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Simple Summary: Chronic inflammation, as observed in Crohn’s disease and ulcerative colitis pa-
tients, damages the intestinal mucosa. We reasoned that if a subset of intestinal epithelial cells adapt
to this inflammatory stress to survive, this adaptation could contribute to their malignant transfor-
mation. We show that human colonic epithelial cells escape chronic inflammation in vitro through
a partial genetic reprogramming. By questioning data bases, we confirm that this reprogramming
takes place in the inflamed mucosae of patients with Crohn’s disease and ulcerative colitis, and
that it is induced in vivo during the early stages of murine intestinal carcinogenesis. These data
contribute to understanding the pathology and underline how orchestrators of cellular adaptation
might contribute to intestinal homeostasis and, potentially, tumor initiation.

Abstract: Reactive oxygen species (ROS) are considered to be the main drivers of inflammatory bowel
disease. We investigated whether this permanent insult compels intestinal stem cells to develop
strategies to dampen the deleterious effects of ROS. As an adverse effect, this adaptation process
may increase their tolerance to oncogenic insults and facilitate their neoplastic transformation. We
submitted immortalized human colonic epithelial cells to either a mimic of chronic inflammation or to
a chemical peroxide, analyzed how they adapted to stress, and addressed the biological relevance of
these observations in databases. We demonstrated that cells adapt to chronic-inflammation-associated
oxidative stress in vitro through a partial genetic reprogramming. Through a gene set enrichment
analysis, we showed that this program is recurrently active in the intestinal mucosae of Crohn’s and
ulcerative colitis disease patients and evolves alongside disease progression. Based on a previously
reported characterization of intestinal stem and precursor cells using tracing experiments, we lastly
confirmed the activation of the program in intestinal precursor cells during murine colorectal cancer
development. This adaptive process is thus likely to play a role in the progression of Crohn’s and
ulcerative disease, and potentially in the initiation of colorectal cancer.

Keywords: adaptation to chronic-inflammation-associated oxidative stress; intestinal cell reprogramming;
ZEB transcription factors; inflammatory bowel disease progression

1. Introduction

Chronic inflammation of the intestinal epithelium, observed in patients with inflam-
matory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn’s disease (CD),
damages cell integrity, mainly through the accumulation of reactive oxygen species (ROS)
and nitric oxygen species (NOS), which are produced by infiltrating leukocytes, activated
macrophages, and neutrophils [1]. Experimental studies unquestionably demonstrate
that oxidative stress is a determinant factor in the pathogenesis of IBD and the associ-
ated carcinogenesis [2,3]. This stress causes lipid and protein oxidation, DNA damage,
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telomere attrition, and, consequently, cellular senescence [4,5]. Telomere attrition induces
the fusion of chromosomal ends, resulting in chromatin bridge breakage and fusion and
chromosomal instability, which is associated with tumor progression. In IBD patients,
telomere attrition is thus considered to be a consequence of inflammation [6]. Conversely, a
set of recent studies supports that telomere shortening promotes inflammation. Indeed,
mTert deletion in murine intestinal epithelial cells was shown to lead to the activation of
an ATM-YAP-pro-IL-18 pathway, a subsequent induction of IFN
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IL-18 production [8].

TP53 mutations are recurrent in both sporadic and IBD-associated colorectal cancer
(CRC). While considered as a late event in sporadic CRC [9,10], TP53 mutations occur
very early in patients with IBD-associated CRC, before neoplastic deletion becomes de-
tectable [11,12], and have been associated with NOS2 activity [13]. These mutations are
multiclonal in inflamed mucosae and low-grade dysplasia and monoclonal in high-grade
dysplasia [14]. The TP53 mutation may thus provide a selective advantage at a later stage,
likely by facilitating an escape from replicative senescence. As demonstrated in engineered
mouse models, escape relies on the ability of mutated p53 isoforms to turn cancer-inhibitory
properties of the senescent cell secretome into cancer-promoting properties in intestinal
epithelial cells [15]. Moreover, a mutant p53 was reported to increase IBD-associated
CRC incidence by promoting aneuploidy [12] and by sustaining NF-κB activation, thereby
exacerbating inflammation [16].

In addition to the pro-tumoral properties of ROS, we herein investigated whether a
subset of intestinal epithelial stem cells (or inflammation-driven dedifferentiated cells [17])
could acquire a resistance to ROS during disease progression, thus becoming more tolerant
to long-term oncogenic insults and more permissive to neoplastic transformation. In line
with this hypothesis, SIRT6-driven metabolic adaptation was recently shown to suppress
ROS accumulation in a subset of stem cells and to enhance their tumorigenic potential [18].
In an attempt to evaluate this possibility, we set up an in vitro model subjecting human
colonic epithelial cells to either oxidative stress (by a chemical peroxide) or a mimic of
chronic inflammation. We identified a novel genetic program (hereafter referred to as
OSAP for Oxidative Stress Adaptation Program) which provides cells with a survival
advantage, evaluated its potential induction in stem/early precursor cells, and investigated
its biological significance in IBD patients and colorectal tumors using a single-sample gene
set enrichment analysis (ssGSEA).

