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A NOVEL APPROACH FOR ESTIMATING FUNCTIONS IN THE
MULTIVARIATE SETTING BASED ON AN ADAPTIVE KNOT
SELECTION FOR B-SPLINES WITH AN APPLICATION TO A

CHEMICAL SYSTEM USED IN GEOSCIENCE

MARY E. SAVINO AND CÉLINE LÉVY-LEDUC

Abstract. In this paper, we will outline a novel data-driven method for estimating functions
in a multivariate nonparametric regression model based on an adaptive knot selection for B-
splines. The underlying idea of our approach for selecting knots is to apply the generalized
lasso, since the knots of the B-spline basis can be seen as changes in the derivatives of
the function to be estimated. This method was then extended to functions depending on
several variables by processing each dimension independently, thus reducing the problem to a
univariate setting. The regularization parameters were chosen by means of a criterion based
on EBIC. The nonparametric estimator was obtained using a multivariate B-spline regression
with the corresponding selected knots. Our procedure was validated through numerical
experiments by varying the number of observations and the level of noise to investigate its
robustness. The influence of observation sampling was also assessed and our method was
applied to a chemical system commonly used in geoscience. For each different framework
considered in this paper, our approach performed better than state-of-the-art methods. Our
completely data-driven method is implemented in the glober R package which will soon be
available on the Comprehensive R Archive Network (CRAN).

1. Introduction

In geochemical models, computing the concentrations of reactive species at equilibrium is
well-known to be a challenging task especially when the number of species is large and/or
when the reactions involve the dissolution or the precipitation of minerals, see White et al.
(1958), Smith (1980) and de Capitani and Brown (1987) for further details. The numerical
resolution of these non-linear problems can become so time consuming that coupling them
with other physical processes may require to be simplified. For instance in the case of reactive
transport, the size of the geometric model has to be drastically limited. To overcome this
issue, researchers have been focusing their work on improving the numerical scheme to speed
up computations.

However, despite the significant improvements of the numerical solvers and preconditioners
over the past few decades, solving three dimensional large scale modelling of complex reactive
transport over many time steps is still nearly impossible using standard computers. Conse-
quently, geoscientists are more and more interested in devising approaches which can provide
an estimation of the solution of the full simulation model (sometimes also called surrogate
model) from a limited set of observations obtained with the full simulation model from spe-
cific input values that can thus replace it. Hence, the problem can be reformulated as the
estimation of an unknown function f in the following regression model:

Yi = f(xi) + εi, 1 ≤ i ≤ n, (1)

Key words and phrases. B-splines, generalized lasso, function estimation.
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where the εi are i.i.d centered random variables of variance σ2 and the xi are observation points
which belong to a compact set S of Rd, d ≥ 1. In the reactive transport modelling field (RTM),
several surrogate models have been proposed, we refer the reader to Asher et al. (2015) and
Jatnieks et al. (2016) for a comparison of the different approaches. Artificial neural networks
have recently gained a huge interest in RTM (Guérillot and Bruyelle (2020)), more especially
through Deep Neural Networks (DNNs), since their approximations have a high accuracy
compared to other estimators (Laloy and Jacques (2019)). Nevertheless, despite all the effort
for improving the efficiency of DNNs via the conjunction of computational advancements for
training ever-larger networks and improvements of backpropagation algorithms, DNNs still
remain difficult to exploit when the quantity of training data is not sufficient (Karpatne
et al. (2018)) especially when a high number of parameters needs to be calibrated. Recently,
Savino et al. (2022) proposed an active learning approach to drastically decrease the number
of training observations to use by modeling the function to estimate as a sample of Gaussian
Processes. This method has given promising results but is not necessarily the most suitable
approach for noisy observation sets. In order to circumvent this limitation, nonparametric
estimation approaches based on splines are known to be an efficient tool, see Wahba (1990)
for further details on this kind of methods.

Nonparametric estimation approaches based on splines consist in approximating the func-
tion to estimate by a linear combination of splines which are functions defined by pre-selecting
a well chosen set of knots. In this framework, Friedman (1991) proposed an efficient approach
called Multivariate Adaptive Regression Splines (MARS) which can be used when the function
to estimate has several input variables. However, MARS has not shown better performance
than other state-of-the-art methods on a concrete RTM application displayed in Jatnieks
et al. (2016). A theorical and experimental comparison has been undertaken by Eckle and
Schmidt-Hieber (2019) and demonstrated that DNNs can outperform MARS but with a spe-
cific number of parameters and they do not necessarily give better results for every numerical
application. This conclusion was also drawn by Zhang and Goh (2013) and Zhang and Goh
(2016) in which the authors demonstrated an equivalent accuracy and performance between a
back-propagation neural network architecture and MARS on geotechnical applications but a
better interpretability and a higher computational efficiency was demonstrated for the latter.

Other articles proposed approximating the function to estimate by a linear combination of
B-splines defined in De Boor (1978) since they display an attractive stability and a computa-
tionnal efficiency. Their ability to approximate complicated functions while being unsensitive
to noisy observation sets have made them very interesting in the past few decades. Since their
definition depends on a pre-defined sequence of knot locations, many strategies have been de-
veloped to optimize the selection of these points in order to avoid overfitting and so to ensure
the best approximation of the underlying function. O’Sullivan (1986) described an innovative
method, introduced as O-splines by Wand and Ormerod (2008), to estimate a function f by
selecting simultaneously the number and the locations of knots from an arbitrary set of values.
Its main goal was to penalize an integrated square of the second order derivative also called
roughness in order to determine the coefficients of the linear combination of B-splines. How-
ever, the computation of this method was tedious with higher order derivatives. To circumvent
this issue, Eilers and Marx (1996) proposed a discrete version of this method called P-splines
which uses a discrete penalty matrix and a `2-norm penalized least-square criterion (ridge
approach) to determine the coefficients of the B-splines defined from evenly-spaced knots (see
Wand and Ormerod (2008) for a detailed comparison between O-splines and P-splines). These
P-splines have been used in an impressive list of work of curve fitting (see Eilers et al. (2015)
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for a review) and have been extended to the multivariate setting, see Eilers and Marx (2003)
for an application to smoothing two-dimensional signals. Li and Cao (2022) have adapted
these P-splines to apply them to unevenly-spaced knots by defining a general weighted differ-
ence penalty matrix adapted to regular and irregular knot spacing. To drastically limit the
number of knots, Goepp et al. (2018) have proposed a weigthed adaptive ridge method called
A-splines which aims at discarding the less relevant knots and by defining new B-splines from
the selected knots. This method appeared to be more interpretable than the P-splines method
but their statistical performance is equivalent.

Another approach was introduced for B-spline curve fitting by Yuan et al. (2013). Their
idea is to first select the most pertinent B-splines from a multi-resolution basis by applying
the Lasso criterion to get the locations of the knots. Then, after a pruning step to reduce once
again the number of knots, the final B-splines are built from these small sets of knots. The
estimation of the function is obtained by fitting a linear combination of these B-splines to the
observations by a least-square approach. This method seems to have promising results but is
not available for two-dimensional functions yet.

