ �[n]
f
−→ �[n]

factors as a composite of maps of precubical sets

�[n1] ∗ · · · ∗�[np] −→ �[n1 + · · ·+ np] −→ �[n].

We deduce that the map of precubical sets f factors as a composite

f : (�[n1] ∗ · · · ∗�[np]) ∗�[np+1] −→ �[n1 + · · ·+ np] ∗�[np+1] −→ �[n].

The induction hypothesis for p > 2 implies that the map of precubical sets �[n1] ∗ · · · ∗

�[np] → �[n1 + · · · + np] is a composite of maps of the form δi,A,B. This implies that

the left-hand map in the above factorization of f is a composite of maps of the form

δi,A,B as well. The induction hypothesis for 2 implies that the right-hand map in the

above factorization of f is also a composite of maps of the form δi,A,B. Hence the proof

is complete. �

4.6. Corollary. For any precubical K, Ziemiański’s definition of Ch(K) given in [19,

Definition 1.1] or [20, Section 7] and the above definition coincide.

Proof. Since �([n], [n]) is a singleton for all n > 0, all maps of the form δf are identities.

�

4.7. Notation. Since LA(�[n]) = A[n] for all n ∈ Seq(n), LA being colimit-preserving,

the functor LA : �opSet −→ AopSet induces a functor

LKA : Ch(K) −→ Ch(LA(K))

for all precubical sets K.

4.8. Proposition. Let m > 0. Let K be a precubical set. Every map of A-sets

f : A[m] −→ LA(K)

factors uniquely as a composite of maps of A-sets

A[m]
g
−→ A[m]

LA(h)
−→ LA(K)

where h : �[m]→ K is a map of precubical sets.
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Proof. The functor L 7→ Lm from A-sets to sets is colimit-preserving. Thus, there are

the bijections

(LA(K))m ∼= lim
−→

�[p]→K

(LA(�[p]))m ∼= lim
−→

�[p]→K

(A([p]))m ∼= lim
−→

�[p]→K

A([m], [p]).

The map of A-sets f : A[m] → LA(K) gives rise to an element of the set (LA(K))m
by Yoneda. Therefore there exists a map g : A[m] → A[p] and a map of precubical

sets h : �[p] → K such that f = LA(h)g. From Proposition 4.4 applied to g, we

obtain g = LA(h′)g′ with g′ ∈ A([m], [m]) and we deduce f = LA(hh′)g′, which is the

desired factorization. Consider two factorizations f = L(hi)gi with hi : �[m] → K and

gi : A[m]→ A[m] with i = 1, 2. They correspond to two representatives of the map f in

the colimit of sets

lim
−→

�[p]→K

A([m], [p]).

It means that there is a commutative diagram of A-sets of the form

A[m]
g1

// A[m]

LA(k1)

��

LA(h1)
// LA(K)

A[m]
g3

// A[p]
LA(h3)

// LA(K)

A[m]
g2

// A[m]

LA(k2)

OO

LA(h2)
// LA(K)

for some g3 ∈ A([m], [p]) indexed by the map of precubical sets h3 : �[p] → K in the

diagram of sets. We obtain the equality g3 = LA(k1)g1 = LA(k2)g2. From Proposi-

tion 4.4, we deduce g1 = g2 and k1 = k2. From the last equality, we deduce LA(h1) =

LA(h3)LA(k1) = LA(h3)LA(k2) = LA(h2). Since the functor LA : �opSet → AopSet is

faithful, we obtain h1 = h2. Hence the proof is complete. �

4.9. Proposition. Let n ∈ Seq(n) with n > 0. Let K be a precubical set. Every map of

A-sets f : A[n] −→ LA(K) factors uniquely as a composite of maps of A-sets

A[n]
g

// A[n]
LA(h)

// LA(K)

where h : �[n]→ K is a map of precubical sets.

Proof. Let n = (n1, . . . , np) ∈ Seq(n). Giving f is equivalent to giving p maps of A-sets

fi : A[ni]→ LA(K) for 1 6 i 6 p satisfying fi(1ni
) = fi+1(0ni+1

) for 1 6 i 6 p− 1. Write

f = f1 ∗ · · · ∗ fp.

In the same way, given h is equivalent to giving p maps of precubical sets hi : �[ni]→ K

for 1 6 i 6 p satisfying hi(1ni
) = hi+1(0ni+1

) for 1 6 i 6 p− 1. Write

h = h1 ∗ · · · ∗ hp and LA(h) = LA(h1) ∗ · · · ∗ LA(hp).
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Figure 1. Construction of h1

Then f = LA(h)g if and only if fi = LA(hi)gi for all 1 6 i 6 p where gi : [n] → [n] is a

map of A. The proof is complete thanks to Proposition 4.8. �

4.10. Theorem. Let K be a precubical set. The functor

LKA : Ch(K)→ Ch(LA(K))

induces a homotopy equivalence

|Chα,β(K)| ≃ |Chα,β(LA(K))|

for all (α, β) ∈ K0 × K0 between the classifying spaces where |C| means the classifying

space of C, i.e. the geometric realization of the simplicial nerve of C.