2. Materials and Methods
2.1. Constructs and Cell Lines

The Zeb1 and Zeb2 pbabe-Puro constructs were previously described [19]. Human
primary colonic epithelial cells (HCEC) were purchased from Applied Biological Materials
(abm, Richmond, Canada) and immortalized through transduction of hTERT (HCEC-
hTERT). THP-1 and 293T were purchased from the ATCC. Cell lines were cultured ac-
cording to the supplier’s recommendations, and experiments were performed at early
passages. Human APOE (variant ε3) and QPRT pbabe Puro retroviral constructs were
derived from the pLenti-GIII-hAPOE-GFP-2A-Puro constructs (abm) and QPRT pCMV6
(Origene, Herford, Germany), respectively.

2.2. Retroviral and Lentiviral Infections

HCEC-hTERT Zeb1, Zeb2, QPRT, or APOE cell lines were generated by retroviral
infections as previously described [20]. Briefly, cells were “murinized” by expressing the
ecotropic retrovirus receptor before being infected with the retroviral expression constructs.
The second infection was conducted after 48 h. Selection was initiated at 24 h after the
second infection using puromycin (1.5 µg/mL).
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2.3. TP53 Status

The TP53 status in parental HCEC-hTERT cells and derivatives was first defined by
sequencing (Sanger technic). An assessment of the functionality of the p53 pathway was
achieved by submitting parental HCEC-hTERT and their derived Esc-Inf cells to increasing
doses of 5-FU (Accord) for 24 h (0, 50, 200, 350, 500, and 1000 µM).

2.4. Oxidative Stress Induction in HCEC-hTERT Cells

THP-1 monocyte differentiation (5 × 107 cells) was induced by adding 0.162 µM
of PMA (Sigma Aldrich Chimie, Saint-Quentin-Fallavier, France) for one day, and the
activation of the resulting macrophages was then induced by treating with LPS (LPS-
EB ultrapure from E. coli 0111:B4 strain, InvivoGen, Toulouse, France) for an additional
day. The cell supernatant was collected, filtered at 0.45 µM, diluted 1/2 in HCEC culture
medium, and incubated on HCEC-hTERT cells (5 × 105 in a 6-well dish). The activated
macrophage supernatant was renewed every two days. Similarly, treatment of HCEC-
hTERT cells with tert-Butyl-hydroperoxide (TBHP, 30 µM, Sigma) was renewed every two
days. The HCEC-hTERT cells were stained with crystal violet after 10 days of treatment,
and the stained surfaces were quantified using the Image J software. SA-β-galactosidase
assays were performed as described previously [21].

2.5. Gene Expression Analysis by qRT-PCR

RNA preparation and reverse transcription were performed as previously described [20].
Real-time PCR intron-spanning primers were designed with the primer3 software. The HPRT1
housekeeping gene was used for normalization. The list of primers used is accessible in the
Supplementary Material and Methods section.

2.6. Gene Expression Profiling of Cell Lines

The microarray processing and data analysis of the HCEC-hTERT parental and derived
cells were performed at the ProfileXpert core facility (Lyon, France). Gene expression profiles
were analyzed with a whole human genome microarray containing 47,231 probes (Human
HT-12 v4 Expression BeadChip; Illumina Inc., San Diego, CA, USA). Total RNA (500 ng) was
amplified and biotin-labeled with the Illumina TotalPrepTM RNA Amplification Kit (Ambion
Inc., Austin, USA). Hybridization was performed with 750 ng of biotin-labeled cRNA on
each BeadChip. The standard Illumina scanning protocol was used to scan the arrays with
the iScan (Illumina Inc., U.S.A.). Data were normalized by quantile normalization using the
Genome Studio Software 2010 (Illumina Inc.). The complete set of raw and normalized files is
available at the GEO database under accession number GSE70170.

2.7. Immunoblot Analysis

Cells were lysed in a 100 mM NaCl, Tris 50 mM pH8, NP40 1%, Glycerol 50% ex-
traction buffer supplemented with a complete protease inhibitor cocktail (Roche, Meylan,
France). After sonication, extracts were clarified by centrifugation, quantified by Brad-
ford staining (Bio-Rad, Marnes-la-Coquette, France), denatured by heating (95 ◦C for
3 min) and separated by SDS-PAGE. Protein expression was examined using either the
monoclonal anti-p21CIP1/WAF1 clone SX118 (Agilent, Les Ulis, France), anti-QPRT (ab57125,
Abcam), anti-apolipoprotein E clone E6D7 (Abcam), anti-p53 DO-7 (Agilent), anti-α-tubulin
clone DM1A (Sigma), or the anti-β-actin clone AC-15 (Sigma) antibody, or the polyclonal
anti-ZEB1 H102 (Santa Cruz Biotechnology, Heildelberg, Germany), anti-ZEB2 [22], anti-
phospho-histone H3 (Ser10)-R (Santa Cruz Biotechnology), anti-phospho p53 (Ser15) (Cell
signaling), anti-acetyl p53 (Lys373, Lys 382) (Millipore SAS, Molsheim, France), and the NF-
κB p65 (C20) (Santa Cruz Biotechnology) antibody and horseradish-peroxidase-conjugated
secondary antibodies (Dako). Western blots were normalized using the Image J software.
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2.8. In silico Analysis for Validation of the Experimental OSAP

An examination of the relevance of the OSAP in independent datasets from Gene
Expression Omnibus (GEO), GSE39582 [23], GSE37283 [24], GSE36807 [25], GSE16879 [26],
GSE36133 [27], GSE 46200 [28], and GSE37929 [29] was performed using the Array Studio
software (Qiagen France SAS, Les Ulis, France). The methodologies employed to process
and normalize data and to perform the Hierarchical Clustering Analysis, Principal Compo-
nent Analysis (PCA), and ssGSEA projections are detailed in the Supplementary Material
and Methods section.