In this paper, we propose a novel data-driven approach for estimating the function f in
the multivariate nonparametric regression model (1) based on an adaptive knot selection for
B-splines. Since the knots of a B-spline basis can be seen as changes in the derivatives of f , we
propose finding the most relevant ones, based on the work of Denis et al. (2020), by using the
generalized lasso described in Tibshirani and Taylor (2011) and further studied in Tibshirani
(2014). A B-spline basis is then defined from these selected knots and a least-square approach
is undertaken to determine the coefficients of the linear combination of B-splines. Sadhanala
et al. (2021) have proposed a multivariate version of trend filtering (a specific generalized
lasso form) called Kronecker trend filtering (KTF) to extend it to smoothing functions with
multiple input variables. It implies the use of a huge penalty matrix defined as the Kronecker
product of univariate trend filtering penalty operators and of a unique regularization parameter
common to every input variables. In order to drastically reduce the dimensions of the difference
penalty matrix and to allow a better flexibility in the regularization step, the extension of our
method to functions with two input variables is presented by simply considering each dimension
seperately to reduce the problem to the one-dimensional setting.

This paper is organized as follows. Section 2 describes the methodology that we propose
for our adaptive knot selection method for the one and two-dimensional setting. Section
3 investigates the performance of our approach through numerical experiments. Finally, in
Section 4, we apply our method to the data that motivated this study.

2. Methodology

In this section, we describe our innovative nonparametric method to estimate the function
f defined in (1). We will introduce our method first for one-dimensional functions (d = 1),
then in a second section we will extend it to the two-dimensional case (d = 2).

2.1. Description of our method in the one-dimensional case. We propose estimating
the function f appearing in (1) by approximating it with a linear combination of B-splines of
order M (M ≥ 1) introduced by De Boor (1978) in Chapter 9.

Let t = (t1, . . . , tK) be a set of K points called knots which are crucial in the definition of
the B-spline basis. We define the augmented knot sequence τ such that:

τ1 = . . . = τM = xmin,
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τj+M = tj , j = 1, . . . ,K,

xmax = τK+M+1 = . . . = τK+2M ,

τ = (τ1, . . . , τK+2M ) =
(
xmin, . . . , xmin︸ ︷︷ ︸

M times

, t1, . . . , tK︸ ︷︷ ︸
t

, xmax, . . . , xmax︸ ︷︷ ︸
M times

)
,

where xmin and xmax are the lower and upper bounds of S, respectively.
B-splines are defined by (De Boor, 1978, p. 89-90) and (Hastie et al., 2009, p. 160) as

follows. Denoting by Bi,m(x) the ith B-spline basis function of order m for the knot sequence
τ with m ≤M , they are defined by the following recursion:

Bi,1(x) =

{
1 if τi ≤ x < τi+1

0 otherwise
for i = 1, . . . ,K + 2M − 1, (2)

and for m ≤M ,

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x
τi+m − τi+1

Bi+1,m−1(x), (3)

for i = 1, . . . , (K + 2M −m).
In the next section we will describe how to choose the set of knots t to estimate f .

2.1.1. Creation of a candidate set of knots by using the generalized Lasso method. Let Y =
(Y1, . . . , Yn) and x = (x1, . . . , xn) where Yi and xi are defined in (1). In the following, we shall
assume that x1 < . . . < xn and M = q + 1, with q ≥ 0. Hence, when q = 0 (resp. q = 1,
q = 2) f is approximated with piecewise constant (resp. linear, quadratic) functions.

Since the knots of a B-spline basis can be seen as changes in the (q + 1)th derivative of f ,
we propose finding them by using the generalized Lasso described in Tibshirani and Taylor
(2011) and further studied in Tibshirani (2014). In the latter, they define the polynomial
trend filtering which consists in approximating f by β̂(λ ) defined as follows:

β̂(λ ) = argmin
β∈Rn

{||Y − β ||22 + λ ||Dβ ||1}, (4)

where ||y||22 =
∑n

i=1 y
2
i for y = (y1, . . . , yn) and ||u||1 =

∑m
i=1 |ui| for u = (u1, . . . , um), λ is a

positive constant which has to be tuned and D ∈ Rm×n is a specified penalty matrix, defined
recursively as follows:

D = Dtf,q+1 = D0 ·Dtf,q q ≥ 0, (5)
where “tf ” is the abbreviation of “trend filtering”, (q + 1) is the order of differentiation,
Dtf,0 = IdRn , the identity matrix of Rn, and D0 is the penalty matrix for the one-dimensional
fused Lasso:

D0 =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . . . . .
...

0 0 . . . −1 1

 .
The penalty matrix D is the discrete difference operator of order (q + 1) and thus, Dβ̂

estimates the (q + 1)st order derivative of f . Hence, observing the locations where Dβ̂ 6= 0
provides a way of finding the B-spline knots.

The matrix D is well-adapted when the observation points are evenly spaced. When it
is not the case, it should be replaced by the following matrix ∆(q+1) defined recursively as
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follows:
∆(q+1) = W(q+1) ·D0 ·∆(q), q ≥ 0,

where ∆(0) = IdRn and W(q+1) is the diagonal weight matrix defined by:

W(q+1) = diag

(
1

(x(q+1)+1 − x(q+1))
,

1

(x(q+1)+2 − x(q+1)+1)
, . . . ,

1

(xn − xn−1)

)
.

In both cases (evenly or unevenly-spaced observations), the number of rows of D and ∆(q+1)

equals m = n− q − 1.
Let us now more precisely explain how to choose the B-spline knots. Let Λ = (λ1, . . . , λk)

be a grid of penalization parameters λi. We define the resulting differentiated column vector
a(λ ) by:

a(λ ) = ∆(q+1) · β̂(λ ), (6)
where β̂(λ ) is the solution of problem (4) when D = ∆(q+1) and λ belongs to Λ.

The ordered vector of selected knots associated to λ is defined as follows:

t̂λ =
(
t̂j
)
j=1,...,Kλ

=
(
xpj
)
j=1,...,Kλ

, with pj ∈ Pλ , (7)

where

Pλ = {`+ 1, a`(λ ) 6= 0 } and Kλ =

m∑
`=1

1{a`(λ ) 6= 0}, (8)

a`(λ ) denoting the `th component of a(λ ) and 1{A} = 1 if the event A holds and 0 if not.
The corresponding B-spline basis Bi,M is defined by replacing the tj in the augmented knot

sequence τ appearing in (2) and (3) by t̂j found in (7). Thus, we obtain the following estimator
of f for each λ of Λ:

f̂λ (x) =

q+Kλ +1∑
i=1

γ̂iBi,M (x), (9)

where γ̂ = (γ̂i)1≤i≤q+Kλ +1 is obtained using the following least-square criterion:

γ̂ = argmin
γ∈Rq+K

λ
+1

‖Y −B(λ )γ ‖22 , (10)

where B(λ ) is a n× (q +Kλ + 1) matrix having as ith column (Bi,M (xk))1≤k≤n, i belonging
to {1, . . . , q +Kλ + 1}.

