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Weak solutions with bounded support to an
Euler-type flocking model

Debora Amadori and Cleopatra Christoforou

AbstractWe give an overview of the recents results obtained in [1] on the existence
and time-asymptotic flocking ofweak solutions to a hydrodynamicmodel of flocking-
type with all-to-all interaction kernel in one-space dimension. An appropriate notion
of entropy weak solutions with bounded support is described, to capture the behavior
of solutions to the Cauchy problem with any BV initial data that has finite total mass
confined in a bounded interval and initial density uniformly positive therein. In
addition, a suitable condition on the initial data is provided that allows us to show
time-asymptotic flocking for such solutions.

1 Introduction

This article serves as an overview of the results obtained in [1] on weak solutions
to the hydrodynamic model of flocking-type in one-space dimension that takes the
form{

∂t ρ + ∂x(ρv) = 0,
∂t (ρv) + ∂x

(
ρv2 + p(ρ)

)
=

∫
R

K(x, x ′)ρ(x, t)ρ(x ′, t) (v(x ′, t) − v(x, t)) dx ′

(1)
where (x, t) ∈ R×[0,+∞). Here ρ ≥ 0 stands for the mass variable, v for the velocity,
p for the pressure and K = K(x, x ′) ≥ 0 for a symmetric interaction kernel.
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Self-organization is an area that has received alot of attention in the research
community and especially for systems such as flock of birds, a swarm of bacteria or
a school of fish and its study gives rise to newmathematical challenges. Especially, in
an effort to understand the emergence of flocking behavior, manymathematical mod-
els have been introduced arising from the inspiring work of Cucker and Smale [8],
while led to many subsequent studies; cf. [6, 29] and the references therein. Most
results on flocking models involve results at the particle level, the corresponding
kinetic equation or its hydrodynamic formulation (cf. [17, 16, 27, 22, 13, 14, 15, 23])
and so far this subject has been investigated mainly in the context of solutions with
no discontinuities.

The Euler-type flocking system (1) with pressure

p(ρ) = α2ρ, α > 0 . (2)

is rigorously derived as the hydrodynamic limit of the kinetic Cucker-Smale flocking
model on (x, t, ω) ∈ (0,T)×Rd×Rd by Karper, Mellet and Trivisa [23]. In particular,
they study the singular limit corresponding to strong noise and strong local alignment
with the alignment operator being the usual Cucker-Smale operator, while a diffusion
term is present in the kinetic equation and show the convergence of weak solutions
to the kinetic equation to strong (suitably smooth) solutions of the Euler system with
pressure (2). We remark that, in the literature, hydrodynamic models for flocking are
often described by a pressureless Euler system that are obtained from a microscopic
description of the particlesmotionwithout a stochastic forcing.As a consequence, the
system with pressure received less attention than the pressureless one, in particular
for weak solutions, that is the class of solutions we aim for. A result on smooth,
space-periodic solutions to this model with pressure is established in [7].

In [1], we assume that the communication rate is of all-to-all type, that is

K(x, x ′) ≡ 1 . (3)

Although this assumption, K = 1, simplifies the system and the nonlocal term turns
into a local term, this special case still possesses many obstacles in the analysis
point of view, in order to capture the existence of solutions and time-asymptotic
flocking. In addition, the work on this special case indicates how the mechanism of
the dissipative behavior of the solutions works and we expect this to be crucial in the
extension of this analysis to general kernels.

