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Abstract: Solar-power-generation forecasting tools are essential for microgrid stability, operation, and
planning. The prediction of solar irradiance (SI) usually relies on the time series of SI and other mete-
orological data. In this study, the considered microgrid was a combined cold- and power-generation
system, located in Tahiti. Point forecasts were obtained using a particle swarm optimization (PSO)
algorithm combined with three stand-alone models: XGboost (PSO-XGboost), the long short-term
memory neural network (PSO-LSTM), and the gradient boosting regression algorithm (PSO-GBRT).
The implemented daily SI forecasts relied on an hourly time-step. The input data were composed
of outputs from the numerical forecasting model AROME (Météo France) combined with historical
meteorological data. Our three hybrid models were compared with other stand-alone models, namely,
artificial neural network (ANN), convolutional neural network (CNN), random forest (RF), LSTM,
GBRT, and XGboost. The probabilistic forecasts were obtained by mapping the quantiles of the
hourly residuals, which enabled the computation of 38%, 68%, 95%, and 99% prediction intervals
(PIs). The experimental results showed that PSO-LSTM had the best accuracy for day-ahead solar
irradiance forecasting compared with the other benchmark models, through overall deterministic
and probabilistic metrics.

Keywords: solar irradiance; forecasting; numerical weather predictions; machine learning; deep
learning; metaheuristic models; optimization

1. Introduction

Global electricity demand is expected to rise by 2.4% in 2022, despite economic weak-
nesses and high prices [1]. This rise, driven by the growth of the world population, the
industrialization of developing countries, and the worldwide process of urbanization [2],
uses fossil fuels as the main power source. This has proven to be detrimental for the
environment and the climate. Therefore, renewable energies have gained a lot of attention,
especially photovoltaics (PVs), due to their accessibility, low cost, lifetime, and environ-
mental benefits. Solar PV installations are growing faster than any other renewable energy.
Indeed, PVs are forecast to account for 60% of the increase in global renewable capacity in
2022 [3]. In this context, PVs provide many environmental and economic benefits. However,
uncontrollable factors such as the weather, seasonality, and climate lead to intermittent,
random, and volatile PV power generation. These significant constraints still hinder the
large-scale integration of PVs into the power grid and interfere with the reliability and
stability of existing grid-connected power systems [4]. Thus, a reliable forecast of PV
power outputs is essential to ensure the stability, reliability, and cost-effectiveness of the
system [5]. Those forecasts are usually implemented through prediction of the global
horizontal irradiance (GHI). There are three main groups of solar irradiance forecasting
model [6]:
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- Statistical models, which are based on historical data and their ability to extract
information/patterns from the data to forecast time series.

- Physical models, which are based on sky images, satellite images, or numerical
weather predictions (NWPs) to infer the dynamics of solar radiation through
the atmosphere.

- Hybrid models, which exploit statistical and physical models to obtain forecasts with
higher precision.

Machine learning algorithms, classified under statistical models, have become very
popular for studies related to PV power-output forecasting, and play an important role
in contemporary solar-irradiance forecasting for conventional grid management and for
smaller and independent microgrids.

Ogliari et al. [7] compared two deterministic models with hybrid methods, a com-
bination of an artificial neural network (ANN) and a clear sky radiation model, for PV
power output forecasting. The models were trained on one year of measured data in a PV
plant located in Milan, Italy. The results show that the hybrid method is the most precise
for PV output forecasting, demonstrating advantages by combining physical models with
machine learning algorithms.

Crisosto et al. [8] used a feedforward neural network (FFNN) with Levenberg–Marquardt
backpropagation (LM–BP) to make predictions for one hour ahead with one-minute resolution
in the city of Hanover, Germany. The model was trained on a four-year dataset including
all-sky images, used for cloud cover computation, and measured global irradiance. For hourly
average predictions, the FFNN-LM-BP showed the best results with an RMSE (Wh/m2) = 65,
and R2 = 0.98, compared with the persistence model with an RMSE = 91 and R2 = 0.91.

Yu et al. [9] used a long short-term memory (LSTM) model to predict GHI in three cities
in the USA, namely, New York, Atlanta, and Hawaii. The time horizons of the model were
one hour ahead and one day ahead. The model’s performance was compared with other
models such as the autoregressive integrated moving average (ARIMA), convolutional
neural network (CNN), FFNN, and recurrent neural network (RNN). For hourly predictions,
the LSTM model was more precise in all three states, with R2 exceeding 0.9 on cloudy
and partially cloudy days, whereas R2 for the RNN was only 0.70 and 0.79 in Atlanta and
Hawaii. For daily forecasting, LSTM outperformed the other models except in clear-sky
days for New York, whereas for Hawaii and Atlanta, LSTM was better in every case.