2.1.2. Choice of the penalization parameter of the regularized method. In order to choose the
penalization parameter λ which leads to the best selection of knots, we use a criterion defined
by Chen and Chen (2008) and recommended in Goepp et al. (2018), namely the extended
Bayesian information criterion also called EBIC:

EBIC(λ ) = SS(λ ) + (q +Kλ + 1) log n+ 2 log

(
q +Kmax + 1

q +Kλ + 1

)
, (11)

where Kmax is the maximum number of knots that we can select (here Kmax = n) and SS(λ )
is the sum of squares defined by:

SS(λ ) = ‖Y − Ŷ(λ )‖22 , (12)

where
Ŷ(λ ) = B(λ )γ̂,
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Figure 1. Function f1 to estimate (left) and a noisy set of observations
Y1, . . . , Y201 with σ = 0.1 (right).

with γ̂ and B(λ ) being defined in (10). This criterion allows us to get a trade-off between a
good approximation of the underlying function without using too many parameters. The final
estimator of f is defined as follows:

f̂(x) = f̂λEBIC(x), (13)

where f̂λ (x) is defined in (9) and

λEBIC = argmin
λ∈Λ

{EBIC(λ )}. (14)

2.1.3. Illustration of our method on a simple case. In order to illustrate our method we apply
it to a noisy set of observations Y = (Y1, . . . , Yn) where the Yi are defined in (1) and f = f1

is a linear combination of quadratic B-splines (M = 3) with t = (0.1, 0.27, 0.745) defined as
follows:

f1(x) = −2.5B2,3(x) + 4.3B5,3(x), x ∈ [0, 1]. (15)
In (1), the εi are i.i.d Gaussian centered random variables with σ = 0.1. The set of knots t
belongs to the observation set {x1, . . . , xn}. The corresponding (f1(xi))1≤i≤n and (Yi)1≤i≤n
are displayed in Figure 1 for n = 201. Since we want to approximate quadratic B-splines, we
must choose q such that the method can detect the changes in the third derivative so here
q + 1 = 3.

In order to assess the performance of our knot selection procedure, we compute the Hausdorff
distance defined as follows:

d(t, t̂λ ) = max
(
d1(t, t̂λ ), d2(t, t̂λ )

)
, (16)

where
d1(u,v) = sup

v∈v
inf
u∈u
|u− v| ,

d2(u,v) = d1(v,u).

Figure 2 displays the boxplots of the first and second part of the Hausdorff distance and
of the number of selected knots Kλ for λ = λEBIC obtained from 10 different samplings of
x1, . . . , xn. The first boxplots are obtained for n = 7 then new observation points are randomly
added to the current observation sets in order to have an increasing number of observations
such that n ≤ 100. We can see from this figure that from n = 70 the second part of the
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Figure 2. Top left: Boxplots for the first part of the Hausdorff distance (d1)
as a function of n and top right: boxplots for the second part of the Hausdorff
distance (d2) as a function of n between the two sets of knots t and t̂λEBIC .
Bottom: number of estimated knots as a function of n by choosing the λ =
λEBIC for the estimation of f1.

Hausdorff distance is close to 0 which means that the estimated knots are near from the real
ones. These results are obtained with an almost constant number of selected knotsKλEBIC = 6.

For a comparison purpose, we displayed in Figure 3 the results obtained for λ = λopt, where
λopt is defined by:

λopt = argmin
λ∈Λ

(Normalized sup norm(λ )) ,

with

Normalized sup norm(λ ) = max
1≤k≤N

∣∣∣f(xk)− f̂λ (xk)
∣∣∣

fmax − fmin
, (17)

where f̂λ is defined in (9). In (17), N (N > n) is the cardinality of the set of evenly-
spaced points {x1, . . . , xN} of [0, 1] which contains the observation points x1, . . . , xn as well
as additional points where f has not been observed. Moreover, fmin and fmax denote the
minimum and maximum values of f evaluated on {x1, . . . , xN}, respectively. We can see from
this figure that the performance obtained when λ is optimally chosen is on a par with that of
λEBIC which means that our procedure for choosing λ is almost optimal.

To further assess the statistical performance of our nonparametric estimation procedure, we
use the additional measure, the Normalized Mean Absolute Error (MAE), defined as follows:

Normalized MAE(λ ) =
1

N

N∑
k=1

∣∣∣f(xk)− f̂λ (xk)
∣∣∣

fmax − fmin
. (18)
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Figure 3. Top left: Boxplots for the first part of the Hausdorff distance (d1)
as a function of n and top right: boxplots for the second part of the Hausdorff
distance (d2) as a function of n between the two sets of knots t and t̂λopt .
Bottom: number of estimated knots as a function of n by choosing the λ = λopt
for the estimation of f1.
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Figure 4. Statistical performance of the method using λopt (left) and λEBIC
(right) for the estimation of f1. The dashed (solid) line displays the average of
Normalized Sup Norm (Normalized MAE) value obtained from 10 replications.

The corresponding performance is shown in Figure 4 for N = 201. This figure displays
the average of the most stringent metric (Normalized Sup Norm) and the Normalized MAE
obtained from 10 different samplings of x1, . . . , xn for each n. We observed from this figure
that the Normalized Sup Norm reaches 10−1.75 (resp. 10−1.5) for λopt (resp. λEBIC) which
represents a normalized maximum absolute error of 2% (resp. 3%). Once again, these results
show that the choice of λ does not alter the performance of our approach.
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2.2. Extension to the two-dimensional case. In this section, we will extend the previous
method for estimating a two-dimensional function f from the observations (Yi)1≤i≤n defined
in Model (1) when d = 2.

Here S is defined as the cartesian product of two compact sets S1 and S2 of R. More pre-
cisely, we will consider (x11, . . . , x1n1) belonging to S1 and similarly (x21, . . . , x2n2) belonging
to S2 the n1 and n2 observation values for the first and second variables of f at which f is
evaluated, respectively. Thus, the set of observations belonging to S will be defined as:(

(x11, x21), (x11, x22), . . . , (x11, x2n2), (x12, x21), (x12, x22), . . . , (x12, x2n2), . . . , (x1n1 , x2n2)
)

=
(
(x1k, x2`)

)
1≤k≤n1,1≤`≤n2

.

For estimating f , we shall approximate it by a linear combination of multidimensional B-
splines defined in (Hastie et al., 2009, p. 162-163) as the tensor product of the B-splines of
order M introduced in Section 2.1. More precisely, f(x) = f(x1, x2) will be approximated by:

Q1∑
i=1

Q2∑
j=1

γij B1,i,M (x1)B2,j,M (x2), (19)

where B1,i,M and B2,j,M are the B-spline basis of order M defined in (3) for the first and
second dimension, respectively. In (19), Q1 = q+K1 +1, Q2 = q+K2 +1 with K1 and K2 the
number of knots defined in the B-spline basis of the first and second variables, respectively
and M = q + 1.

2.2.1. Creation of a candidate set of knots by using the generalized Lasso method. The idea
is to consider the two dimensions independently and thus, by fixing one dimension at a time,
the problem can be rewritten as an estimation problem in the one-dimensional framework.