3. Results
3.1. Human Colonic Epithelial Cells Exposed to Chronic Inflammation Develop a
Resistance Mechanism

Human primary colonic epithelial cells (HCEC, abm) were sequentially immortalized
through hTERT transduction (HCEC-hTERT cells) and cultured in the presence of activated
macrophage supernatants (AMS) to mimic chronic inflammation or a chemical peroxide
(tert-Butyl-hydroperoxide, TBHP) to specifically address the effects of ROS (Figure 1A).
Conditions were set up so that cells were submitted to sublethal doses, experimental
conditions commonly used to enforce cell adaptation and unveil escape mechanisms. In
both experimental settings, after four to five days, cells stopped proliferating (a reduction
of phospho-Serine 10 histone H3, pS10-H3) and were committed to a senescence program,
as revealed by the accumulation of acetylated p53 (Ac-p53) and its target p21CIP1 (p21)
and the detection of SA-β-galactosidase activity (Figure 1B). Despite the fact that telomere
length is regulated by ectopic telomerase expression, our cellular model recapitulated
some in vivo observations [30,31]. Cells maintained their senescent phenotype for several
weeks under stress. Strikingly, after a month in both experimental settings, cells uniformly
and concomitantly resumed proliferation, supporting an adaptive process rather than
the selection of preexisting clones. The emerging cells were hereafter named Esc-Inf for
“Escape from chronic inflammation-induced senescence” or Esc-TBHP for “Escape from
TBHP-induced senescence” (Figure 1A).
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Figure 1. Human colonic epithelial cells adapt to chronic inflammation-associated oxidative stress
in vitro. (A) HCEC-hTERT cells (left panel) were subjected to chronic inflammation by culturing them
in the presence of activated macrophage supernatant (+AMS) or tert-Butyl-hydroperoxide (TBHP).
Cells committed to senescence after a week, demonstrated by the detection of SA-β-galactosidase
activity (central panel), and maintained their senescent phenotype for three weeks before resuming
proliferation (right panel). (B) Assessment in both experimental settings (left AMS, right TBHP)
of phospho-serine 10 histone H3 (pS10-H3), p53, acetylated-p53 (Ac-p53), and p21CIP1 (p21) by
Western blot (protein levels were quantified relative to the β-actin and HCEC-hTERT cells) and
of SA-β-galactosidase-positive cells in parental HCEC-hTERT cells (1) and senescent cells (2). A
non-parametric Student’s t-test, mean, and SD of one experiment performed in triplicate are shown.
*** p < 0.001, ** p < 0.01. Uncropped Western blots are provided in Supplementary File S2.
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3.2. Resistance to Oxidative Stress Is p53-Independent

We next sought to identify the mechanisms at the basis of this escape. The p53
transcription factor is a main regulator of cellular senescence and its loss of function is
frequently associated with an escape from this safeguard program mechanism in the early
stages of tumor development [32,33]. In the context of IBD, TP53 monoclonal mutations
observed in high-grade dysplasia of patients with ulcerative colitis were suggested to
facilitate escape from oxidative-stress-induced senescence [34]. Hence, we evaluated
whether the loss of function of p53 contributed to this proliferation/survival advantage
by sequencing TP53 mutation hot-spots in Esc-Inf (Esc-Inf A and B from two independent
experiments) and parental HCEC-hTERT cells. The wild-type status was confirmed in both
the parental cell line and its derivatives (Figure 2A). Furthermore, the activity of the p53
pathway was similar in these cell lines, as assessed by p53-phosphorylation (pS15-p53) and
the subsequent accumulation of p21CIP1 (p21) in response to genotoxic stress (Figure 2B).
Lastly, the transduction of parental HCEC-hTERT cells with p53 variants that constitute the
mutational hot-spots observed in ulcerative colitis dysplastic and malignant lesions [35,36]
failed to protect cells from chronic-inflammation-induced senescence (Figure 2C). An
adaptation to an oxidative stress condition thus did not rely on the alteration of p53 activity
in these experimental conditions.
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levels rose marginally (SNAI2, SNAI3, and TWIST1 expression were below the detection 
limit) (Figure 3A). A protein assessment by Western blot analysis confirmed the detection 
of ZEB1 in Esc-Inf cells, though the protein level remained low compared to EMT-com-
mitted Hs578T breast cancer cells (Figure 3A). Of note, we failed to detect ZEB2 in Esc-
TBHP cells, likely due to the combination of a low protein level and the low affinity of the 
antibody. The selection of either ZEB1 or ZEB2 in the two experimental settings strongly 
argues in favor of a stress-induced cell reprogramming rather than the selection of preex-
isting cell subpopulations. We then expected that an ectopic expression of ZEB genes 
would provide cells with the observed survival/proliferation advantage. To address this 