However, it is difficult to improve the forecast from only one machine learning model,
which sometimes suffers from instability originating from poor parameter choice, or from a
reduced number of input variables. Ensemble learning is a popular development trend in
artificial intelligence (AI) algorithms [10]. It combines independent models with stronger
learners, which can achieve better stability and prediction effects compared with individual
models [11].

Huang et al. [12] used gradient boosting regression (GBRT), extreme gradient lifting
(XGboost), Gaussian process regression (GPR), and random forest (RF) models to carry
out GHI predictions. Those ensemble models performed better than other stand-alone
models such as decision tree (DT), backpropagation neural network (BPNN), and support
vector machine regression (SVR). It is concluded that the stacking models—including GBRT,
XGboost, GPR, and RF—are the best models to predict solar radiation.

Li et al. [13] used XGboost to implement point forecasts for solar irradiance and kernel
density estimation (KDE) to generate probabilistic forecasts from the above prediction
results. This method enabled the computation of confidence levels and demonstrated better
results than other benchmark algorithms such as SVR and random forest.

To improve the efficiency of machine learning (ML) models, an increasing number
of studies have used metaheuristic models in order to optimize the parameters of the
considered GHI forecasting model.

Jia et al. [14] utilized particle swarm optimization (PSO) coupled with a Gaussian
exponential model (GEM) to predict daily and monthly solar radiation (Rs). The hybrid
PSO-GEM model showed the best results for Rs prediction.
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Duan et al. [15] used NWP, together with the kernel-based nonlinear extension of
Arps decline (KNEA) to predict solar irradiance. The KNEA algorithm is optimized by
a metaheuristic algorithm called the Bat algorithm (BA). The proposed method for GHI
forecasting is called the BA-KNEA. Duan et al. also implemented other hybrid models
such as PSO-XGboost, BA-XGboost, and PSO-KNEA. The results showed that BA-KNEA is
better at performing solar radiation forecasts.

In summary, ensemble learning models are an emerging trend in ML, proving to
be appropriate tools for regression, and therefore, GHI forecasting. They have shown
good results compared with deep learning models for day-ahead GHI point forecasts [12].
Moreover, ensemble methods can be further improved with metaheuristic models for
parameter optimization, as well as the prevention of potential numerical instability from
which various ML models suffer. However, one of the drawbacks of point forecasts is that
they contain limited information about the volatility and randomness of solar irradiance.
Point forecasts cannot satisfy the needs of a power system’s optimized operation [13].
For this reason, considerable attention has been drawn to probabilistic forecasting, which
enables the computation of prediction intervals to provide to grid dispatchers in order to
facilitate grid operation.

This study focused on the implementation of daily probabilistic forecasts with hybrid
models such as PSO-XGboost, PSO-LSTM, PSO-GBRT, and quantile mapping for the com-
putation of prediction intervals. The hybrid models were compared with other reference
models, namely, ANN, CNN, LSTM, RF, and GBRT.

The novelty of this work lies in the residual modeling implemented with an innovative
hybrid model (PSO-LSTM), enabling us to compute prediction intervals with different
confidence levels, and thus obtain probabilistic forecasts. To the best of our knowledge, no
day-ahead probabilistic GHI predictions have been implemented with this method. Sec-
ondly, we demonstrate that using a deep learning approach combined with metaheuristic
models can achieve higher accuracy than ensemble models, or their optimized versions.

In order to produce those forecasts, historical data measured on-site coupled with
NWP were used in the training of GHI forecasting models. These forecasting tools are
intended to control a combined cold- and power-generation system, comprising several
energy production and storage sub-systems, the whole being powered by solar energy. This
prototype is called RECIF (the French abbreviation for a microgrid for electricity and cold
cogeneration), and has been developed within the framework of a project funded by the
French National Agency for Research (ANR) and is being implemented at the University of
French Polynesia (UPF).

The rest of the paper is organized as follows: the historical data and the implemented
data processes are presented in Section 2, followed in Section 3 by a theoretical background
of machine learning and metaheuristic models. The results, analysis, suggestions for future
research, and perspectives are presented in Section 4. The conclusions and the principal
results are presented in Section 5.

2. Materials and Methods
2.1. Input Variables

This study utilized historical data measured from the weather station set-up in the
University of French Polynesia. Two years of measurements are at our disposal, from 2019
to 2020. Those measurements are crucial in the design and implementation of a reliable
forecasting system based on machine learning algorithms. The meteorological variables are
measured with a time step of 1 min. The GHI is measured with a BF5 pyranometer supplied
by Delta Devices, which uses an array of photodiodes with a unique computer-generated
shading pattern to measure the diffuse horizontal irradiance (DHI) and GHI [16]. This
enables the computation of the direct normal irradiance (DNI) for a given solar zenith
angle. The set of inputs chosen from the weather station, for the GHI day-ahead forecasting
models, was as follows:
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- Ambient temperature T (◦C);
- Dew point temperature (◦C);
- Relative humidity H (%);
- Atmospheric pressure (hPa);
- Wind velocity WV (m/s) and the wind direction WD (◦);
- Amount of rain (mm);
- Solar irradiance variables such as GHI, DHI, and DNI;
- The clear-sky model, GHICLS, as the theoretical value of GHI in clear-sky conditions.

