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Weak solutions with bounded support to an Euler-type flocking model

 on the existence and time-asymptotic flocking of weak solutions to a hydrodynamic model of flockingtype with all-to-all interaction kernel in one-space dimension. An appropriate notion of entropy weak solutions with bounded support is described, to capture the behavior of solutions to the Cauchy problem with any BV initial data that has finite total mass confined in a bounded interval and initial density uniformly positive therein. In addition, a suitable condition on the initial data is provided that allows us to show time-asymptotic flocking for such solutions.

Introduction

This article serves as an overview of the results obtained in [START_REF] Amadori | BV solutions for a hydrodynamic model of flocking type with all-to-all interaction kernel[END_REF] on weak solutions to the hydrodynamic model of flocking-type in one-space dimension that takes the form

∂ t ρ + ∂ x (ρv) = 0, ∂ t (ρv) + ∂ x ρv 2 + p(ρ) = ∫ R K(x, x )ρ(x, t)ρ(x , t) (v(x , t) -v(x, t)) dx (1 
) where (x, t) ∈ R×[0, +∞). Here ρ ≥ 0 stands for the mass variable, v for the velocity, p for the pressure and K = K(x, x ) ≥ 0 for a symmetric interaction kernel. Self-organization is an area that has received alot of attention in the research community and especially for systems such as flock of birds, a swarm of bacteria or a school of fish and its study gives rise to new mathematical challenges. Especially, in an effort to understand the emergence of flocking behavior, many mathematical models have been introduced arising from the inspiring work of Cucker and Smale [START_REF] Cucker | Emergent behavior in flocks[END_REF], while led to many subsequent studies; cf. [START_REF] Carrillo | Particle, kinetic, and hydrodynamic models of swarming, In Mathematical modeling of collective behavior in socio-economic and life sciences[END_REF][START_REF] Shvydkoy | Dynamics and Analysis of Alignment Models of Collective Behavior[END_REF] and the references therein. Most results on flocking models involve results at the particle level, the corresponding kinetic equation or its hydrodynamic formulation (cf. [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF][START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and mean-field limit[END_REF][START_REF] Motsch | A new model for self-organized dynamics and its flocking behavior[END_REF][START_REF] Karper | Existence of weak solutions to kinetic flocking models[END_REF][START_REF] Ha | A global unique solvability of entropic weak solution to the one-dimensional pressureless Euler system with a flocking dissipation[END_REF][START_REF] Ha | A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid[END_REF][START_REF] Ha | Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain[END_REF][START_REF] Karper | Hydrodynamic limit of the kinetic Cucker-Smale model[END_REF]) and so far this subject has been investigated mainly in the context of solutions with no discontinuities.

The Euler-type flocking system (1) with pressure

p(ρ) = α 2 ρ , α > 0 . ( 2 
)
is rigorously derived as the hydrodynamic limit of the kinetic Cucker-Smale flocking model on (x, t, ω) ∈ (0, T)×R d ×R d by Karper, Mellet and Trivisa [START_REF] Karper | Hydrodynamic limit of the kinetic Cucker-Smale model[END_REF]. In particular, they study the singular limit corresponding to strong noise and strong local alignment with the alignment operator being the usual Cucker-Smale operator, while a diffusion term is present in the kinetic equation and show the convergence of weak solutions to the kinetic equation to strong (suitably smooth) solutions of the Euler system with pressure (2). We remark that, in the literature, hydrodynamic models for flocking are often described by a pressureless Euler system that are obtained from a microscopic description of the particles motion without a stochastic forcing. As a consequence, the system with pressure received less attention than the pressureless one, in particular for weak solutions, that is the class of solutions we aim for. A result on smooth, space-periodic solutions to this model with pressure is established in [START_REF] Choi | The global Cauchy problem for compressible Euler equations with a nonlocal dissipation[END_REF].