Figure 2. Escape from chronic-inflammation-induced senescence does not rely on p53 inactivation.
(A) Confirmation of the wild-type status of the TP53 gene in HCEC-hTERT cells and their derivatives.
TP53 exons within parental HCEC-hTERT cells and their Esc-Inf derivatives (of two independent
experiments, Esc-Inf A and B) were fully sequenced. No mutation in TP53 was found, as shown by
the sequences encompassing the exons encoding the residues R175, R248, and R273 that constitute
the main mutation hot-stops reported in colitis-associated colon cancers. (B) The functionality of the
p53 pathway in both parental HCEC-hTERT and its Esc-Inf derivatives was compared by submitting
cells to an increasing dose of Fluorouracil (5-FU) over 24 h. The phosphorylation of the Ser10 of p53
(pS15-p53) and the levels of p53 and p21CIP1 (p21) were assessed by Western blot. Protein levels
were quantified relative to the β-actin and HCEC-hTERT cells. (C) The ectopic expression of p53
variants does not facilitate the escape of HCEC-hTERT cells from chronic-inflammation-induced
senescence. Upper panels: cells were successively infected with mutant p53 retroviral-expressing
vectors (as indicated on top), cultured in the presence of activated macrophage supernatants (+AMS)
for ten days, and stained with crystal violet. Esc-Inf cells were used as an internal positive control.
Percentages of stained surface are indicated. Lower panel: analysis of p53 by Western blot. Protein
levels were quantified relative to the β-actin and HCEC-hTERT cells. Uncropped Western blots are
provided in Supplementary File S2.
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3.3. Adaptation to Oxidative Stress Relies on Partial Cell Reprogramming

Having excluded that the mechanism of escape relies on a loss of p53 function, we
next assessed the possibility that the emergence of resistant cells was dependent on the
induction of embryonic factors of the TWIST, SNAIL, and ZEB families, known to facilitate
escape from replicative and oncogenic senescence and cell adaptation to stress [37–42].

Escapes from chronic-inflammation- or TBHP-induced senescence were invariably
associated with ZEB1 or ZEB2 induction, respectively, while SNAI1 and TWIST2 RNA
levels rose marginally (SNAI2, SNAI3, and TWIST1 expression were below the detection
limit) (Figure 3A). A protein assessment by Western blot analysis confirmed the detection of
ZEB1 in Esc-Inf cells, though the protein level remained low compared to EMT-committed
Hs578T breast cancer cells (Figure 3A). Of note, we failed to detect ZEB2 in Esc-TBHP cells,
likely due to the combination of a low protein level and the low affinity of the antibody. The
selection of either ZEB1 or ZEB2 in the two experimental settings strongly argues in favor of
a stress-induced cell reprogramming rather than the selection of preexisting cell subpopula-
tions. We then expected that an ectopic expression of ZEB genes would provide cells with
the observed survival/proliferation advantage. To address this hypothesis, HCEC-hTERT
cells were transduced with murine Zeb1 or Zeb2 retroviral-expressing constructs (HCEC-
Zeb1 cells and HCEC-Zeb2 cells, respectively) with similar ranges of protein levels to those
observed in spontaneously emerging cells (ZEB1 was barely detectable by Western blot and
ZEB2 was below the detection limit) (Figure S1A). We confirmed that these transcription
factors provided the HCEC-hTERT cells with a similar survival/proliferation advantage in
both stress conditions, as assessed in a crystal violet coloration assay (Figure 3B).

Cancers 2023, 15, x FOR PEER REVIEW 7 of 20 
 

 

hypothesis, HCEC-hTERT cells were transduced with murine Zeb1 or Zeb2 retroviral-ex-
pressing constructs (HCEC-Zeb1 cells and HCEC-Zeb2 cells, respectively) with similar 
ranges of protein levels to those observed in spontaneously emerging cells (ZEB1 was 
barely detectable by Western blot and ZEB2 was below the detection limit) (Figure S1A). 
We confirmed that these transcription factors provided the HCEC-hTERT cells with a sim-
ilar survival/proliferation advantage in both stress conditions, as assessed in a crystal vi-
olet coloration assay (Figure 3B).  

 
Figure 3. Escape from chronic-inflammation-induced or TBHP-induced senescence relies on the in-
duction of ZEB genes. (A) Relative expression of SNAI1, TWIST2, ZEB1, and ZEB2 in cells that es-
caped from chronic-inflammation- (left panel) or TBHP-induced senescence (right panel), as as-
sessed by qRT-PCR. Levels are expressed relative to the housekeeping HPRT1 gene and are normal-
ized against HCEC-hTERT cells. One sample t and Wilcoxon test and the mean and SD of three 
independent experiments are shown. * p <0.05 Central panel: analysis of ZEB1 in Esc-Inf cells by 
Western blot. EMT-committed Hs578T breast cancer cells were used as a positive protein detection 
control. Protein levels were quantified relative to the α-tubulin and Esc-Inf cells. (B) Ectopic expres-
sion of murine Zeb1 or Zeb2 facilitates escape from chronic inflammation-induced (+AMS, left pan-
els) or chemical, peroxide-induced (+TBHP, right panels) senescence, as assessed in a crystal violet 
assay. Percentages of stained surface are indicated. Uncropped Western blots are provided in Sup-
plementary File S2. 