We consider the Cauchy problem and assign initial data

(ρ, m)(x, 0) = (ρ0(x), m0(x)) x ∈ R , (4)

for the density ρ = ρ(x, t), and momentum m = ρv. To capture the emergent behavior
of self-organized systems, we assume that the initial total mass ρ is confined in a
bounded interval, and is uniformly positive in there and the initial momentum m0
taken to 0 outside that region, i.e. there exist a0 < b0 such that

supp{(ρ0, m0)} ⊂ I0 Û= [a0, b0] , ess inf
I0

ρ0 > 0 , (5)



Weak solutions with bounded support to an Euler-type flocking model 3

while we use v0 = m0/ρ0 only in I0.
To study weak solutions in the context of flocking, we need to introduce a proper

notion of entropy weak solution for which the support is bounded at any given time
t > 0 in between the extremal particle paths, that is, there exists two absolutely
continuous curves t 7→ a(t), b(t), t ∈ [0,+∞) with

a(0) = a0 , b(0) = b0 ; a(t) < b(t) for all t > 0 (6)

and
a′(t) = v(a(t)+, t) , b′(t) = v(b(t)−, t) for a.e. t > 0 (7)

such that
supp{(ρ, m)(·, t)} ⊂ I(t) Û= [a(t), b(t)] , t > 0 . (8)

The following notion of entropy weak solutions with concentration is motivated
by the ad-hoc boundary condition:

The vacuum region is connected with the non-vacuum one by a shock discontinuity .

This choice is made in order to allow a sharp front with finite speed to arise as
expected in flocking. In this way, we exclude the case of a rarefaction connecting a
vacuum region with a non-vacuum since in such a case, due to the pressure law (2),
the front would not have a proper interpretation in terms of flocking because of the
unbounded maximal speed. 1

We assume that ∬
{ρφt + mφx} dxdt = 0 , (9)

holds true for all φ ∈ C∞0 (R × (0,∞)). Therefore, the Rankine-Hugoniot condition
[m] = Ûx[ρ] must hold along discontinuities x(t), in particular along the free bound-
aries a(t) and b(t), which is consistent with (7). As a consequence, conservation of
mass holds:

M(t) =
∫
R
ρ(x, t) dx =

∫
I (t)

ρ(x, t) dx =
∫
R
ρ0(x) dx =: M , ∀ t ≥ 0 . (10)

The appropriate definition now follows:

Definition 1 Given the initial data (ρ0, m0) ∈ BV(R), together with (5), let (ρ, m) :
R × [0,+∞) → R2 be a function with the following properties:

• the map t 7→ (ρ, m)(·, t) ∈ L1
loc
(R) ∩ BV(R) is continuous in L1

loc
;

1 For instance, if a rarefaction of the 1st family connects the two states (ρ`, v` ) and (ρ̄, v(ρ̄)), then
using the pressure term (2), one has

v(ρ̄) = v` −

∫ ρ̄

ρ`

1
s

√
p′(s) ds = v` − α ln

(
ρ̄

ρ`

)
, 0 < ρ̄ ≤ ρ` .

As ρ̄→ 0+, then v(ρ̄) → ∞.
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• lim
t→0+
(ρ, m)(·, t) = (ρ0, m0) in L1

loc
(R);

• there exist two locally Lipschitz curves t 7→ a(t), b(t), t ∈ [0,+∞) and a value
ρin f > 0 such that (6), (7), (8) hold and

ess inf
I (t)

ρ(·, t) ≥ ρin f > 0 ∀ t > 0 . (11)

Then (ρ, m) is an entropy weak solution with concentration along a(t) and b(t) of the
problem (1), (4) with (2) and (3), if

(a) the integral identities (9) and∬ {
mφt +

[
m2

ρ
+ p(ρ)

]
φx

}
dxdt −

∬
[mM − ρM1(t)] φ dxdt

−

∫ ∞

0
[p(ρ(b(t)−, t))φ(b(t), t) − p(ρ(a(t)+, t))φ(a(t), t)] dt = 0 , (12)

hold true on R × (0,∞) for all test functions φ ∈ C∞0 (R × (0,∞)), with M the
conserved total mass given at (10),

M1(t) =
∫
R
m(x, t)dx + Pb(t) − Pa(t) , (13)

and 
Pb(t) :=

∫ t

0
e−M(t−s)p(ρ(b(s)−, s)) ds ,

Pa(t) :=
∫ t

0
e−M(t−s)p(ρ(a(s)+, s)) ds ;

(14)

(b) the solution is entropy weak for every pair of convex entropy-entropy flux (η, q)
functions for the system (1) , i.e. the inequality

∂tη(ρ, m) + ∂xq(ρ, m) ≤ ηm {ρM1(t) − mM}

holds in the sense of distributions on the open set Ω = {(x, t); t > 0 , x ∈
(a(t), b(t))} ⊂ R × (0,+∞).