Proof. By Quillen’s Theorem A [14, Theorem 19.6.14], it suffices to prove that the

comma category (c↓LKA ) is contractible for all cube chains c of LA(K). By [14, Proposi-

tion 14.3.14], it suffices to prove that the comma category (c↓LKA ) has an initial object for

all cube chains c of LA(K). An object of the comma category (c↓LKA ) is a commutative

square of A-sets of the form

A[m]

c

��

g
// LA(�[n])

LA(h)

��

LA(K) LA(K)

such that |m| = |n| and Vert(n) ⊂ Vert(m). Proposition 4.9 provides a commutative

square of AopSet

A[m]

c

��

g0
// LA(�[m])

LA(h0)

��

LA(K) LA(K).
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which is clearly an object of the comma category (c↓LKA ). Consider the diagram of

solid arrows of A-sets depicted in Figure 1 where the front face is another object of the

comma category (c↓LKA ). This implies that |m| = |n| and Vert(n) ⊂ Vert(m). It can be

rearranged as follows:

A[m]

g0
,,

g1 22❨

❭
❴ ❜

LA(�[m])

LA(h1)

��
✤

✤

✤

✤

✤

LA(h0)
// LA(K)

A[m]
g

// LA(�[n])
LA(h)

// LA(K)

with c = LA(h0)g0 = LA(h)g. Using Proposition 4.9, write g = LA(h1)g1. We obtain the

equalities

LA(h0)g0 = c = LA(h)g = LA(h)LA(h1)g1 = LA(hh1)g1.

By Proposition 4.9 and since LA is faithful by Proposition 2.9, we obtain

g1 = g0 and hh1 = h0.

We have proved that there exists a diagram of solid arrows of A-sets

A[m]
g0

// LA(�[m])

LA(h1)

��

LA(h0)
// LA(K)

A[m]
g

// LA(�[n])
LA(h)

// LA(K)

From g = LA(h1)g0 and Proposition 4.9, we deduce that there exists a unique map LA(h1)

making the above diagram commutative, and therefore a unique h1, the functor LA being

faithful by Proposition 2.9. Since |m| = |n| and Vert(n) ⊂ Vert(m) by hypothesis, the

commutative square of precubical sets

�[m]

h0

��

h1
// �[n]

h

��

K K

is a map of Chα,β(K). Thus the diagram of solid arrows depicted in Figure 1 yields

together with h1 a well-defined map of the comma category (c↓LKA ). This implies that

the commutative square

A[m]

c

��

g0
// LA(�[m])

LA(h0)

��

LA(K) LA(K)

is an initial object of the comma category (c↓LKA ) and the proof is complete. �
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4.11. Corollary. Let K be a precubical set. The space of tame natural d-paths of LA(K)

is homotopy equivalent to |Ch(LA(K))|.

Proof. There are the homeomorphisms (natural with respect to [n] ∈ �)

|�[n]|geom ∼= [0, 1]n ∼= |A[n]|geom ∼= |LA(�[n])|geom,

the two homeomorphisms on the left by definition of the geometric realization, the

right-hand homeomorphism by Proposition 2.12. Since all involved functors are colimit-

preserving, we obtain for all precubical sets K the natural homeomorphism

|K|geom ∼= |LA(K)|geom.

Hence the space of tame natural d-paths of K is equal to the one of LA(K). By [20,

Theorem 7.5], we deduce that the space of tame natural d-paths of LA(K) is homotopy

equivalent to |Ch(K)|, and therefore homotopy equivalent to |Ch(LA(K))| by Theo-

rem 4.10. �

5. Application

We refer to [5, 6] for further details. [6, Theorem 4.1.8] states that, for two labelled

cubes �[a1, . . . , am] and �[am+1, . . . , am+n] with m > 0 and n > 0, there is an isomor-

phism of σ-labelled symmetric transverse sets

L
�̂S

(−−→
cosk

Σ
(�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61)

)

∼= cosk�̂S ,Σ
1

(
�̂S [a1, . . . , am]61×Σ�̂S[am+1, . . . , am+n]61

)

where

•
−−→
cosk

Σ
is the σ-labelled directed coskeleton of [5, Section 3.3] which is a tweak of the

σ-labelled coskeleton functor of the category of precubical sets, the latter being badly

behaved by [5, Proposition 3.15]: it contains too many cubes and some of them have

to be identified;

• cosk�̂S ,Σ
1 is the σ-labelled coskeleton functor of the category of symmetric transverse

sets which is well behaved by [6, Theorem 3.1.15].

By Theorem 4.10, the underlying precubical set of

−−→
cosk

Σ
(�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61)

and the underlying symmetric transverse set of

cosk�̂S ,Σ
1

(
�̂S[a1, . . . , am]61×Σ�̂S [am+1, . . . , am+n]61

)

have homotopy equivalent categories of cube chains.