To explore the underlying mechanism, we next compared the gene expression pro-
files of cells that either escaped from chronic-inflammation-induced (Esc-Inf A and B from 
two independent experiments) or TBHP-induced (Esc-TBHP A and B from two independ-
ent experiments) senescence (maintained over a week in the absence of stress to stably 
identify up- and down-regulated genes), and those of the HCEC-Zeb1 and HCEC-Zeb2 cell 
lines to their HCEC-hTERT parental counterparts (dataset GSE70170) (Figure 4A). A core 
of 27 up-regulated and 32 down-regulated genes (using a cut-off of 1.5) was commonly 
modulated in these cell lines (Figure 4B). This genetic program was hereafter referred to 
as the Oxidative Stress Adaptation Program (OSAP). A gene ingenuity pathway analysis 
unveiled that the down-regulated genes were enriched in NF-κB targets (p = 4.4·10−5, Table 
S1). Indeed, RelA was found to be abnormally activated in the parental HCEC-hTERT cells 

Figure 3. Escape from chronic-inflammation-induced or TBHP-induced senescence relies on the
induction of ZEB genes. (A) Relative expression of SNAI1, TWIST2, ZEB1, and ZEB2 in cells that es-
caped from chronic-inflammation- (left panel) or TBHP-induced senescence (right panel), as assessed
by qRT-PCR. Levels are expressed relative to the housekeeping HPRT1 gene and are normalized
against HCEC-hTERT cells. One sample t and Wilcoxon test and the mean and SD of three indepen-
dent experiments are shown. * p < 0.05 Central panel: analysis of ZEB1 in Esc-Inf cells by Western blot.
EMT-committed Hs578T breast cancer cells were used as a positive protein detection control. Protein
levels were quantified relative to the α-tubulin and Esc-Inf cells. (B) Ectopic expression of murine
Zeb1 or Zeb2 facilitates escape from chronic inflammation-induced (+AMS, left panels) or chemical,
peroxide-induced (+TBHP, right panels) senescence, as assessed in a crystal violet assay. Percentages
of stained surface are indicated. Uncropped Western blots are provided in Supplementary File S2.

To explore the underlying mechanism, we next compared the gene expression profiles
of cells that either escaped from chronic-inflammation-induced (Esc-Inf A and B from two
independent experiments) or TBHP-induced (Esc-TBHP A and B from two independent
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experiments) senescence (maintained over a week in the absence of stress to stably identify
up- and down-regulated genes), and those of the HCEC-Zeb1 and HCEC-Zeb2 cell lines
to their HCEC-hTERT parental counterparts (dataset GSE70170) (Figure 4A). A core of
27 up-regulated and 32 down-regulated genes (using a cut-off of 1.5) was commonly
modulated in these cell lines (Figure 4B). This genetic program was hereafter referred to
as the Oxidative Stress Adaptation Program (OSAP). A gene ingenuity pathway analysis
unveiled that the down-regulated genes were enriched in NF-κB targets (p = 4.4·10−5, Table
S1). Indeed, RelA was found to be abnormally activated in the parental HCEC-hTERT cells
and down-regulated in the Esc cells, as revealed by its subcellular localization (Figure S1B).
The repression of NF-κB-target genes in the Esc cells is most likely a consequence of APOE
induction, which is an inhibitor of RelA [43–45]. No specific pathway was enriched from
the OSAP-associated, up-regulated genes (p < 10−2, Table S2), including the epithelial-to-
mesenchymal transition, a genetic reprogramming also orchestrated by ZEB proteins [46].
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Figure 4. The ZEB-driven resistance relies on a partial genetic reprogramming. (A) Venn diagram
highlighting the number of genes commonly up- or down-regulated (cut-off > 1.5) in HCEC-hTERT
cells which had either escaped from chronic-inflammation-induced senescence (Esc-Inf A or B from
two independent experiments), TBHP-induced senescence (Esc-TBHP A or B from two independent
experiments), or ectopically expressed either Zeb1 or Zeb2 (HCEC-Zeb1 and HCEC-Zeb2) when compared
to their HCEC-hTERT parental counterparts. Common up- and down-regulated genes constitute the basis
for the OSAP program. (B) Listing of the genes commonly up-regulated (in red) or down-regulated (in
green) in Esc-Inf (A and B), Esc-TBHP (A and B), HCEC-Zeb1, and HCEC-Zeb2 compared to the parental
HCEC-hTERT cells (cut-off ≥ 1.5). (C) Expression analysis of APOE and QPRT in cells that escaped either
from chronic-inflammation-induced (upper panels) or TBHP-induced (lower panels) senescence. Left
panels: expression analysis by qRT-PCR. Levels are expressed relative to the housekeeping HPRT1 gene
and are normalized against HCEC-hTERT cells. One sample t and Wilcoxon test and the mean and SD
of three independent experiments are shown. Right panels: analysis of APOE and QPRT by Western
blot. Protein levels were quantified relative to the β-actin and HCEC-hTERT cells. ** p < 0.01, * p < 0.05.
Uncropped Western blots are provided in Supplementary File S2.
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To further strengthen the role of the OSAP in providing cells with a survival advantage
under oxidative stress conditions, the two most highly up-regulated genes, QPRT and
APOE, were first confirmed to be induced in the Esc-Inf cells and Esc-TBHP cells compared
to the parental cell line at both transcript and protein levels (Figure 4C). They were then
tested for their ability to protect HCEC-hTERT cells from chronic-inflammation- and TBHP-
induced senescence. As is shown in Figure S2, the ectopic expression of either QPRT or
APOE significantly sustained the HCEC-hTERT cell proliferation under oxidative stress,
suggesting that several OSAP-associated proteins likely contribute to the ZEB-driven
survival advantage.

3.4. OSAP Is Activated in Ulcerative Colitis and Crohn’s Disease Mucosa

Having shown that colonic epithelial cells adapted to chronic-inflammation-induced
oxidative stress in vitro through a partial genetic reprogramming, we then sought to confirm
the relevance of these observations in human patients. To this end, we assessed the score of
the OSAP-associated genetic signature in inflammatory bowel disease patients by ssGSEA.