In [START_REF] Amadori | BV solutions for a hydrodynamic model of flocking type with all-to-all interaction kernel[END_REF], we assume that the communication rate is of all-to-all type, that is

K(x, x ) ≡ 1 . (3) 
Although this assumption, K = 1, simplifies the system and the nonlocal term turns into a local term, this special case still possesses many obstacles in the analysis point of view, in order to capture the existence of solutions and time-asymptotic flocking. In addition, the work on this special case indicates how the mechanism of the dissipative behavior of the solutions works and we expect this to be crucial in the extension of this analysis to general kernels. We consider the Cauchy problem and assign initial data

(ρ, m)(x, 0) = (ρ 0 (x), m 0 (x)) x ∈ R , (4) 
for the density ρ = ρ(x, t), and momentum m = ρv. To capture the emergent behavior of self-organized systems, we assume that the initial total mass ρ is confined in a bounded interval, and is uniformly positive in there and the initial momentum m 0 taken to 0 outside that region, i.e. there exist a 0 < b 0 such that

supp{(ρ 0 , m 0 )} ⊂ I 0 = [a 0 , b 0 ] , ess inf I 0 ρ 0 > 0 , (5) 
while we use v 0 = m 0 /ρ 0 only in I 0 .

To study weak solutions in the context of flocking, we need to introduce a proper notion of entropy weak solution for which the support is bounded at any given time t > 0 in between the extremal particle paths, that is, there exists two absolutely continuous curves t → a(t), b(t), t ∈ [0, +∞) with

a(0) = a 0 , b(0) = b 0 ; a(t) < b(t) for all t > 0 (6) 
and

a (t) = v(a(t)+, t) , b (t) = v(b(t)-, t) for a.e. t > 0 (7) such that supp{(ρ, m)(•, t)} ⊂ I(t) = [a(t), b(t)] , t > 0 . (8) 
The following notion of entropy weak solutions with concentration is motivated by the ad-hoc boundary condition:

The vacuum region is connected with the non-vacuum one by a shock discontinuity . This choice is made in order to allow a sharp front with finite speed to arise as expected in flocking. In this way, we exclude the case of a rarefaction connecting a vacuum region with a non-vacuum since in such a case, due to the pressure law (2), the front would not have a proper interpretation in terms of flocking because of the unbounded maximal speed. 1

We assume that

∬ {ρφ t + mφ x } dxdt = 0 , (9) 
holds true for all φ ∈ C ∞ 0 (R × (0, ∞)). Therefore, the Rankine-Hugoniot condition [m] = x[ρ] must hold along discontinuities x(t), in particular along the free boundaries a(t) and b(t), which is consistent with [START_REF] Choi | The global Cauchy problem for compressible Euler equations with a nonlocal dissipation[END_REF]. As a consequence, conservation of mass holds:

M(t) = ∫ R ρ(x, t) dx = ∫ I(t) ρ(x, t) dx = ∫ R ρ 0 (x) dx =: M , ∀ t ≥ 0 . ( 10 
)
The appropriate definition now follows:

Definition 1 Given the initial data (ρ 0 , m 0 ) ∈ BV(R), together with (5), let (ρ, m) : R × [0, +∞) → R 2 be a function with the following properties:

• the map t → (ρ, m)(•, t) ∈ L 1 loc (R) ∩ BV(R) is continuous in L 1 loc ;
1 For instance, if a rarefaction of the 1 st family connects the two states (ρ , v ) and ( ρ, v( ρ)), then using the pressure term (2), one has

v( ρ) = v - ∫ ρ ρ 1 s p (s) ds = v -α ln ρ ρ , 0 < ρ ≤ ρ . As ρ → 0+, then v( ρ) → ∞. • lim t→0+ (ρ, m)(•, t) = (ρ 0 , m 0 ) in L 1 loc (R);
• there exist two locally Lipschitz curves t → a(t), b(t), t ∈ [0, +∞) and a value ρ in f > 0 such that ( 6), ( 7), ( 8) hold and ess inf

I(t) ρ(•, t) ≥ ρ in f > 0 ∀ t > 0 . (11) 
Then (ρ, m) is an entropy weak solution with concentration along a(t) and b(t) of the problem ( 1), ( 4) with ( 2) and ( 3), if (a) the integral identities [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics, Fourth Edition[END_REF] and