An overview of the data is presented in Table 1. The processing of the historical data
is detailed in Section 2.2.

Table 1. Descriptive statistics including the mean, standard deviation (std), minimum/maximum
values, and the quantiles for each meteorological variable.

GHI DHI DNI Temperature Rel Hu-
midity Pressure Dew

Point
Wind
Speed

Wind
Direction Rain CLS

Count 898,460 898,460 898,460 898,460 898,460 898,460 898,460 898,460 898,460 898,460 898,460
Mean 219.1 80.0 139.2 26.1 76.8 1005.5 21.6 1.8 133.1 0.0 297.9

Std 320.5 125.2 265.1 2.3 9.2 2.4 1.8 1.2 93.2 0.0 381.0
Min 0.2 0.2 0.0 18.4 35.0 996.0 12.1 0.0 0.0 0.0 0.0
25% 0.2 0.2 0.0 24.3 70.0 1004.0 20.5 1.1 68.8 0.0 0.0
50% 1.9 1.6 0.0 25.9 77.6 1006.0 21.8 1.7 110.3 0.0 0.0
75% 370.1 110.0 120.6 27.8 83.7 1007.0 22.9 2.3 214.2 0.0 649.0
Max 1253 814.1 1156.4 33.5 99.2 1013.0 26.8 13.4 360.0 2.8 1145.8

In addition to these in situ measurements, numerical weather predictions (NWPs)
were used to train our day-ahead forecasting models. The numerical weather prediction
model AROME was implemented by Météo-France with a resolution of 0.025 × 0.025◦

(2.5 × 2.5 km) in French Polynesia. These predictions have a maximum time horizon of
42 h and are updated every 12 h in French Polynesia. In Figure 1, each node (or grid point)
of the AROME model for the north-eastern part of Tahiti is depicted, numbered from 1 to
34. Two years of NWP outputs are available, spanning from January 2019 to December 2020
with an hourly time-step. The GHI values predicted by AROME are only available from
9 am to 4 pm.
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2.2. Data Processing

This section explains the steps involved in processing the historical data and the
AROME output. A vital step in data processing is to remove anomalous data that are
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caused by technical glitches from the sensors, such as negative and Not a Number (or
NaN) values, or outliers. After the removal of NaN values, the outliers are detected
through the interquartile range method (IQR). A sliding mean is applied to the 1 min
time-step meteorological data, in order to obtain hourly values, and making correla-
tion with the AROME output possible. The mean value at time t is computed from the
60 previous measurements.

In order to quantify the errors between the in situ measurements and the AROME
model, and then determine which points of the AROME grid to use for the training of
the machine learning algorithms, the following metrics were used: the mean square error
(MSE), the root-mean-square error (RMSE), and the determination coefficient (R2).

MSE =
1
N ∑N

i=0(ymeasured,i − ypredicted,i)
2, (1)

RMSE =

√
1
N ∑N

i=0(ymeasured,i − ypredicted,i)
2, (2)

R2 = 1−
∑N

i=0(ymeasured,i − ypredicted,i)
2

∑N
i=0(ymeasured,i − y measured)

2 , (3)

where N is the number of observations, ymeasured,i is the measurements, y measured is the
mean value of the measurements, and ypredicted,i is the predicted values. The results are
presented in Figure 2.
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Figure 2. Errors between the measured GHI at the UPF and the AROME predictions for each
grid point.

Points 31 to 34 were not used because they contained a great number of outliers in
the first semester. The selected points were, arbitrarily, the points with some of the lowest
correlation (R2 < −0.45), i.e., n◦3, 12, 20, 25, and points that exhibited positive correlation
with the measured data, i.e., n◦7, 13, 14, 15, 16, 17, 21, and 26.

The missing data were not replaced (through linear interpolation for example), but the
consecutiveness of the dates of the data was ensured in the construction of the input data (or
input vector); thus, no missing values were processed in the machine
learning algorithms.
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The night hours were removed from the measured data; consequently, the GHI fore-
casts implemented in this study were only performed for the hours between 6 am and
8 pm. After correlating the measurements and the AROME output, the merged data were
normalized according to Equation (4):

Xnormalized =
X− Xmin

Xmax − Xmin
, (4)

The data were then split into 70% as training data, 20% as validation data, and 10% as
testing data.