We initially focused on a series of patients with an established diagnosis of ulcer-
ative colitis (UC) or Crohn’s disease (CD) and with a disease duration > 7 years with
no macroscopic sign of active inflammation (datasets GSE37283 and GSE36807) [24,25].
Unsupervised hierarchical clustering of UC and CD cases using the in vitro OSAP signa-
ture confirmed a differential expression of genes between samples (Figure 5A). Using a
Wilcoxon test, the comparison of the UC mucosa versus healthy controls (dataset GSE36807)
or the UC mucosa with neoplasms versus healthy controls (dataset GSE37283) highlighted
a co-segregation of eleven induced and four repressed genes in both series (Figure 5B). This
refined signature was used as a readout of the OSAP induction in human samples with
cellular heterogeneity. Of note, most of the in vitro down-regulated genes associated with
the OSAP signature were excluded from the refined signature. These genes are mainly
targets of NF-κB and are activated in UC and CD patients owing to chronic inflammation.

We next used this refined OSAP signature to address its biological relevance. Gene
expression profiles of CD and UC patients of the dataset GSE36807 previously demonstrated
that healthy samples clustered together, while variations in the gene expression patterns
between the CD and UC patients were more complex, highlighting a heterogeneity within
IBD samples [25]. As is shown in Figure 6A,B, an unsupervised, hierarchical clustering
of cases using the refined OSAP signature segregated a subgroup of CD and UC patients,
suggesting that the OSAP was commonly activated in both pathologies.

We then investigated whether the OSAP activation parallels disease progression by
scoring the refined OSAP signature in a dataset (GSE37283) previously used to unveil differ-
ential gene expression in the remote, quiescent, non-dysplastic mucosa of patients harboring
neoplastic lesions compared to the mucosa of UC patients without dysplasia and normal
controls [24]. Gene ontology revealed a differential activation of innate immune response
pathways and Toll-like receptors, confirming that neoplastic lesions in UC likely resulted
from the activation of tumor-promoting pathways secondary to longstanding infection [24].
An unsupervised, hierarchical clustering of the OSAP signature-associated genes discrim-
inated non-dysplastic mucosa from UC patients that harbored remote neoplastic lesions
from those of UC patients without dysplasia. Furthermore, patients with UC-associated
neoplasms displayed significantly higher OSAP signature scores (Mann–Whitney Test,
p = 0.0176, Figure 6D,E), strengthening the correlation between OSAP induction and dis-
ease progression.
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Figure 5. Analysis of OSAP in UC and CD mucosa. (A) Unsupervised hierarchical clustering of
healthy controls, UC, and CD mucosa (datasets GSE36807 and GSE37283) using the in vitro OSAP
signature. (B) Among the in vitro established OSAP-signature-associated genes, eleven and four
genes (as listed on the right) are overexpressed (estimate [UC-control] > 0, labeled in red) and
underexpressed (estimate [UC-control] < 0, labeled in green) in UC mucosa versus healthy mucosa in
the dataset GSE36807 and in UC mucosa with associated neoplasms versus healthy mucosa in the
dataset GSE37283, as assessed by a Wilcoxon test.

Interestingly, in both series, the OSAP signature scores were statistically correlated
with the Lgr5-GFPhigh [29] and EphB2 [47] stem cell signatures, and with the score of a
signature established on the basis of genes up-regulated in the stem-like subgroup of CRCs
(stem-like score) [48], suggesting that the OSAP is activated in stem cells or progenitors in
chronic inflammation (Figure 6C,F).



Cancers 2023, 15, 973 10 of 17
Cancers 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 6. OSAP is recurrently activated in ulcerative colitis and Crohn’s disease patients. Analysis 
of the biological significance of the OSAP signature in UC and CD cases (datasets GSE36807 and 
GSE37283, as indicated). (A,D) Hierarchical clustering analysis using OSAP genes showing the dif-
ferential relative expression of the OSAP signature-associated genes in patient samples. (B,E) Left 
panels: distribution of samples using principal component analysis. Discriminating genes were used 
to generate a two-dimensional plot of the data. Right panels: enrichment scores of the OSAP signa-
ture were computed in all samples from the three groups using ssGSEA and then compared using 
a Kruskal–Wallis test (p < 0.0001). (C,F) Spearman correlation between the OSAP signature scores 
and stem-like, Lgr5-GFPhigh, or EphB2high signature scores. Coefficients of correlation and p-values 
are shown. 

Figure 6. OSAP is recurrently activated in ulcerative colitis and Crohn’s disease patients. Analysis of
the biological significance of the OSAP signature in UC and CD cases (datasets GSE36807 and GSE37283,
as indicated). (A,D) Hierarchical clustering analysis using OSAP genes showing the differential relative
expression of the OSAP signature-associated genes in patient samples. (B,E) Left panels: distribution
of samples using principal component analysis. Discriminating genes were used to generate a two-
dimensional plot of the data. Right panels: enrichment scores of the OSAP signature were computed
in all samples from the three groups using ssGSEA and then compared using a Kruskal–Wallis test
(p < 0.0001). (C,F) Spearman correlation between the OSAP signature scores and stem-like, Lgr5-GFPhigh,
or EphB2high signature scores. Coefficients of correlation and p-values are shown.