∬ mφ t + m 2 ρ + p(ρ) φ x dxdt - ∬ [m M -ρ M 1 (t)] φ dxdt - ∫ ∞ 0 [p(ρ(b(t)-, t))φ(b(t), t) -p(ρ(a(t)+, t))φ(a(t), t)] dt = 0 , (12) 
hold true on R × (0, ∞) for all test functions φ ∈ C ∞ 0 (R × (0, ∞)), with M the conserved total mass given at [START_REF] Dafermos | Hyperbolic systems of balance laws with weak dissipation[END_REF],

M 1 (t) = ∫ R m(x, t)dx + P b (t) -P a (t) , (13) and  
          P b (t) := ∫ t 0 e -M(t-s) p(ρ(b(s)-, s)) ds , P a (t) := ∫ t 0 e -M(t-s) p(ρ(a(s)+, s)) ds ; (14) 
(b) the solution is entropy weak for every pair of convex entropy-entropy flux (η, q) functions for the system (1) , i.e. the inequality

∂ t η(ρ, m) + ∂ x q(ρ, m) ≤ η m {ρM 1 (t) -mM} holds in the sense of distributions on the open set Ω = {(x, t); t > 0 , x ∈ (a(t), b(t))} ⊂ R × (0, +∞).
As a consequence of the boundary condition above and in conjunction with the above definition of weak solutions, we deduce a conservation of momentum property. More precisely, we introduce a quantity that we call total momentum m, with two delta shocks supported on the free boundaries a(t) and b(t), that is the distribution

m(•, t) := m(•, t) + δ b(t) P b (t) -δ a(t) P a (t) , t > 0 , (15) 
where δ a denotes the Dirac delta distribution on R with mass at x = a. This new singularity of the total momentum m along the free boundaries a(t) and b(t) is known as delta shock and references can be found in Dafermos [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics, Fourth Edition[END_REF], Chapter 9. In what follows, we use the following standard notation < •, • >:

< m(•, t), φ(•, t) >:= ∫ I (t) m(x, t)φ(x, t)dx + P b (t)φ(b(t), t) -P a (t)φ(a(t), t), t > 0
as the value of the functional m over C ∞ 0 , for all test functions φ ∈ C ∞ 0 (R × R + ), noting here that m = 0 for x I(t). Now, by definition [START_REF] Ha | A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid[END_REF], we observe that

P b (t) + MP b (t) = p(ρ(b(t)-, t)) ,
and therefore

∫ ∞ 0 < δ b(t) P b (t), φ t (•, t) -Mφ > dt = - ∫ ∞ 0 p(ρ(b(t)-, t))φ(b(t), t) dt .
Thus, we are led to the identity:

∫ ∞ 0 < m(•, t), φ t (•, t) -Mφ > dt = ∬ Ω m (φ t -Mφ) dxdt - ∫ ∞ 0 [p(ρ(b(t)-, t))φ(b(t), t) -p(ρ(a(t)+, t))φ(a(t), t)] dt .
Hence, the integral identity (12) reduces to:

∫ ∞ 0 < m(•, t), φ t (•, t) > dt + ∬ m 2 ρ + p(ρ) φ x dxdt + ∬ ρ M 1 (t)φ dxdt -M ∫ ∞ 0 < m(•, t), φ > dt = 0 .
If we choose the test function φ(x, t) = φ 1 (x)ψ(t), with φ 1 (x) = 1 for all x ∈ ∪ t ∈[T 1 ,T 2 ] I(t) and ψ(t) = 0 for t [T 1 , T 2 ], with 0 < T 1 < T 2 , and notice that M 1 (t) =< m(•, t), φ 1 >, we get M 1 (T 2 ) -M 1 (T 1 ) = 0. Since this holds true for arbitrary times, 0 < T 1 < T 2 , we deduce the conservation of (extended) momentum M 1 (t). By the time continuity of ∫ m(•, t) dx and the definition ( 14), we conclude that

M 1 (t) = M 1 (0+) that is ∫ I(t) m(x, t) dx + P b (t) -P a (t) = ∫ R m 0 (x) dx =: M 1 ∀ t ≥ 0 . ( 16 
)