This implies that the parallel composition with synchronization for process algebra, as

it is formalized in [6] using the labelled coskeleton functor of the category of symmetric

transverse sets, has a category of cube chains which gives the correct homotopy type of

tame natural d-paths.
17



References

[1] R. Brown and P. J. Higgins. On the algebra of cubes. J. Pure Appl. Algebra,

21(3):233–260, 1981. https://doi.org/10.1016/0022-4049(81)90018-9.

[2] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, and M. Raussen. Directed

algebraic topology and concurrency. With a foreword by Maurice Herlihy and a

preface by Samuel Mimram. SpringerBriefs Appl. Sci. Technol. Springer, 2016.

https://doi.org/10.1007/978-3-319-15398-8.

[3] P. Gaucher. A model category for the homotopy theory of

concurrency. Homology Homotopy Appl., 5(1):p.549–599, 2003.

https://doi.org/10.4310/hha.2003.v5.n1.a20.

[4] P. Gaucher. Globular realization and cubical underlying homotopy type of time flow

of process algebra. New York J. Math., 14:101–137, 2008.

[5] P. Gaucher. Towards a homotopy theory of process algebra. Homology Homotopy

Appl., 10(1):353–388, 2008. https://doi.org/10.4310/HHA.2008.v10.n1.a16.

[6] P. Gaucher. Combinatorics of labelling in higher-dimensional au-

tomata. Theor. Comput. Sci., 411(11-13):1452–1483, March 2010.

https://doi.org/10.1016/j.tcs.2009.11.013.

[7] P. Gaucher. Left properness of flows. Theory Appl. Categ., 37(19):562–612, 2021.

[8] P. Gaucher. Six model categories for directed homotopy. Categ. Gen. Algebr. Struct.

Appl., 15(1):145–181, 2021. https://doi.org/10.52547/cgasa.15.1.145.

[9] P. Gaucher. Comparing cubical and globular directed paths. Fund. Math.,

262(3):259–286, 2023. https://doi.org/10.4064/fm219-3-2023.

[10] P. Gaucher. Homotopy theory of Moore flows (III), 2023.

https://doi.org/10.48550/arXiv.2303.16174.

[11] P. Gaucher. Directed degeneracy maps for precubical sets. Theory Appl. Categ.,

41(7):194–237, 2024.

[12] E. Goubault and S. Mimram. Directed homotopy in non-positively

curved spaces. Log. Methods Comput. Sci., 16(3):55, 2020. Id/No 4.

https://doi.org/10.23638/LMCS-16(3:4)2020.

[13] M. Grandis and L. Mauri. Cubical sets and their site. Theory Appl. Categ., 11(8):185–

211, 2003.

[14] P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical

Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.

https://doi.org/10.1090/surv/099.

[15] F. W. Lawvere. Metric spaces, generalized logic, and closed categories. Repr. Theory

Appl. Categ, 2002(1):1–37, 2002.

[16] S. Mac Lane. Categories for the working mathematician. Springer-Verlag, New York,

second edition, 1998. https://doi.org/10.1007/978-1-4757-4721-8.

[17] M. Raussen. Trace spaces in a pre-cubical complex. Topology Appl., 156(9):1718–

1728, 2009. https://doi.org/10.1016/j.topol.2009.02.003.

[18] M. Shulman. Reedy categories and their generalizations, 2015.

https://doi.org/10.48550/arXiv.1507.01065.

[19] K. Ziemiański. Spaces of directed paths on pre-cubical sets.

Appl. Algebra Engrg. Comm. Comput., 28(6):497–525, 2017.

18

https://doi.org/10.1016/0022-4049(81)90018-9
https://doi.org/10.1007/978-3-319-15398-8
https://doi.org/10.4310/hha.2003.v5.n1.a20
https://doi.org/10.4310/HHA.2008.v10.n1.a16
https://doi.org/10.1016/j.tcs.2009.11.013
https://doi.org/10.52547/cgasa.15.1.145
https://doi.org/10.4064/fm219-3-2023
https://doi.org/10.48550/arXiv.2303.16174
https://doi.org/10.23638/LMCS-16(3:4)2020
https://doi.org/10.1090/surv/099
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/j.topol.2009.02.003
https://doi.org/10.48550/arXiv.1507.01065


https://doi.org/10.1007/s00200-017-0316-0.

[20] K. Ziemiański. Spaces of directed paths on pre-cubical sets II. J. Appl. Comput.

Topol., 4(1):45–78, 2020. https://doi.org/10.1007/s41468-019-00040-z.

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

URL: http://www.irif.fr/˜gaucher

19

https://doi.org/10.1007/s00200-017-0316-0
https://doi.org/10.1007/s41468-019-00040-z

	1. Introduction
	2. Thick category of cubes
	3. Metric and homotopical study
	4. Ziemiański's cube chain
	5. Application
	References