As a consequence of the boundary condition above and in conjunction with the
above definition ofweak solutions, we deduce a conservation ofmomentumproperty.
More precisely, we introduce a quantity that we call total momentum m̂, with two
delta shocks supported on the free boundaries a(t) and b(t), that is the distribution

m̂(·, t) := m(·, t) + δb(t)Pb(t) − δa(t)Pa(t) , t > 0 , (15)

where δa denotes the Dirac delta distribution on R with mass at x = a. This new
singularity of the total momentum m̂ along the free boundaries a(t) and b(t) is known
as delta shock and references can be found in Dafermos [9], Chapter 9. In what
follows, we use the following standard notation < ·, · >:
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< m̂(·, t), φ(·, t) >:=
∫
I (t)

m(x, t)φ(x, t)dx + Pb(t)φ(b(t), t) − Pa(t)φ(a(t), t), t > 0

as the value of the functional m̂ over C∞0 , for all test functions φ ∈ C∞0 (R × R+),
noting here that m = 0 for x < I(t). Now, by definition (14), we observe that

P′b(t) +MPb(t) = p(ρ(b(t)−, t)) ,

and therefore∫ ∞

0
< δb(t)Pb(t), φt (·, t) −Mφ > dt = −

∫ ∞

0
p(ρ(b(t)−, t))φ(b(t), t) dt .

Thus, we are led to the identity:∫ ∞

0
< m̂(·, t), φt (·, t) −Mφ > dt =

∬
Ω

m (φt −Mφ) dxdt

−

∫ ∞

0
[p(ρ(b(t)−, t))φ(b(t), t) − p(ρ(a(t)+, t))φ(a(t), t)] dt .

Hence, the integral identity (12) reduces to:∫ ∞

0
< m̂(·, t), φt (·, t) > dt +

∬ [
m2

ρ
+ p(ρ)

]
φxdxdt

+

∬
ρM1(t)φ dxdt −M

∫ ∞

0
< m̂(·, t), φ > dt = 0 .

If we choose the test function φ(x, t) = φ1(x)ψ(t), with φ1(x) = 1 for all x ∈
∪t∈[T1,T2]I(t) and ψ(t) = 0 for t < [T1,T2], with 0 < T1 < T2, and notice that
M1(t) =< m̂(·, t), φ1 >, we get M1(T2) − M1(T1) = 0. Since this holds true for
arbitrary times, 0 < T1 < T2, we deduce the conservation of (extended) momentum
M1(t). By the time continuity of

∫
m(·, t) dx and the definition (14), we conclude that

M1(t) = M1(0+) that is∫
I (t)

m(x, t) dx + Pb(t) − Pa(t) =
∫
R
m0(x) dx =: M1 ∀ t ≥ 0 . (16)

2 Theorems

In this section, we state the main results of [1]. More precisely:
- Theorem 1 in Section 2.1 concerns the global in time existence of solutions

obeying the notion introduced in Definition 1 without any restriction on the size of
the total variation of the initial data, that conserve mass and momentum and at the
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same time, the non-vacuum region Ω is separated by the vacuum ones by the two
free boundaries alongside delta shocks, which are present in the total momentum;

- Theorem 2 in Section 2.2 states that, under an appropriate condition on the
initial data, the solution admits time-asymptotic flocking.

2.1 Global Existence

First, we state the result on global existence in time of entropy weak solutions with
concentration to (1) with bounded support.

Theorem 1 Assume that the initial data (ρ0, m0) ∈ BV(R) and satisfy (5) with pres-
sure (2). Then the Cauchy problem (1), (4) with (3), admits an entropy weak solution
with concentration (ρ, m) in the sense of Definition 1. Moreover, conservation of mass
(10) and of momentum (16) hold true.