3. Theoretical Background
3.1. Long Short-Term Memory (LSTM)

In recent years, LSTM has been widely applied to implement GHI forecasting [17,18].
One of the main advantages, compared with a classical RNN, is that LSTM models can deal
with long-term dependencies found in the data without having problems such as vanishing
gradients [19] using forget gates.

As shown in Figure 3, a typical LSTM network consists of one cell and three gates (an
input gate, forget gate, and output gate). The input gate adjusts the amount of new data
stored in the unit. The output gate determines which information to obtain from the cell,
while the forget gate determines which information can be discarded [15]. Each gate uses
either tanh or sigmoid as activation functions.
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The input gate can be calculated with Equation (5) [15]:

gate( fi) = σs(wixt + uiht−1 + bi), (5)

where σs is the sigmoid activation function, ht−1 is the cell output at the previous time-step,
Wi and Ui are weight factors, and bi is the bias.

The forget gate can be computed with Equation (6) [15]:

gate( ft) = σs(wtxt + utht−1 + bt), (6)

where Wt and Ut are weight factors and bt is the bias.
The output is finally computed with Equation (7) [15]:

gate( fo) = σs(woxt + uoht−1 + bo), (7)

where Wo and Uo are weight factors and bo is the bias.
In this study, an LSTM model and an optimized LSTM (PSO-LSTM) model were

used to implement daily GHI forecasting. They were compared with other models for
probabilistic predictions. The parameters used for optimization are listed in Section 3.4.

The implemented LSTM model was composed of two LSTM models for day-ahead
forecasting. One model was to process historical data; the second model was used to
process AROME outputs. The outputs of the two LSTM models were concatenated, before
being processed by a classical ANN.
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3.2. Particle Swarm Optimization (PSO)

Particle swarm optimization was first proposed by Kennedy and Eberhart [20]. This
algorithm simulates the predatory actions of a swarm of animals to find the best solution.
A massless swarm of particles is created, with only two parameters: their position and
speed. Each particle searches for the optimal solution separately in the search space and
records it as the current individual extremum. The position of the extremum is shared with
other particles in the whole swarm. If one individual extreme value is the best out of all
other extremes, it is recorded as the global optimal solution. The global optimal solution is
updated every time a particle finds a better extremum.

All the particles in the swarm adjust their velocity and position according to the
current extremum already seen by the individual and the current global optimal solution
shared by the whole swarm. The formulas for updating the position and speed of the PSO
algorithm are shown in Equations (8) and (9) [20]:

Xi,t = Xi,t−1 + Vi,t, (8)

Vi,t = IW ×Vi,t−1 × c1 × θ1 × (pbesti − Xi,t−1) + c2 × θ2 × (gbesti − Xi,t−1), (9)

where Xi,t is the position of the i-th particle during the t-th iteration, and Vi,t is the speed
of the i-th particle during the t-th iteration. c1 and c2 are called the cognitive (personal)
and social (global) coefficients, respectively. The coefficients control the exploitation of the
individual extremum found by each particle and the levels of exploration made by the
swarm in the entire search space. θ1 and θ2 are random data, in the range [0, 1]. pbesti is
the best location of the i-th particles among all iterations. pbesti is the best global location
of all particles. IW is random data initialized in the range [0, 1]

3.3. XGboost

XGboost is a machine learning algorithm realized by gradient lifting technology,
and is the first parallel gradient enhanced tree (GBDT) algorithm. XGboost is based on
classification and regression tree (CART) theory [21]. It provides parallel tree boosting and
is one of the leading machine learning algorithms for regression, classification, and ranking
problems. The XGboost model is built by adding trees iteratively. The predicted values of
the i-th sample in the t-th iteration can be expressed as follows [21]:

ŷi,t = ŷi,t−1 + ft(Xi), (10)

where ft(Xi) represents the addition needed to improve the model. The tree is added
iteratively to minimize the objective function, which can be expressed as [21]:

obj(t) = ∑n
i=1 L(yi, ŷi,t−1 + ft(Xi)) + Ω( ft), (11)

where obj(t) is the loss function [21].

Ω( ft) = γT +
1
2

λ ∑T
j=1 w2

j , (12)

γ and λ are parameters that represent the model complexity. T is the number of leaves, and
wj is a weight parameter.

3.4. Hybrid Models

In this study, a hybrid model, PSO-XGboost, was implemented in order to obtain
point forecasts of the GHI. The PSO algorithm is used to choose the best parameters for the
XGboost algorithm. Seven important parameters for the XGboost model were chosen, as
listed in Table 2. Those parameters were also used by Yu et al. [10] in order to estimate daily
reference evapotranspiration values. The parameter “number of trees” has been added,
because it is also an important parameter for XGboost.
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Table 2. Parameters used in the optimization of XGboost.