Theorems

In this section, we state the main results of [START_REF] Amadori | BV solutions for a hydrodynamic model of flocking type with all-to-all interaction kernel[END_REF]. More precisely:

-Theorem 1 in Section 2.1 concerns the global in time existence of solutions obeying the notion introduced in Definition 1 without any restriction on the size of the total variation of the initial data, that conserve mass and momentum and at the same time, the non-vacuum region Ω is separated by the vacuum ones by the two free boundaries alongside delta shocks, which are present in the total momentum; -Theorem 2 in Section 2.2 states that, under an appropriate condition on the initial data, the solution admits time-asymptotic flocking.

Global Existence

First, we state the result on global existence in time of entropy weak solutions with concentration to (1) with bounded support.

Theorem 1 Assume that the initial data (ρ 0 , m 0 ) ∈ BV(R) and satisfy [START_REF] Bressan | Hyperbolic Systems of Conservation Laws -The one-dimensional Cauchy problem[END_REF] with pressure [START_REF] Amadori | Global BV solutions and relaxation limit for a system of conservation laws[END_REF]. Then the Cauchy problem (1), ( 4) with (3), admits an entropy weak solution with concentration (ρ, m) in the sense of Definition 1. Moreover, conservation of mass [START_REF] Dafermos | Hyperbolic systems of balance laws with weak dissipation[END_REF] and of momentum [START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and mean-field limit[END_REF] hold true.

From the definition of solution (ρ, m), we clarify that we use variable v only in the support I(t) for all t > 0 satisfying v = m ρ , where it is well defined, while only the variables ρ and m are used in the complement of I(t). Now, by conservation of mass and momentum, we have the values M and M 1 in ( 10) and ( 16) respectively, and the average velocity v defined by

v = M 1 /M . (17) 
By means of ( 10) and ( 16), system (1) rewrites as

∂ t ρ + ∂ x (ρv) = 0, ∂ t (ρv) + ∂ x ρv 2 + p(ρ) = -Mρ (v -v) . (18) 
Thus, to prove Theorem 1, it is equivalent to establish an entropy weak solution with concentration to [START_REF] Huang | Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum[END_REF] for the initial data assumed in the theorem that conserves mass and momentum. Now, system [START_REF] Huang | Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum[END_REF] belongs to the class of system of balance laws and the Cauchy problem for strictly hyperbolic systems of balance has been studied in [START_REF] Dafermos | A system of hyperbolic conservation laws with frictional damping[END_REF][START_REF] Dafermos | Hyperbolic systems of balance laws with weak dissipation[END_REF] under appropriate conditions. However, the previous results do not apply to system (18) because of large data and the loss of strict hyperbolicity due to the vacuum present in R \ [a 0 , b 0 ]. For the notion of the physical vacuum boundary for [START_REF] Huang | Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum[END_REF], we refer to [START_REF] Liu | Compressible flow with damping and vacuum[END_REF][START_REF] Liu | Compressible flow with vacuum and physical singularity[END_REF]. About the asymptotic behavior of the solutions it is conjectured to obey the porous media equation and for the case of the pressure (2), we refer to [START_REF] Huang | Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum[END_REF], but when the initial density ρ 0 tends to a positive value as x → ±∞, which is not our case. Other works [START_REF] Huang | Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum[END_REF][START_REF] Huang | L 1 convergence to the Barenblatt solution for compressible Euler equations with damping[END_REF] study the system with the pressure p(ρ) = ρ γ with γ > 1 and therefore, their analysis cannot be applied again here. One of the main challenges to construct a convergent approximate sequence to system (18), ( 4) is the loss of strict hyperbolicity. To overcome this, we transform the problem into Lagrangian coordinates in the spirit of Wagner [START_REF] Wagner | Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions[END_REF]. Recasting system [START_REF] Huang | Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum[END_REF] from Eulerian (ρ(x, t), v(x, t)) into the Lagrangian variables (u(y, t), v(y, t)), we get the equations