From the definition of solution (ρ, m), we clarify that we use variable v only in the
support I(t) for all t > 0 satisfying v = mρ , where it is well defined, while only the
variables ρ and m are used in the complement of I(t). Now, by conservation of mass
and momentum, we have the values M and M1 in (10) and (16) respectively, and the
average velocity v̄ defined by

v̄ Û= M1/M . (17)

By means of (10) and (16), system (1) rewrites as{
∂t ρ + ∂x(ρv) = 0,
∂t (ρv) + ∂x

(
ρv2 + p(ρ)

)
= −Mρ (v − v̄) .

(18)

Thus, to prove Theorem 1, it is equivalent to establish an entropy weak solution with
concentration to (18) for the initial data assumed in the theorem that conserves mass
and momentum. Now, system (18) belongs to the class of system of balance laws
and the Cauchy problem for strictly hyperbolic systems of balance has been studied
in [11, 10] under appropriate conditions. However, the previous results do not apply
to system (18) because of large data and the loss of strict hyperbolicity due to the
vacuum present in R \ [a0, b0]. For the notion of the physical vacuum boundary
for (18), we refer to [24, 25]. About the asymptotic behavior of the solutions it is
conjectured to obey the porous media equation and for the case of the pressure (2),
we refer to [19], but when the initial density ρ0 tends to a positive value as x → ±∞,
which is not our case. Other works [18, 20] study the system with the pressure
p(ρ) = ργ with γ > 1 and therefore, their analysis cannot be applied again here.

One of the main challenges to construct a convergent approximate sequence to
system (18), (4) is the loss of strict hyperbolicity. To overcome this, we transform
the problem into Lagrangian coordinates in the spirit of Wagner [30]. Recasting sys-
tem (18) from Eulerian (ρ(x, t), v(x, t)) into the Lagrangian variables (u(y, t), v(y, t)),
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we get the equations {
∂τu − ∂yv = 0,
∂τv + ∂y(α

2/u) = −M(v − v̄)
(19)

with the domain {(y, t); t ≥ 0 , y ∈ (0,M)} . However, the equivalence of weak
solutions between the Eulerian and Lagrangian solutions does not apply from [30]
because of the finite mass condition (5) in our case. Actually, because of this, the
problem in Lagrangian coordinates is not Cauchy any more but boundary value
problem and further difficulties arise. Now, system (19) has been studied but mostly
in the context of the Cauchy problem or with different boundary conditions, cf. [28,
11, 26, 2, 12].

Our strategy to prove Theorem 1 is: First, using the Riemann solution to (18)
around the vacuum that is admissible for the flocking model and the definition of
weak solution with concentration, we recast the problem (18), (4) in Lagrangian
variables to (19) with non-reflecting boundary conditions at y = 0,M. Actually, the
boundary conditions are expressed by the fact that, when a wave-front reaches the
boundary, there is no resulting emitted wave. This is the natural counterpart to the
behavior of the free boundaries that, in Eulerian variables, delimit the non-vacuum
region. Next, we construct approximate solutions (uν, vν) to (18), (4) using the front
tracking algorithm (cf. Bressan [5] and Holden–Risebro [21]), define appropriate
Lyapunov functionals and show that the total variation in space and time of the
approximate sequence remains bounded. Combining these results, we prove the
convergence to an entropy weak solution of the system in Lagrangian coordinates.
The last step is to transform this analysis to problem (18) in Eulerian. We work, at
the level of the approximate solutions, to show the equivalence between Eulerian and
Lagrangian variables in the spirit of [30] and within the domain I(t) = [a(t), b(t)]
where no vacuum is present, see Fig. 1. In this way, we construct the approximate

Fig. 1 On the left, the domain in Lagrangian variables for (uν, vν ) and on the right, the domain in
Eulerian variables for (ρν, vν )

solutions (ρν, vν) to (18) that inherits the convergence property from the change of
coordinates and it is appropriately extended to the half-plane. Also, this coordinate
transformation together with the approximation scheme allow us to pass from the
non-reflecting boundary conditions at y = 0,M to the free boundaries a(t) < b(t)
in the Eulerian coordinates. It is shown finally that, in the limit, (ρν, vν) converges
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to an entropy weak solution with concentration that conserves mass and (extended)
momentum.