First, we shall consider the knot selection of the B-spline basis of the first dimension by
fixing the second dimension to a certain value of x2 belonging to {x21, . . . , x2n2}. Thus, we
can apply the polynomial trend filtering method described in Section 2.1 and get the grid of
penalization parameters

(
λ(1,i),k

)
1≤k≤si

, with i belonging to {1, . . . , n2} and si corresponds to
the number of penalization parameters. The index 1 in (1, i) denotes the first dimension and i
indexes the ith value of {x21, . . . , x2n2}. For each value λ(1,i),k with k belonging to {1, . . . , si},
we can get the corresponding selected knots by following the procedure described in Section
2.1.2: after calculating a(λ(1,i),k) as in (6), we can determine the set of knots t̂1,λ(1,i),k

as in
(7). In order to take into account all the information obtained for each value of x2, we gather
the selected knots into a single vector depending on the value of the penalization parameters.
Nevertheless, because not all the vectors

(
λ(1,i),k

)
1≤k≤si

have exactly the same values λ(1,i),k

and the same number of penalization parameters si when i varies, we shall define the set of
equivalent regularization parameters Λ̃1 and the minimal number of penalization parameters
smin1 :

Λ̃1 =
{

λ̃1,1, . . . , λ̃1,smin1

}
and smin1 = min

1≤i≤n2

si , (20)

where
λ̃1,k =

(
λ(1,i),k

)
1≤i≤n2

, 1 ≤ k ≤ smin1 . (21)

In (21), λ̃1,k can be seen as the vector of parameters which penalize (4) at an equivalent
strength for each fixed value of x2. We can therefore get the vector of selected knots t̂

1,λ̃1,k
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for the first dimension by grouping together and ordering all the corresponding selected knots
of λ̃1,k.

We proceed the same way to get the set of equivalent parameters Λ̃2 for the second dimension
by fixing this time the value of x1 and with smin2 defined similarly as in (20) for i belonging
to {1, . . . , n1}. Analogously as in (20) and (21), we have:

Λ̃2 =
{

λ̃2,1, . . . , λ̃2,smin2

}
and λ̃2,` =

(
λ(2,i),`

)
1≤i≤n1

, 1 ≤ ` ≤ smin2 .

Moreover, as well as for the first dimension, the vector of selected knots for the second dimen-
sion for each λ̃2,` is defined as t̂

2,λ̃2,`
, ` belonging to {1, . . . , smin2} .

In the following, let us consider two generic penalization parameters λ̃1 belonging to Λ̃1 and
λ̃2 belonging to Λ̃2. Thus, we can define the candidate sets of knots for both dimensions t̂

1,λ̃1

and t̂
2,λ̃2

. We must now determine which combination of penalization parameters λ̃1 and λ̃2

and hence, which combination of selected knots for the first and second dimension, allows us
to get an optimal estimator of f .

2.2.2. Choice of the penalization parameters of the regularized method. In order to choose the
penalization parameters leading to the best selection of knots, we consider the following EBIC
criterion which can be seen as the adaptation to the two-dimensional case of the one defined
in (11):

EBIC
(

λ̃1, λ̃2

)
= SS

(
λ̃1, λ̃2

)
+ Q̃1Q̃2 log n+ 2 log

(
(q + n1 + 1)(q + n2 + 1)

Q̃1Q̃2

)
. (22)

where Q̃1 = q + K
λ̃1

+ 1 and Q̃2 = q + K
λ̃2

+ 1, K
λ̃1

and K
λ̃2

being the number of selected

knots with the parameters λ̃1 and λ̃2 for the first and second dimension, respectively.
In (22), SS

(
λ̃1, λ̃2

)
is defined as:

SS
(

λ̃1, λ̃2

)
=
∥∥∥Y − Ŷ

(
λ̃1, λ̃2

)∥∥∥2

2
,

where
Ŷ
(

λ̃1, λ̃2

)
= B

(
λ̃1, λ̃2

)
γ̂, (23)

and B
(

λ̃1, λ̃2

)
is defined as:

B
(

λ̃1, λ̃2

)
= B

(
λ̃1

)
⊗B

(
λ̃2

)
, (24)

E⊗F denoting the Kronecker product of the matrices E and F . In (24), B
(

λ̃1

)
is a n1× Q̃1

matrix having as ith column (B1,i,M (x1k))1≤k≤n1
, i belonging to {1, . . . , Q̃1} and B

(
λ̃2

)
is a

n2 × Q̃2 matrix having as jth column (B2,j,M (x2`))1≤`≤n2
, j belonging to {1, . . . , Q̃2}.

In (23), γ̂ = (γ̂ij)1≤i≤Q̃1,1≤j≤Q̃2
is obtained using the following least-square criterion:

γ̂ = argmin
γ∈RQ̃1Q̃2

∥∥∥Y −B
(

λ̃1, λ̃2

)
γ
∥∥∥2

2
. (25)
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As in Equation (14), we shall define λ̃1,EBIC and λ̃2,EBIC the penalization parameters which
verify: (

λ̃1,EBIC, λ̃2,EBIC

)
= argmin

λ̃1∈Λ̃1, λ̃2∈Λ̃2

{
EBIC

(
λ̃1, λ̃2

)}
.

Hence, the final estimator of f is defined as:

f̂(x1, x2) = f̂
λ̃1,EBIC,λ̃2,EBIC

(x1, x2),

with f̂
λ̃1,λ̃2

defined as:

f̂
λ̃1,λ̃2

(x) = f̂
λ̃1,λ̃2

(x1, x2) =

Q̃1∑
i=1

Q̃2∑
j=1

γ̂ij B1,i,M (x1)B2,j,M (x2). (26)

In (26), γ̂ = (γ̂ij)1≤i≤Q̃1,1≤j≤Q̃2
is obtained as in (25).

2.2.3. Illustration of our method on a simple case. To illustrate the extension of our method
to the two-dimensional case, we propose estimating a function f = f2 which is a linear
combination of tensor product of quadratic B-splines (M = 3) with t1 = (0.24, 0.545) and
t2 = (0.395, 0.645):

f2(x1, x2) = 2.3B1,3,3(x1)B2,3,3(x2)− 1.5B1,4,3(x1)B2,5,3(x2), (x1, x2) ∈ [0, 1]2, (27)

where Bi,j,M is defined in (19) with t1 and t2 the knots involved in the definition of B1,j,M and
B2,j,M , respectively. We shall apply our method to a noisy set of observationsY = (Y1, . . . , Yn)
where the Yi are defined in (1) and the εi are i.i.d Gaussian centered random variables with
σ = 0.01. The set of knots t1 and t2 are a part of the observation set {x11, . . . , x1n1} and
{x21, . . . , x2n2}, respectively. The corresponding (Yi)1≤i≤n (resp. (f2(x1,k, x2,`))1≤k≤n1,1≤`≤n2)
are displayed in the right (resp. left) part of Figure 5 for n = n1n2 = 2012 = 40401.

Figure 5. Function f2 to estimate (left) and a noisy set of observations
Y1, . . . , Y40401 with σ = 0.01 (right).