3.5. OSAP Is Induced in Intestinal Precursor Cells in Both Colitis-Associated and Sporadic Murine
Colorectal Cancer Models

Several genes of the OSAP signature are also known to be active in immune cells, un-
veiling a potential interference of the inflammation index with OSAP scores. To circumvent
this problem and assess whether OSAP induction takes place in the initiation of colorectal
tumor development, we used the previously reported gene expression profiles of intestinal
epithelial stem and precursor cells isolated from either normal colons or AOM/DSS-
induced tumors isolated from Lgr5-EGFP mice exposed to azoxymethane/dextran sodium
sulfate [28] (AOM/DSS, dataset GSE46200). The transcriptomic analysis was performed
from cells which were flow-sorted into Lgr5high and Lgr5low fractions based on GFP ex-
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pression. The Lgr5high cell population includes stem cells and Lgr5low are their immediate
daughter cells (committed precursor cells), while differentiated intestinal cells are Lgr5neg.

As we compared homogenous epithelial cell populations, the in vitro-established
epithelial OSAP signature was used. Confident that the down-regulated genes resulted
from the aberrant NF-κB activation in HCEC cells, the OSAP score was defined on the
basis of its 27 up-regulated genes. The OSAP signature scores were significantly higher in
adenoma-derived colonic stem/precursor cells than in their normal counterparts (Mann–
Whitney test, p < 0.0001, Figure 7A), supporting the conclusion that the level of activation
of the program increases during the early phases of tumor progression. In adenomas, the
score was even higher in intestinal precursor cells, suggesting that the program is mainly
induced in these cells.
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Figure 7. OSAP is induced in murine intestinal stem/early precursor cells in response to a chronic
inflammation or to the loss of Apc. Analysis of OSAP in intestinal stem and precursor cells sorted
from AOM/DSS treated-derived adenoma or control littermates (dataset GSE46200) (A) or sorted
from Apc-deficient, mouse-derived adenoma or control littermates (dataset GSE37929) (B). Left panels:
OSAP signature scores in intestinal stem cells (GFPhigh) and precursors (GFPlow) sorted from either
adenoma or control littermates (normal). Mann–Whitney test is shown. Center and right panels:
Spearman correlation between Zeb1 or Zeb2 expression and OSAP signature scores. Coefficients of
correlation and p-values are shown.

We next extended our analysis to wild-type small intestine or Apc-mutant adeno-
mas from Lgr5-EGFP-Ires-CreERT2/Apcfl/fl/R26R-Confetti mice [29] (dataset GSE37929).
The OSAP signature scores were higher in small intestine adenoma-derived intestinal
stem/early precursor cells (adenoma GFPhigh and GFPlow, respectively) than in normal
stem cells (normal GFPhigh) (Mann–Whitney test, p < 0.0001, Figure 7B), suggesting a
similar induction of the program in this experimental setting. Interestingly, in both series,
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the OSAP induction was concomitant to Zeb1 and/or Zeb2 expression (Zeb1 Rho = 0.7944,
p < 0.0001, and Zeb2 Rho = 0.9235, p < 0.0001; Zeb1 Rho = 0.7409 p < 0.0001, respectively),
supporting the role of these embryonic transcription factors in orchestrating the program.

4. Discussion

ROS, synthesized abundantly in inflammatory lesions, cause oxidative stress, leading
to lipid, protein, and DNA base oxidation [49]. This repeated and continuous stress
leads to telomere attrition and cell commitment to a senescence program [4,30]. The
selection of p53 mutants in high-grade dysplasia is presumed to facilitate an escape from
chronic-inflammation-induced senescence and thereby to promote tumor initiation [14].
We reasoned that, alternatively, a subset of intestinal stem cell/early progenitor cells could
adapt to oxidative stress, and the resulting tolerance to oncogenic insults could facilitate
their neoplastic transformation. In line with this hypothesis, a SIRT6-driven metabolic
adaptation associated with dampened ROS was recently shown to facilitate the neoplastic
transformation of a subset of intestinal stem cells [18]. By setting up an in vitro model,
we first confirmed that submission of human colonic epithelial cells to oxidative stress
invariably led to the emergence of resistant clones. The synchronized emergence of cells
rather than individual clones is likely to reflect adaptation rather than the selection of
preexisting cell subpopulations. Furthermore, depending on the experimental setting,
the OSAP induction relies on either ZEB1 or ZEB2 induction. It is more likely that the
two functionally related transcription-factor-encoding genes are induced in response to
different stimuli, a context-dependent variability confirmed in vivo (Figure 7), and drive a
similar genetic program rather than the selection of two distinct, preexisting populations,
according to the stress-induced condition.