Parameters. Range Meaning

Learning rate [0.0001, 0.1] Step size at each iteration while moving
toward the minimization of a loss function.

Number of trees [1, 500] Number of trees in XGboost.

Maximum depth [1, 500] Maximum depth of a tree. The higher this
value, the more likely the model is to overfit.

Subsample [0.2, 1] Subsample ratio of the training instances.

Colsample_by_tree [0.2, 1] Subsample ratio of columns when
constructing each tree.

Min_child_weight [0, 1] Minimum instance weight needed in a child.

Gamma [0.0001, 0.01] Minimum loss reduction required to make
further partitions on a leaf node of the tree.

The ML models were used, in this case, to solve a regression problem; therefore,
we set R2 to be the main metric of the PSO algorithm. R2 is a positive-oriented metric;
thus, the practical objective function used here was 1−R2. Indeed, the more the precision
of the results increases, the closer R2 is to 1, which also represents a minimum in the
objective function 1−R2. Twenty particles are used for the PSO algorithm in order to limit
computation time, and to explore the entire research space. The flow chart of the hybrid
model is presented in Figure 4.
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A PSO-Gradient boosting model was also implemented, but with fewer parameters
than the PSO-XGboost. Only the maximum depth, the learning rate, number of trees, and
subsample were used in this instance. The other parameters seen for PSO-XGboost were
not available for the gradient boosting algorithm. As stated above, a hybrid PSO-LSTM
model was also implemented for daily GHI forecasting. The parameters chosen for the
optimization are presented in Table 3.

Table 3. Parameters of the LSTM model for particle swarm optimization.

Parameters Range Meaning

LSTM cells in the first
LSTM model [1, 1000] Number of cells in the first

LSTM model.
LSTM cells in the second

LSTM model [1, 1000] Number of cells in the second
LSTM model.

Dropout rate in the first
LSTM model [0.0001, 0.5]

Rate for dropout
regularization in the first

LSTM model.

Dropout rate in the second
LSTM model [0.0001, 0.5]

Rate for dropout
regularization in the second

LSTM model.
Dense in the first layer

of the ANN [1, 1000] Number of neurons in the first
layer of the ANN.

Dense in the second layer
of the ANN [1, 1000] Number of neurons in the

second layer of the ANN.

Dropout rate in the ANN [0.0001, 0.5] Rate for dropout
regularization in the ANN.

Learning rate [10 × 10−10, 10 × 10−2]
Step size at each iteration
while moving toward a

minimum of a loss function.

Epochs [1, 100]
Number of times the

algorithm is trained on the
training data.

Validation split [0.1, 0.5] Split between training and
validation data.

3.5. Residual Modeling

Probabilistic forecasting was implemented in this study through residual modeling.
For each individual hour, the residuals were computed and assumed to have either a
Gaussian or a Laplacian distribution. This method was inspired by He et al. [22]. The
quantiles of the residuals were computed and taken as prediction intervals (PIs). To
compute the different quantiles for all the considered distributions, we first needed to
consider their cumulative distribution function (cdf) FResidus(x) in Equation (13).

∀x ∈ R, FResidus(x) = P(Residus ≤ x), (13)

The inverse of the cdf is called the percent point function or quantile function Q(q),
and is provided in Equation (14):

∀q ∈ [0, 1], Q(q) = F−1
Residus(x) = in f {x ∈ R, FResidus(x) ≥ q }, (14)

where Q(0.25), Q(0.5), and Q(0.75) are the first quantile, the median, and the third quantile,
respectively. The specific quantile function corresponded to a specific distribution (Gaussian
or Laplacian). The PIs were calculated at different confidence levels or CLs. In this study,
the 38%, 68%, 95%, and 99% PIs were derived from this inverse cdf for the Gaussian
distribution in Equation (15). For the Laplacian distribution, the PIs could be derived using
Equation (16), defined in [22]:

Pcl+ 1−cl
2

= σtQ(cl), (15)
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Pcl+ 1−cl
2

= −σtln(2(1− cl)), (16)

where σt is the standard deviation of the distribution (Laplacian or Gaussian). Given the
symmetry of those distributions, the upper bounds, Ut, and lower bounds, Lt, were derived
using Equations (17)–(19) [22]:

Ut = Pcl+ 1−cl
2

, (17)

Lt = P 1−cl
2

, (18)

Lt = Ut, (19)

3.6. Metrics for Probabilistic Forecasting

The quality of probabilistic forecasts was quantified using three different metrics,
namely, the prediction interval coverage percentage (PICP), the prediction interval normal-
ized average width (PINAW), and the coverage width-based criterion (CWC), as defined
in [13].