In order to assess the performance of our knot selection procedure, we shall use the Hausdorff
distance defined in (16) for each dimension independently. The results for the first and second
part of the Hausdorff distance and the number of selected knots for both dimensions are
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Figure 6. Top left: Boxplots for the first part (d1) as a function of n = n1n2

and top right: boxplots for the second part of the Hausdorff distance (d2) as a
function of n = n1n2 between the two sets of knots t1 and t̂

1,λ̃1
and t2 and t̂

2,λ̃2

for the first and second dimension, respectively. Bottom: number of estimated
knots as a function of n = n1n2 by choosing λ̃1 = λ̃1,EBIC and λ̃2 = λ̃2,EBIC for
the estimation of f2.

displayed in the boxplots of Figure 6 for λ̃1 = λ̃1,EBIC and λ̃2 = λ̃2,EBIC and from 10 different
samplings of x11, . . . , x1n1 and x21, . . . , x2n2 . New observation points are then randomly added
to the current observation sets in order to have an increasing number of observations. We can
see from this figure that from n = 1600 and so from 40 observation points by dimension,
the second part of the Hausdorff distance is close to 0 which means that the estimated knots
are near from the real ones. The numbers of selected knots required to get these results are
between 5 and 10.

Similarly as for the one-dimensional case, we compare these results with those obtained for
λ̃1 = λ̃1,opt and λ̃2 = λ̃2,opt, two optimal parameters defined as:(

λ̃1,opt, λ̃2,opt

)
= argmin

λ̃1∈Λ̃1, λ̃2∈Λ̃2

{
Normalized sup norm

(
λ̃1, λ̃2

)}
with Normalized sup norm being defined in (17) depending here on the values of λ̃1 and λ̃2,
with f̂λ becoming f̂

λ̃1,λ̃2
defined in (26) and xk belonging to the set:

{x1, . . . , xN} ={
(x11, x21), (x11, x22), . . . , (x11, x2N2), (x12, x21), (x12, x22), . . . , (x12, x2N2), . . . , (x1N1 , x2N2)

}
.

(28)
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Figure 7. Top left: Boxplots for the first part (d1) as a function of n and top
right: boxplots for the second part of the Hausdorff distance (d2) as a function
of n = n1n2 between the two sets of knots t1 and t̂

1,λ̃1
and t2 and t̂

2,λ̃2
for the

first and second dimension, respectively. Bottom: Number of estimated knots
as a function of n = n1n2 by choosing the λ̃1 = λ̃1,opt and λ̃2 = λ̃2,opt for the
estimation of f2 with σ = 0.01.

N is the cardinality of {x1, . . . , xN} and is such that N = N1N2. We can see from Fig-
ure 7, where the results are displayed, that they are comparable to those found for λ̃1,EBIC

and λ̃2,EBIC. This means that our choice of the penalization parameters does not alter the
performance of our approach.

Similarly to Section 2.1.3, to further assess the statistical performance of our nonparametric
estimation procedure for the two-dimensional case, we shall use the Normalized MAE defined
in (18). As for the Normalized Sup Norm, λ becomes λ̃1 and λ̃2 and f̂λ is replaced by f̂

λ̃1,λ̃2

defined in (26) with xk belonging to the set {x1, . . . , xN} defined in (28).
The corresponding performance is shown in Figure 8 for N = 40401 and from 10 different

samplings of x11, . . . , x1n1 and x21, . . . , x2n2 . The most stringent metric (Normalized Sup
Norm) reaches 10−2 (resp. 10−1.4) for λ1,opt and λ2,opt (resp. λ1,EBIC and λ2,EBIC) which
represents a normalized maximum absolute error of 1% (resp. 4%). Once again, these results
show that the choice of λ̃1 and λ̃2 does not alter the performance of our approach. We can
see for both penalization parameters, the optimal and the ones from the EBIC criterion, that
the performance reaches a plateau from n = 1600 for K

λ̃1,opt
= K

λ̃1,EBIC
= 6 and K

λ̃2,opt
=

K
λ̃2,EBIC

= 9, which is on a par with what has been found for the number of selected knots
for the one-dimensional case in Figures 2 and 3 for n ≥ 40.
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Figure 8. Statistical performance of the method using λ̃1,opt and λ̃2,opt (left)
and λ̃1,EBIC and λ̃2,EBIC (right) for the estimation of f2. The dashed (solid)
line displays the average of the Normalized Sup Norm (Normalized MAE) value
obtained from 10 replications.

3. Numerical experiments

In this section, we will study the behavior of our method using the EBIC criterion called
GLOBER for Generalized LassO for knot selection in multivariate B-splinE Regression and
implemented in the glober R package when the variance of the noise σ2 increases and when
the observation set changes.

To assess the efficiency of our method, we will compare it to state-of-the-art approaches:
Gaussian Processes (GP) described in Rasmussen and Williams (2006) and implemented in the
Python package scikit-learn, Multivariate Adaptive Spline Regression (MARS) introduced
in Friedman (1991) and implemented in the R package earth and Deep Neural Networks
(DNNs) implemented in the R package keras.

For the GP, we chose the squared exponential covariance function as defined in Savino et al.
(2022). For the MARS approach, we used the default settings proposed in the earth package.
It has to be noticed that for the two-dimensional case the interaction terms are included in
the model in order not to penalize it. The architecture of the DNN was chosen arbitrarily
since our goal is not to optimize it in this paper. More precisely, we used a 2-hidden-layered
structure composed of 10 neurons per layer. The activation function of the hidden layers was
the RELU function since it is one of the most used functions. In order to train this DNN, we
used the stochastic gradient descent method Adam as the optimizer and the Mean Squared
Error (MSE) as the loss function. According to the analysis of loss function curves during a
pre-processing step, we trained our DNN over 300 epochs for functions of d = 1 and 50 epochs
for functions of d = 2 to avoid overfitting.

3.1. Influence of σ on the statistical performance of the method. We first investigate
the influence of the level of noise on the performance of GLOBER. To do so, we applied
our method to observations corrupted with two different levels of noise and we computed the
average Normalized Sup Norm and the average Normalized MAE defined in (17) and in (18),
respectively, for 10 different samplings of the observations. In both cases (d = 1 or 2), the set
of knots used to define the underlying function to estimate belongs to the observation set.

3.1.1. One-dimensional case (d = 1). We first study the estimation of the function f1 defined
in (15) from a noisy set of observations. The corresponding (Yi)1≤i≤n for σ = 0.05 (resp.
σ = 0.25) and n = 201 are displayed in the left (resp. right) part of Figure 9.
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Figure 9. Function f1 to estimate with a noisy set of observations Y1, . . . , Y201

of σ = 0.05 (left) and σ = 0.25 (right).
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Figure 10. Top left: Boxplots for the first part of the Hausdorff distance (d1)
as a function of n and top right: boxplots for the second part of the Hausdorff
distance (d2) as a function of n between the two sets of knots t and t̂λEBIC for
σ = 0.25. Bottom: number of estimated knots as a function of n by choosing
the λ = λEBIC for the estimation of f1 with σ = 0.25.