2.2 Time-Asymptotic Flocking

Another important issuewe address, except of the global in time existence, is the long-
time behavior of the entropy weak solution with concentration to (1), (4) with (2),
which is interesting in the context of self-organization. The terminology “flocking"
corresponds to the phenomenon in which self-organized individuals, using only
limited environmental information and simple rules, get organized into an ordered
motion. In the spirit of [17, 16], this behavior is captured in the following definition:

Definition 2 We say that the entropy weak solution with concentration (ρ, m)(x, t) to
system (1), admits time-asymptotic flocking if:

1. the support I(t) of the solution remains bounded for all times, i.e.

sup
0≤t<∞

{b(t) − a(t)} < ∞ . (20)

2. the velocity satisfies

lim
t→∞

ess sup
x1,x2∈I (t)

|v(x1, t) − v(x2, t)| = 0. (21)

Indeed, condition (20) assures that the support of the solution is uniformly bounded,
thus defining the “flock", while condition (21) yields that alignment occurs, i.e.
the diameter of the set of velocity states within the support I(t) goes to zero time-
asymptotically.

We observe that solutions obtained in Theorem 1 satisfy condition (20) imme-
diately by combining (8), (11) and (10). Therefore, to establish the time-asymptotic
flocking property, it suffices to show (21), or equivalently that

lim
t→∞

ess sup
x1,x2∈I (t)

|v(x1, t) − v̄| = 0

where v̄ is defined at (17). Assuming that the initial data satisfy

e2qM2 < αmax {ρ0(a0+), ρ0(b0−)} , (22)

where q stands for the initial bulk:

q :=
1
2

TV {ln(ρ0)} +
1

2α
TV {v0} (23)

and TV the total variation in the support I0, we show that flocking occurs. In fact, if
initial bulk q is controlled by the initial density at the endpoints a0 and b0 according
to (22), then velocity decays to v̄ at an exponential in time rate. The result is:
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Theorem 2 Let (ρ, m) be the entropy weak solution with concentration to (1), (2),
(4) with (3), the initial data (ρ0, m0) ∈ BV(R) satisfying (5) and with q > 0 given
in (23) as obtained in Theorem 1. Suppose that (22) holds true, then the solution
(ρ, m) admits time-asymptotic flocking. More precisely, the oscillation of the velocity
decays exponentially fast, i.e. there exists t0 > 0 such that

ess sup
x1,x2∈I (t)

|v(x1, t) − v(x2, t)| ≤ C ′2e−C
′
1t, ∀ t ≥ t0 (24)

for some positive constants C ′1, C ′2.

Our strategy to proveTheorem2 involves careful analysis of the long time behavior
of the approximate solutions constructed in the existence part using the results
about the wave strength dissipation for the system of isothermal flow that is, the
homogeneous version of (1)–(2) as obtained in [2, 3, 4]. These properties are used
to provide uniform bounds on the vertical traces of approximate solutions and for
the time-asymptotic analysis. In addition, we introduce a new functional, called the
total variation that is weighted by generation order

V(t) =
∑
k≥1

ξkFk(t)

for ξ ≥ 1 taking values in an appropriate interval and Fk(t) being the total variation
functional of generation k. This allows us to detect a geometric decay property in
terms of the number of wave reflections for the homogeneous system and it turns out
that we can control under assumption (22), the possible increase of the functional
which is due to the reflections produced by the damping term leading to the time-
exponential decay established in (24).

In a work in progress, we are going to relax the sufficient condition (22) to allow
for time-asymptotic flocking with any (ρ0, m0) ∈ BV(R) that satisfies (5).
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