Our observations argue in favor of the reversibility of senescence. Indeed, if senescence
was originally considered to be an irreversible process, several emerging studies challenge
this view, whether the senescence is telomeric [50,51], oncogene-induced [52] or therapy-
induced [53–55]. As recently brilliantly reviewed, cellular senescence is an epigenetically
remodeled and reversible stress response condition [56]. DNA-damaged or oxidative
stressed cells undergo large-scale chromatin remodeling, involving histone 3 Lysine 9
trimethylation (H3K9m3) that stably represses S-phase-promoting genes and an upregula-
tion of pro-inflammatory cytokines and chemokines that constitute the senescent-associated
secretory phenotype (SASP). As demonstrated in mouse lymphoid cells, experimentally-
induced depletion in H3K9 methyltransferase Suv39h1 is sufficient to revert therapy-
induced senescence and reinitiate cell proliferation in vivo [53]. Interestingly, research on
induced pluripotent cells demonstrate that senescence and stemness-reacquisition through
genetic reprogramming are intimately linked by overlapping signaling networks [53,57].
Whether cell commitment to a senescence program is a prerequisite for OSAP induction is
plausible, though it has thus far not been experimentally demonstrated. How the OSAP
facilitates escape also requires further investigation. Obviously, several proteins, including
QPRT and APOE, contribute to it. Indeed, with their ability to fuel NAD and dampen
NF-κB activity, respectively, these two proteins were reported to contribute to resistance to
oxidative stress [43,58]. Of note, among the NF-κB targets downregulated in reprogrammed
HCEC cells, several encode components of the SASP (CCL20, CXCL1, and CXCL2, encoding
for MIP-3a, GROα, and GROβ, respectively), known to be essential to maintaining cell
commitment in a senescence program [59,60].

We next addressed the significance of this reprogramming in IBD patients by ssGSEA.
We confirmed that the program was induced in inflamed mucosae of IBD patients and
correlated with previously reported stem-cell signatures [29,47,48], suggesting that this cell
reprogramming takes place in either intestinal stem or precursor cells. By scoring the OSAP
in intestinal epithelial cells that were flow-sorted from chronic-inflammation and sporadic
colorectal carcinogenesis mouse models on the basis of lineage-tracing experiments, we
confirmed that the score was higher in intestinal progenitor cells isolated from adenomas
compared to their normal counterparts in both murine carcinogenesis models [28,29].
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Although a signature score depends on the algorithm used and the state of the cells and can
only be compared between samples from the same analysis, the positive scores observed in
adenomas from AOM/DSS-treated mice supports a preponderant role for inflammation in
the activation of OSAP.

Interestingly, ZEB1 was shown to be induced in chronically inflamed intestinal mucosa
and to promote intestinal inflammation and colitis-associated colorectal cancers through the
repression of the N-methyl-purine glycosylase MPG-encoding gene [61]. This enzyme is
involved in the recognition and excision of DNA damage, and its loss of function is associ-
ated with higher susceptibility to DNA damage, inflammation, and tumor development [62].
Moreover, ZEB1 expression in inflamed or malignant epithelial cells induces higher ROS
and inflammatory cytokine production by mucosal immune cells, strengthening a positive
feedback loop between the two cellular compartments [61]. We propose that increased tol-
erance to ROS through OSAP induction also contributes to the ZEB1 oncogenic arsenal [63].
As orchestrators of genetic programs, ZEB proteins differentially promote tumor initiation
according to the cellular context. In melanocytes, a shift from ZEB2 to ZEB1 was previously
shown to modulate the balance between cell differentiation and proliferation and to thereby
drive tumor initiation and secondary site colonization [64,65]. In human mammary epithe-
lial cells (HMEC-hTERT), both ZEB proteins similarly promote cell commitment to EMT,
favoring their neoplastic transformation [19]. The determinants between the OSAP and EMT
program-induction in mammary and colonic epithelial cells are yet to be determined. Further
investigations are needed to decipher the underlying mechanisms.

The etiopathology of inflammatory bowel diseases is multifactorial, involving ge-
netic predisposition, mucosal barrier dysfunction, and an alteration of the microbiota
composition (dysbiosis) and of the immune system as well as environmental and lifestyle
factors [66]. Multiple approaches have been developed to attempt to resolve inflammation,
including pharmacological treatments with aminosalicylates and oral corticoids and the use
of immunomodulators, pro-inflammatory cytokine inhibitors (anti-TNF, and anti IL22-23
therapies) or small molecules (e.g., JACK inhibitors). Novel therapies improving intesti-
nal microecology with antibiotics, probiotics, prebiotics, postbiotics, synbiotics, and fecal
microbiota transplantation have additionally emerged [67]. Unfortunately, the subclinical,
persistent inflammation leads to conventional and non-conventional dysplasia and an
increased risk of cancer development. The identification of intestinal cell reprogramming
as an adaptation process to reactive oxygen species in the time course of their malignant
conversion offers the perspective that several of the associated proteins could, in the future,
be used as early predictive markers of a risk of developing cancer.

5. Conclusions

We herein demonstrated that intestinal epithelial cells can adapt to chronic inflam-
mation through a partial genetic reprogramming orchestrated by the ZEB transcription
factor in vitro. We confirmed the biological relevance of this reprogramming in Crohn’s
and ulcerative colitis disease patients by ssGSEA and demonstrated that the program is
activated in intestinal precursor cells in the early steps of murine intestinal carcinogenesis,
especially during chronic inflammation. These data sustain the determinant role of cell
plasticity in the ability of intestinal stem/early precursor cells to adapt to stress, and is
likely what Sphyris and collaborators named their emancipation [68], gain of autonomy to
the niche during tumor initiation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15030973/s1, File S1: Supplementary Materials and Methods
section and references, Figure S1: (A) Confirmation of the ectopic expression of murine Zeb transcripts
by qRT-PCR; (B) NF-κB is aberrantly activated in parental HCEC-hTERT cells. Figure S2: Several
OSAP-associated proteins contribute to cell adaptation to stress; Table S1: Enriched GOBP pathways
from OSAP down-regulated genes; Table S2: Enriched GOBP pathways from OSAP up-regulated
genes. Uncropped Western blots are provided in Supplementary File S2. References [47,69–76] are
cited in Supplementary Materials.
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