The two parts of the Hausdorff distance between the real knots and the estimated ones
as well as the number of selected knots obtained for the noisiest observation set (σ = 0.25)
are displayed in Figure 10. We can see from these results that even the highest value of σ
(σ = 0.25) does not alter the second part of the Hausdorff distance d2 and that the number
of selected knots remains the same as the one previously found for σ = 0.1.

The corresponding results for the statistical performance defined in (17) and (18) for n
varying from 7 to 100 are displayed in Figure 11 for N = 201. We can see from this figure
that the level of noise deteriorates the performance of every method. However, our approach
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still has high levels of precision since the Normalized Sup Norm (resp. the Normalized MAE)
varies from 10−1.75 to 10−1.25 (resp. from 10−2.5 from 10−2) for n = 100 which allows it to
outperform the other methods.
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Figure 11. Statistical performance of GLOBER for σ = 0.05 (left) and σ =
0.25 (right) and of the state-of-the-art methods: Gaussian Processes (GP),
Multivariate Adaptive Spline Regression (MARS) and Deep Neural Networks
(DNNs). The dashed (solid) line displays the average of the Normalized Sup
Norm (Normalized MAE) values obtained from 10 replications.

3.1.2. Two-dimensional case (d = 2). In this part, we focus on the estimation of the function
f2 for d = 2 from a noisy set of observations (Yi)1≤i≤n obtained with σ = 0.005 (resp. σ = 0.05)
and n = 40401. The corresponding Yis are displayed in the left (resp. right) part of Figure
12.

Figure 12. Function f2 to estimate with a noisy set of observations
Y1, . . . , Y40401 with σ = 0.005 (left) and σ = 0.05 (right)

The two parts of the Hausdorff distance between the estimated and the real knots as well
as the number of selected knots obtained for the noisiest observation set (σ = 0.05) are shown
in Figure 13. As for the one-dimensional case, we can see that the results are similar to those
previously obtained with σ = 0.01 in Figure 7: the number of selected knots is the same and
the second part of the Hausdorff distance tends to 0.
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Figure 13. Top left: Boxplots for the first part (d1) as a function of n = n1n2

and top right: boxplots for the second part of the Hausdorff distance (d2) as a
function of n = n1n2 between the two sets of knots t1 and t̂

1,λ̃1
and t2 and t̂

2,λ̃2

for the first and second dimension, respectively. Bottom: number of estimated
knots as a function of n = n1n2 by choosing λ̃1 = λ̃1,EBIC and λ̃2 = λ̃2,EBIC for
the estimation of f2 with σ = 0.05.

Figure 14 displays the average of the statistical performance obtained from 10 random
samplings of the set of observations for N = 40401 where the statistical measures are defined
in (17) and (18). We can see that even though an alteration of the performance is visible, our
approach still outperforms the other methods since the two normalized metrics keep decreasing,
contrary to the DNNs and the MARS approaches which seem to reach a plateau and the
Gaussian Processes which led to very poor accuracy on noisy observations. Once again, our
method remains robust with highly noisy observation sets both in the one-dimensional and in
the two-dimensional case.

3.2. Influence of the sampling of the observation set. We now assess the influence of the
sampling of the observation set on the performance of our approach. To do so, we apply our
method on randomly chosen observations and we calculate the average Normalized Sup Norm
and the average Normalized MAE defined in (17) and in (18), respectively, on 10 different
samplings of the observations. In such situations, the knots used to define the function to
estimate are not necessarily included in the set of observations and in this case, cannot thus
be chosen as knots of the B-spline basis. Then, we compare it to the case where the set of
observations necessarily contains the set of knots used to define the underlying function f to
estimate.

3.2.1. One-dimensional case (d = 1). We first assess the estimation of the function f1 defined
in (15) from a noisy set of observations obtained with σ = 0.05. Figure 15 shows the Hausdorff
distance between the set of knots t of the function f1 and the observation set x and the
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Figure 14. Statistical performance of our method using the EBIC criterion
for σ = 0.005 (left) and σ = 0.05 (right) and of the state-of-the-art methods:
Gaussian Processes (GP), Multivariate Adaptive Spline Regression (MARS)
and Deep Neural Networks (DNNs). The dashed (solid) line displays the aver-
age of the Normalized Sup Norm (Normalized MAE) values obtained from 10
replications.

Hausdorff distance between the set of knots t and its estimation with our method in the case
where the knots are not necessarily included in the observation set. We can see from this
figure that for each element of the observation set, there exists at least one knot at a distance
smaller than 0.25. Moreover, for each knot there exists at least one point of the observation
set at a distance very close to 0 for large enough n. In addition, we can see from the plot on
the bottom right that for large enough n, there exists for each knot an estimated one which
is very close.

In the case where t belongs to x, the results are displayed in Figure 16. The boxplot on
the top left shows the same results for the distance d1(t,x) as for the random sampling and
the boxplot on the top right confirms that t belongs to x since d2(t,x) = 0 at every value of
n. Furthermore, we can see similar results on the bottom left and bottom right boxplots since
distances d1(t, t̂λEBIC) and d2(t, t̂λEBIC) have exactly the same behavior as for the random
sampling case.

Finally, the number of selected knots displayed in Figure 17 shows comparable results
between the random sampling of the observations and when t belongs to x. Therefore, the
random sampling of the observations does not seem to affect the knot selection of our method.

The results of the statistical performance of our method for the estimation of the function
f1 are displayed in Figure 18 for N = 201. We can clearly see that the random sampling of
the observation set does not deteriorate the performance of our method in comparison to the
case where the observation set contains all the knots: the value of the Normalized Sup Norm
(resp. Normalized MAE) reaches in both cases 10−1.75 (resp. 10−2.5) for n = 100 and our
method still outperforms the other ones.

3.2.2. Two-dimensional case (d = 2). Similarly to the previous part, we study the estimation
of the function f2 from a noisy set of observations obtained with σ = 0.01. Figure 19 shows
the Hausdorff distance between the set of knots t1 (resp. t2) of the function f2 and the
observation set x1 = {x11, . . . , x1n1} (resp. x2 = {x21, . . . , x2n2}) for the first (resp. second)
dimension. It also displays the Hausdorff distance between the set of knots t1 (resp. t2) and
its estimation with our method t̂

1,λ̃1
(resp. t̂

2,λ̃2
), with λ̃1 = λ̃1,EBIC (resp. λ̃2 = λ̃2,EBIC) for

the first (resp. second) dimension in the case where the knots do not necessarily belong to
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Figure 15. Boxplots of the first part of the Hausdorff distance as a function
of n between the set of knots t and the observation set x: d1(t,x) (top left)
and between the two sets of knots t and t̂λEBIC : d1(t, t̂λEBIC) (bottom left)
when the observation set is randomly chosen. Boxplots for the second part
of the Hausdorff distance as a function of n between the set of knots t and
the observation set x: d2(t,x) (top right) and between the two sets of knots t
and t̂λEBIC : d2(t, t̂λEBIC) (bottom right) for the estimation of f1 with a random
sampling of observations with σ = 0.05.

the observation set. We can see from this figure that for each element of the observation set,
there exists at least one knot at a distance smaller than 0.45 (resp. 0.38) for the points of the
first dimension (resp. second dimension). Furthermore, for each knot of each dimension there
exists at least one point of the observation set of the corresponding dimension at a distance
very close to 0 when n is large enough (at least 20 points per dimension).

