About the regularity of degenerate non-local Kolmogorov operators under diffusive perturbations - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

About the regularity of degenerate non-local Kolmogorov operators under diffusive perturbations

Résumé

We study here the effects of a time-dependent second order perturbation to a degenerate Ornstein-Uhlenbeck type operator whose diffusive part can be either local or non-local. More precisely, we establish that some estimates, such as the Schauder and Sobolev ones, already known for the non-perturbed operator still hold, and with the same constants, when we perturb the Ornstein-Uhlenbeck operator with second order diffusions with coefficients only depending on time in a measurable way. The aim of the current work is twofold: we weaken the assumptions required on the perturbation in the local case which has been considered already in [KP17] and we extend the approach presented therein to a wider class of degenerate Kolmogorov operators with non-local diffusive part of symmetric stable type.
Fichier principal
Vignette du fichier
Cortona_fin.pdf (279.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04117895 , version 1 (05-06-2023)

Identifiants

Citer

Lorenzo Marino, Stéphane Menozzi, Enrico Priola. About the regularity of degenerate non-local Kolmogorov operators under diffusive perturbations. 2023. ⟨hal-04117895⟩
48 Consultations
20 Téléchargements

Altmetric

Partager

More