The PICP, detailed in Equations (20) and (21), indicates how many real values lie
within the bounds of the prediction interval:

PICP =
1
N ∑N

i=1 δi, (20)

δi =

{
1 i f yi ∈ [Li, Ui]
0 i f yi /∈ [Li, Ui]

, (21)

The PINAW, shown in Equation (22), quantitatively measures the width of the
different PIs:

PINAW =
1

NR

N

∑
i=1

(Ui − Li) (22)

where R is a normalizing factor. The PINAW represents the quantitative width of the PIs;
thus, a lower value of PINAW represents better performance for the prediction intervals.

The CWC, shown in Equations (23) and (24), combines the PICP and PINAW to
optimally balance the probability and coverage.

CWC = PINAW
(

1 + γ(PICP)e−ρ(PICP−µ)
)

, (23)

γ(PICP) =
{

0 i f PICP ≥ µ
1 i f PICP < µ

, (24)

where µ is the preassigned PICP which is to be satisfied, and ρ is a penalizing term. When
the preassigned PICP is not satisfied, the CWC increases exponentially. The CWC is a
negatively oriented metric, meaning the lower the value, the better.

4. Results
4.1. Preliminary Results

Firstly, before implementing any hybrid model, it is necessary to quantify whether
the AROME predictions are effective in increasing the accuracy of our forecasting models.
Secondly, a study was also performed to determine how many days should be input into
the models, so that we have optimal precision in daily forecasts. These two preliminary
results are shown in Table 4 and were only performed for the XGboost model and for
lagged terms, from 1 day prior to 5 days prior. The employed metrics were MAE, RMSE,
and R2.
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Table 4. Results for lagged days and NWP with the XGboost model.

XGboost Model Number of
Days Prior

MAE
(W/m2) RMSE (W/m2) R2

Without
AROME

1 day 135.19 206.02 0.73
2 days 136.34 212.47 0.67
5 days 115.22 182.97 0.74

With AROME
1 day 121.21 194.50 0.76
2 days 126.29 198.2 0.72
5 days 110.24 176.47 0.76

The results show that the use of AROME does increase the prediction accuracy for
daily GHI forecasts. Indeed, for the same number of lagged days, the results with AROME
are always better than without AROME, in terms of MAE, R2, and RMSE.

With the AROME data, the best values in terms of MAE and RMSE are 110.24 W/m2

and 176.47 W/m2 and R2 = 0.76, respectively, for 5 days prior. For this reason, 5 days prior
was taken as a standard way to implement our GHI forecasting tools.

However, it would be interesting to carry out the same study with more lagged days
at inputs of the machine learning algorithms. In order to carry out such studies, more
historical data and AROME outputs are needed.

The results show a decrease in accuracy for 2 days prior. One possible explanation for
this decrease is that the default parameters of the XGboost algorithm might be not ideal for
daily GHI predictions for 2 days prior.

4.2. Hybrid Models Results

Tables 5 and 6 present the parameters found by PSO for the XGboost and LSTM
algorithms, respectively. Once the optimal parameters are found, the optimized models are
tested on the testing data.

Table 5. Optimal parameters for XGboost.

Parameters Value

Learning rate 0.1
Number of trees 400
Maximum depth 400

Subsample 0.71
Colsample_by_tree 0.99
Min_child_weight 0.96

Gamma 0.01

Table 6. Optimal parameters for LSTM.

Parameters Value

LSTM cells in the first LSTM model 208
LSTM cells in the second LSTM model 5
Dropout rate in the first LSTM model 0.4

Dropout rate in the second LSTM model 0.15
Density in the first layer of the ANN 712

Density in the second layer of the ANN 786
Dropout rate in the ANN 0.72

Learning rate 0.09
Epochs 50

Validation split 0.5

The results for all the models used for daily GHI predictions are summarized in Table 7
with deterministic metrics, and in Table 8 with probabilistic metrics.
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Table 7. Deterministic metrics for all implemented models used for daily GHI predictions.

Models MAE (W/m2) RMSE (W/m2) R2

ANN 120.50 179.40 0.75
CNN 125.66 188.77 0.73
LSTM 115.69 184.74 0.74

Random Forest 106.19 166.42 0.79
Gradient Boosting 111.20 174.54 0.77

XGboost 110.24 176.47 0.76
PSO-Gradient Boosting 105.06 167.24 0.79

PSO-LSTM 99.37 154.84 0.82
PSO-XGboost 105.02 153.69 0.82

Table 8. Probabilistic metrics for the implemented models.