For the case where t1 and t2 belong to x1 and x2, respectively, we can see from Figure 20
that the distances d1(t1,x1) and d1(t2,x2) have the same behavior as for the random sampling.
Moreover, the boxplots on the top right shows that d2(t1,x1) = 0 and d2(t2,x2) = 0 at every
n value which confirms that the sets of knots belong to the observation set. Similar results can
be observed for the evolution of the distances d1(t1, t̂1,λ̃1

) (resp. d1(t2, t̂2,λ̃2
)) and d2(t1, t̂1,λ̃1

)

(resp. d2(t2, t̂2,λ̃2
)) for the random sampling and when the knots belong to the observation

set. Indeed, in both cases we can see from the plot on the bottom right of Figures 19 and 20
that for large enough n, there exists for each knot of each dimension an estimated one which is
very close. Moreover, the number of selected knots displayed in Figure 21 shows comparable
results between the random sampling of the observations and when t belongs to x. Therefore,
the random sampling of the observations does not seem to affect the knot selection of our
method for d = 2.

As it is the case for d = 1, we can see from Figure 22 where the statistical performance
of our method for estimating f2 for N = 40401 are displayed that the performance of our
approach is not altered by the sampling of the observation set. More precisely, the value of
the Normalized Sup Norm (resp. Normalized MAE) reaches in both cases 10−1.5 (resp. 10−2.3)
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Figure 16. Boxplots of the first part of the Hausdorff distance as a function
of n between the set of knots t and the observation set x: d1(t,x) (top left)
and between the two sets of knots t and t̂λEBIC : d1(t, t̂λEBIC) (bottom left)
when the knots are necessarily included in the observation set. Boxplots for
the second part of the Hausdorff distance d2(t,x) as a function of n between
the set of knots t and the observation set x (top right) and between the two
sets of knots t and t̂λEBIC : d2(t, t̂λEBIC) (bottom right) for the estimation of f1

with t belonging to x and σ = 0.05.
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Figure 17. Number of estimated knots as a function of n for the estimation
of f1 with GLOBER from a random sampling of observations (left) and when
t belongs to x (right) with σ = 0.05.

for n = 1600 and our method still outperforms the other approaches which seem to reach a
constant value.

3.3. Numerical performance. The goal of this section is to investigate the computational
times of our approach GLOBER implemented in the glober R package available on the CRAN
as a function of the number of observation points. The timings were obtained on a workstation
with 31.2GB of RAM and Intel Core i7 (3.8GHz) CPU. The average computational times and
their standard deviation obtained from 30 independent executions are displayed in Figure 23.
We can see from this figure that it only takes 600ms to estimate the underlying function with
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Figure 18. Statistical performance of GLOBER from a random sampling of
the observation set (left) and with t belonging to the observation set (right)
with σ = 0.05. Comparison to the performance of the state-of-the-art methods:
Gaussian Processes (GP), Multivariate Adaptive Spline Regression (MARS)
and Deep Neural Networks (DNNs). The dashed (solid) line displays the aver-
age of the Normalized Sup Norm (Normalized MAE) values obtained from 10
replications.
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Figure 19. Boxplots of the first part of the Hausdorff distance as a function of
n between the set of knots t1 (resp. t2) and the observation set x1 (resp. x2):
d1(t1,x1) (resp. d1(t2,x2)) (top left) and between the two sets of knots t1 and
t̂

1,λ̃1
(resp. t2 and t̂

2,λ̃2
): d1(t1, t̂1,λ̃1

) (resp. d1(t2, t̂2,λ̃2
)) (bottom left) when

the knots are not necessarily in the observation set. Boxplots for the second
part of the Hausdorff distance as a function of n between the set t1 and the
observation set x1: d2(t1,x1) (resp. d2(t2,x2)) (top right) and between the two
sets of knots t1 and t̂

1,λ̃1
(resp. t2 and t̂

2,λ̃2
): d2(t1, t̂1,λ̃1

) (resp. d2(t2, t̂2,λ̃2
))

(bottom right) for the first (resp. second) dimension, for the estimation of f2

with a random sampling of the observation set with σ = 0.01.

our approach in the one-dimensional. In the two-dimensional case, the computational time
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Figure 20. Boxplots of the first part of the Hausdorff distance as a function
of n between the set of knots t1 (resp. t2) and the observation set x1 (resp.
x2): d1(t1,x1) (resp. d1(t2,x2)) (top left) and between the two sets of knots
t1 and t̂

1,λ̃1
(resp. t2 and t̂

2,λ̃2
): d1(t1, t̂1,λ̃1

) (resp. d1(t2, t̂2,λ̃2
)) (bottom left)

when the knots are forced to be in the observation set. Boxplots for the second
part of the Hausdorff distance as a function of n between the set t1 and the
observation set x1: d2(t1,x1) (resp. d2(t2,x2)) (top right) and between the two
sets of knots t1 and t̂

1,λ̃1
(resp. t2 and t̂

2,λ̃2
): d2(t1, t̂1,λ̃1

) (resp. d2(t2, t̂2,λ̃2
))

(bottom right) for the first (resp. second) dimension, for the estimation of f2

with t1 belonging to x1 (resp. t2 belonging to x2) and σ = 0.01.
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Figure 21. Left: number of estimated knots as a function of n for the estima-
tion of f2 with GLOBER from a random sampling of observations (left) and
when t1 and t2 belong to x1 and x2, respectively (right) with σ = 0.01.

is larger but even in this case the computational burden of our approach is low since it only
takes 110 seconds for processing 1600 observations.
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Figure 22. Statistical performance of GLOBER from a random sampling of
the noisy observation set (left) and with t1 and t2 belonging to the observation
set (right) with σ = 0.01. Comparison to the performance of state-of-the-art
methods: Gaussian Processes (GP), Multivariate Adaptive Spline Regression
(MARS) and Deep Neural Networks (DNNs). The dashed (solid) line displays
the average of the Normalized Sup Norm (Normalized MAE) values obtained
from 10 replications.
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Figure 23. Average of the execution time measured in milliseconds for d = 1
(left) and in seconds for d = 2 (right) on 30 independent executions.

4. Application to a multidimensional geochemical system

In this section, we apply our method on simple chemical problems with one or two input
concentrations which correspond to the estimation of a function f for d = 1 or d = 2, respec-
tively. We consider hereafter the estimation of the amount of a "Salt" mineral as a function of
the concentrations of its constituents Sp+

a and Sp−b as in Savino et al. (2022). For this exam-
ple, the thermodynamic constants of the halite salt (NaCl) were considered because there are
only two constitutive elements and they do not depend on the pH of the solution. Following
the law of mass action, the dissolution reaction of this mineral writes:

Salt 
 Sp+
a + Sp−b .