Models Predicted
Intervals

Gaussian Distribution Laplacian Distribution

PICP (%) PINAW (%) CWC (%) PICP (%) PINAW (%) CWC (%)

ANN

38% 39.81 9.50 9.50 30.95 6.78 13.57

68% 71.03 18.79 18.79 64.48 16.45 32.90

95% 94.05 32.77 65.54 94.83 35.30 70.60

99% 99.60 42.62 42.62 99.80 44.57 44.57

CNN

38% 42.06 10.03 10.03 39.88 7.62 7.62

68% 71.63 19.37 19.37 67.4 17.30 34.60

95% 94.64 33.89 67.79 94.24 37.06 74.12

99% 98.81 45.35 90.71 98.21 46.50 93.00

LSTM

38% 47.81 9.48 9.48 39.88 6.93 6.93

68% 75.40 18.00 18.00 70.04 15.67 15.67

95% 93.45 31.37 62.74 94.24 33.85 67.69

99% 98.21 41.97 83.94 98.02 44.03 88.06

Random
Forest

38% 48.61 9.68 9.68 43.85 7.06 7.06

68% 77.58 18.78 18.78 69.44 15.96 15.96

95% 94.25 32.35 64.70 93.85 33.47 66.95

99% 98.61 42.28 84.57 98.02 43.41 86.82

Gradient
boosting

38% 48.81 9.99 9.99 43.06 7.28 7.28

68% 74.80 19.0 19.0 70.63 16.62 16.62

95% 93.85 32.55 65.11 93.45 34.68 69.37

99% 98.61 42.31 84.62 97.42 43.97 87.95

XGboost

38% 53.17 9.96 9.96 42.86 7.18 7.18

68% 75.79 18.94 18.94 69.84 16.3 16.30

95% 92.46 32.13 64.27 93.85 33.98 67.96

99% 98.61 41.84 83.69 98.41 43.38 86.76
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Table 8. Cont.

Models Predicted
Intervals

Gaussian Distribution Laplacian Distribution

PICP (%) PINAW (%) CWC (%) PICP (%) PINAW (%) CWC (%)

PSO-LSTM

38% 43.06 8.6 8.6 39.28 6.3 6.3
68% 73.61 16.86 16.86 69.05 14.68 14.68
95% 94.63 29.57 59.13 94.44 31.74 63.48
99% 99.00 40.1 40.1 98.61 42.44 84.87

PSO-
Gradient
Boosting

38% 52.38 9.63 9.63 43.84 6.93 6.92

68% 75.20 18.41 18.41 72.42 15.81 15.81

95% 93.25 31.50 63.01 93.05 33.10 66.20

99% 98.61 41.40 82.81 97.81 43.19 86.38

PSO-
XGboost

38% 45.63 8.84 8.84 39.48 6.6 6.6

68% 74.01 17.13 17.13 69.84 15.31 15.31

95% 94.44 30.39 60.78 94.84 33.15 66.30

99% 98.81 40.61 81.22 98.21 43.23 86.47

For the deterministic metrics, we first note that the use of PSO increases the accuracy
of standalone models such as LSTM, GBDT, and XGboost. Indeed, there were decreases
in MAE and RMSE and an increase in R2 when considering standalone models with their
optimized versions.

The deterministic metrics also show that the hybrid PSO-XGboost method is the
best for implementing daily forecasting, in terms of RMSE = 153.69 W/m2 and R2 = 0.82.
However, the PSO-LSTM model is also strong, but in terms of MAE = 99.37 W/m2, as well
as R2 = 0.82. Neither of the two models has any significant advantage over the other.

In order to choose the best model, a Taylor diagram was drawn (Figure 5) for all imple-
mented machine learning models. It can be seen that PSO-LSTM was slightly better than
all the other models for deterministic predictions, because it was closer to the observation
than the other models. The standard deviation was also the same for the observation and
PSO-LSTM (red dotted line), meaning that it appropriately represented the variability in
solar irradiance.
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For all models, we can see that the RMSE is greater than the MAE, which is the
manifestation of high variance in individual errors. Indeed, because the RMSE is a quadratic
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scoring rule, it tends to assign high weight to large errors, whereas the MAE gives the same
weight to all errors, independently of their magnitude. This variance has been studied
thanks to residual modelling and the generation of prediction intervals.

For the probabilistic forecasts the PICP, PINAW, and CWC values were computed for
all forecasting models. Highlighted in black in Table 8 are the best CWC values, for 38%,
68%, 95%, and 99% PIs. PSO-LSTM is the best algorithm for all prediction intervals. For 38%,
68%, 95%, and 99% PIs, the CWC values are 6.3, 14.68, 59.13, and 40.1, respectively. Notably,
for 38% and 68%, the best fit was the Laplacian distribution, whereas for the 95% and 99%
PIs, the best fit was the Gaussian distribution. The proposed methods were implemented
in Python 3.7, with the machine learning package Tensorflow 2.2.0. Duan et al. [15] also
used PSO-XGboost for predicting solar radiation in four different locations in China. After
training with four different datasets, the four R2 values for 1-day-ahead forecasting were
0.816, 0.84, 0.787, and 0.755. Those values are not far from our own PSO-XGboost algorithm,
with an R2 = 0.82. In our case, the PSO-LSTM model was even better than the PSO-XGboost,
demonstrating that deep learning models can still outperform ensemble learning models for
day-ahead forecasting and, to the best of our knowledge, no PSO-LSTM has ever been used
with quantile mapping to obtain day-ahead GHI probabilistic forecasting. The accuracy
of point forecasts depends, however, on the global structure of the LSTM, meaning that a
simpler structure from an LSTM model might not have the same results.

Figure 6 shows the PSO-LSTM predictions with the corresponding prediction intervals.
We can see that the GHI measurements do stay within the prediction intervals; however, we
can see that the prediction intervals are quite large. For this problem, it would be interesting
to use another method for computing the confidence levels (CLs), which are smaller than
the prediction intervals computed in this paper. Li et al. [13] used kernel density estimation
(KDE) for confidence level computation, which gave PINAW values of 15.45, 17.03, and
19.55 for 80%, 85%, and 90% CIs, respectively. This is considerably smaller than the PIs in
this article, which are approximately equal to 30 for 95% PIs.
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4.3. Perspectives and Future Research

For the PSO algorithm, the higher the number of particles, the better the exploration
of the entire search space; however, the computation time increases accordingly. In order to
reduce computation time, we limited ourselves to 20 particles in the swarm. According
to Eberhart et al. [23], population sizes ranging from 20 to 50 are optimal in terms of
minimalizing the number of evaluations (population size multiplied by the number of
iterations) needed to obtain a sufficient solution. Nevertheless, it would be interesting to
see the result for GHI day-ahead predictions with the number of particles in a range from
20 to 500 particles for maximum exploration ability of the search space.

As presented in Section 4.1, the maximum precision was obtained for five days of
measurements at the input of the models. It is assumed that the more information (lagged
days), the better the precision of the forecasting models. For this reason, it would be
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interesting to carry out a study with more lagged days fed into the models. However,
a constraint arises when more lagged days are used as input vectors. Indeed, with the
available data, using more lagged days would greatly reduce the number of training
samples. To retain a sufficient number of days for the training of our forecasting models,
while simultaneously increasing the number of lagged days, more meteorological data and
AROME outputs are needed.

Testing another meta-heuristic model also seems a promising way to improve GHI
forecasts. Duan et al. [15] used the Bat algorithm for parameter optimization. Other bio-
inspired optimization processes could be implemented, such as the grey wolf optimizer
(GWO), whale optimization algorithm (WOA), or salp swarm algorithm (SSA). Duan et al.
also showed that the KNEA algorithm is appropriate for providing accurate point forecasts.
Therefore, a hybrid model with the metaheuristic models listed above, coupled with the
KNEA algorithm, seems to be a very good way to implement daily GHI forecasts. As
mentioned in the last section, combining the computation of confidence levels with the
KDE method represents a very efficient way of obtaining better probabilistic forecasting
from the aforementioned hybrid models.

5. Conclusions

The accurate forecasting of solar irradiance is paramount for photovoltaic power gen-
eration. In this study, the solar irradiance forecasts from the operational weather prediction
model (AROME), implemented by Météo-France, were compared with in situ measure-
ments for error quantification. In order to drastically improve the forecasting accuracy
on-site, to control an isolated solar-powered microgrid called RECIF, implemented in Tahiti,
ML algorithms were coupled with a metaheuristic particle swarm optimization (PSO)
model for parameter optimization. The novelty of this paper resides in the implementation
of probabilistic forecasting by combining an innovative hybrid model (PSO-LSTM) with
quantile mapping. Mapping of the residuals allowed us to generate 38%, 68%, 95%, and
99% prediction intervals (PIs) with two different distributions, for probabilistic forecast-
ing. Nine machine learning models were used for comparison purposes, namely, artificial
neural network (ANN), convolutional neural network (CNN), long short-term memory
(LSTM), random forest (RF), gradient boosting (GBRT), XGboost, PSO-LSTM, PSO-GBRT,
and PSO-XGboost. PSO-LSTM was superior to all other models with MAE = 99.37 W/m2,
RMSE = 154.84 W/m2, and R2 = 0.82, coupled with a Taylor diagram. The PSO-LSTM
model was also the best for all probabilistic metrics, exhibiting a Laplacian distribution
for 38% and 68% prediction intervals, with CWC values equal to 6.33 and 14.68, respec-
tively. Furthermore, the PSO-LSTM model showed the best results, exhibiting a Gaussian
distribution for 95% and 99% prediction intervals, with CWC values equal to 59.13 and
40.1, respectively. This demonstrates that deep learning models coupled with metaheuristic
models can outperform the ensemble learning method for day-ahead GHI forecasting.
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