At equilibrium, the activity of these elements aSp+a and aSp−b obey the solubility product

KSalt = aSp+
a

aSp−
b

= 101.570.

In the following, the increasing number of observations is obtained by randomly adding new
points from a given grid of N points to the pre-existing observation sets. Since the functions
to estimate come from chemical processes and are known to be smooth, we propose taking
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q ≥ 2. Nevertheless, we observed that using q = 3 does not yield better results compared to
q = 2. This is the reason why we will present in the sequel results obtained for q = 2.

4.1. One-dimensional application (d = 1). The amount of Salt is first calculated with
PHREEQC as in Parkhurst and Appelo (2013) as a function of the normalized concentration
of Sp+

a so that it belongs to [0, 1]. The corresponding function f3 to estimate is defined as:

Salt = f3(Normalized Sp+
a )

and is displayed on the left part of Figure 24. Our method is used to estimate this function by
using a set of a varying number of observation points (7 ≤ n ≤ 100) and is then compared to
the state-of-the-art methods described in Section 3. Figure 25 displays the illustration of the
estimation of f3 for a varying number of n. We can see by adding new points to the observation
set (blue crosses) that GLOBER has better chance to choose knots (blue bullets) among
observation points which depict more precisely changes in the underlying curve. However, it
seems that 40 observations are enough to have a good approximation of our function f3 since
the estimation (black curve) fits quite perfectly the function to estimate (red curve).
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Figure 24. Left: Function f4 to estimate when d = 1 with Y1, . . . , Y1140.
Right: Statistical performance of GLOBER and of the state-of-the-art meth-
ods: Gaussian Processes (GP), Multivariate Adaptive Spline Regression
(MARS) and Deep Neural Networks (DNNs). The dashed (solid) line displays
the average of the Normalized Sup Norm (Normalized MAE) values obtained
from 10 replications.

The corresponding statistical performance is displayed on the right side of Figure 24 for
N = 1140. We can see from this figure that our method outperforms the other approaches
and allows us to get a very good accuracy of the amount of Salt since the average Normalized
Sup Norm (resp. average Normalized MAE) reaches 10−1.5 (resp. 10−3) for only n = 100.

4.2. Two-dimensional application (d = 2).

4.2.1. Salt. The amount of Salt is then calculated as a function of the normalized concentra-
tions of Sp+

a and Sp−b . Thus, the corresponding function f4 is defined as:

Salt = f4(Normalized Sp+
a ,Normalized Sp−b )

and is displayed on the left part of Figure 27. We estimate this function by using our method
from different observation sets with an increasing number of observations (100 ≤ n ≤ 1600)
which corresponds to an increasing number of points per dimension (10 ≤ n1, n2 ≤ 40 with
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Figure 25. Illustration of the estimation of the amount of Salt depending
on the normalized concentration of Sp+

a for 15 (top left) 20 (top right) 30
(bottom left) and 40 observations (bottom right). The red curve describes the
true underlying function f3 to estimate, the black curve corresponds to the
estimation with GLOBER, the blue crosses are the observation points and the
blue bullets are the observation points chosen as estimated knots.

n = n1n2). The illustration of this estimation is displayed in Figure 26. We can see that the
estimation (green surface) fits properly the underlying curve of f4 (red surface) for n ≤ 900
and seems to have a perfect fit for 1600 observations (orange bullets).

The corresponding statistical performance of our method and of the state-of-the-art ap-
proaches are displayed in the right part of Figure 27 for N = 40000. This figure shows that
our method GLOBER allows us to have a very good accuracy of the amount of Salt since the
average Normalized Sup Norm (resp. average Normalized MAE) reaches 10−1.3 (resp. 10−2.6)
for only 40 observations per dimension (n = 1600). Furthermore, our method outperforms the
other approaches especially in terms of mean absolute error (Normalized MAE) since it shows
a difference of nearly one order of magnitude with MARS, the second most accurate method
after ours, according to the maximum absolute error (Normalized Sup Norm).

4.2.2. Dolomite. Our method is then applied to a more complex chemical problem which de-
rives from the calcite dissolution and precipitation study described in Kolditz et al. (2012).
The corresponding thermodynamic data for aqueous species and minerals are available in
the Phreeqc.dat distributed with PHREEQC. The compositional system actually solved con-
sists of 14 species in solution, 2 mineral components, 8 geochemical reactions and 2 mineral
dissolution-precipitation reactions. However, in this paper, we will only consider the dolomite
precipitation:

Dolomite 
 Ca2+ + Mg2+ + 2CO2−
3 , logK10 = −17.09.

The amount of dolomite is computed with PHREEQC as a function of the total elemental
concentrations (C, Ca, Cl, Mg), the pH (as −log(H+)) and the amount of calcite. In this
article, we will only consider the dolomite precipitation for C=5×10−4 mol/kgw, Cl=2×10−3
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100 observations 225 observations

900 observations 1600 observations

Figure 26. Illustration of the estimation of the amount of Salt depending
on the normalized concentration of Sp+

a and Sp−b for 100 (top left) 225 (top
right) 900 (bottom left) and 1600 observations (bottom right). The red sur-
face describes the true underlying function f4 to estimate, the green surface
corresponds to the estimation with GLOBER and the orange bullets are the
observation points.
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Figure 27. Left: Function f4 to estimate when d = 2 with Y1, . . . , Y40000.
Right: Statistical performance of GLOBER and of the state-of-the-art meth-
ods: Gaussian Processes (GP), Multivariate Adaptive Spline Regression
(MARS) and Deep Neural Networks (DNNs). The dashed (solid) line displays
the average of the Normalized Sup Norm (Normalized MAE) values obtained
from 10 replications.

mol/kgw, pH=10, calcite=0 mol in order to reduce the problem to a two-dimensional case.
Thus, the function f5 to be estimated is defined as:

Dolomite = f5(Normalized Ca,Normalized Mg).

We seek to estimate f5 by applying our method to an increasing number of observations
(100 ≤ n ≤ 1600) which corresponds to an increasing number of points per dimension (10 ≤
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100 observations 625 observations

900 observations 1600 observations

Figure 28. Illustration of the estimation of the amount of dolomite depend-
ing on the normalized concentration of Ca and Mg for 100 (top left) 625 (top
right) 900 (bottom left) and 1600 observations (bottom right). The red sur-
face describes the true underlying function f5 to estimate, the green surface
corresponds to the estimation with GLOBER and the orange bullets are the
observation points.

n1, n2 ≤ 40 with n = n1n2). The resulting illustration is displayed in Figure 28 and shows an
improvement of the fitting of GLOBER (green curve) to the underlying curve (red curve) by
adding new points to the observation set (orange bullets) in order to get a perfect overlapping
for n ≥ 900. In the right part of Figure 29, the statistical performance of GLOBER compared
to the state-of-the-art approaches is displayed for N = 40000. Similarly to what has been
shown for the precipitation of Salt, our method gives satisfactory results as the Normalized
Sup Norm (resp. Normalized MAE) reaches 10−1 (resp. 10−2.3). Moreover, our method still
outperforms the other ones for which the statistical metrics seem to rapidly reach a constant
value.
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