∂ τ u -∂ y v = 0, ∂ τ v + ∂ y (α 2 /u) = -M(v -v) ( 19 
)
with the domain {(y, t); t ≥ 0 , y ∈ (0, M)} . However, the equivalence of weak solutions between the Eulerian and Lagrangian solutions does not apply from [START_REF] Wagner | Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions[END_REF] because of the finite mass condition (5) in our case. Actually, because of this, the problem in Lagrangian coordinates is not Cauchy any more but boundary value problem and further difficulties arise. Now, system [START_REF] Huang | Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum[END_REF] has been studied but mostly in the context of the Cauchy problem or with different boundary conditions, cf. [START_REF] Nishida | Global solution for an initial boundary value problem of a quasilinear hyperbolic system[END_REF][START_REF] Dafermos | A system of hyperbolic conservation laws with frictional damping[END_REF][START_REF] Luo | Global BV solutions to a p-system with relaxation[END_REF][START_REF] Amadori | Global BV solutions and relaxation limit for a system of conservation laws[END_REF][START_REF] Frid | Initial-boundary value problems for conservation laws[END_REF]. Our strategy to prove Theorem 1 is: First, using the Riemann solution to (18) around the vacuum that is admissible for the flocking model and the definition of weak solution with concentration, we recast the problem ( 18), (4) in Lagrangian variables to [START_REF] Huang | Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum[END_REF] with non-reflecting boundary conditions at y = 0, M. Actually, the boundary conditions are expressed by the fact that, when a wave-front reaches the boundary, there is no resulting emitted wave. This is the natural counterpart to the behavior of the free boundaries that, in Eulerian variables, delimit the non-vacuum region. Next, we construct approximate solutions (u ν , v ν ) to ( 18), (4) using the front tracking algorithm (cf. Bressan [START_REF] Bressan | Hyperbolic Systems of Conservation Laws -The one-dimensional Cauchy problem[END_REF] and Holden-Risebro [START_REF] Holden | Front Tracking for Hyperbolic Conservation Laws[END_REF]), define appropriate Lyapunov functionals and show that the total variation in space and time of the approximate sequence remains bounded. Combining these results, we prove the convergence to an entropy weak solution of the system in Lagrangian coordinates. The last step is to transform this analysis to problem [START_REF] Huang | Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum[END_REF] in Eulerian. We work, at the level of the approximate solutions, to show the equivalence between Eulerian and Lagrangian variables in the spirit of [START_REF] Wagner | Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions[END_REF] and within the domain

I(t) = [a(t), b(t)]
where no vacuum is present, see Fig. 1. In this way, we construct the approximate Fig. 1 On the left, the domain in Lagrangian variables for (u ν , v ν ) and on the right, the domain in Eulerian variables for (ρ ν , v ν ) solutions (ρ ν , v ν ) to ( 18) that inherits the convergence property from the change of coordinates and it is appropriately extended to the half-plane. Also, this coordinate transformation together with the approximation scheme allow us to pass from the non-reflecting boundary conditions at y = 0, M to the free boundaries a(t) < b(t) in the Eulerian coordinates. It is shown finally that, in the limit, (ρ ν , v ν ) converges to an entropy weak solution with concentration that conserves mass and (extended) momentum.

Time-Asymptotic Flocking

Another important issue we address, except of the global in time existence, is the longtime behavior of the entropy weak solution with concentration to (1), ( 4) with [START_REF] Amadori | Global BV solutions and relaxation limit for a system of conservation laws[END_REF], which is interesting in the context of self-organization. The terminology "flocking" corresponds to the phenomenon in which self-organized individuals, using only limited environmental information and simple rules, get organized into an ordered motion. In the spirit of [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF][START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and mean-field limit[END_REF], this behavior is captured in the following definition: Definition 2 We say that the entropy weak solution with concentration (ρ, m)(x, t) to system (1), admits time-asymptotic flocking if:

1. the support I(t) of the solution remains bounded for all times, i.e.

sup 0≤t<∞ {b(t) -a(t)} < ∞ . (20) 
2. the velocity satisfies lim t→∞ ess sup

x 1 , x 2 ∈I (t) |v(x 1 , t) -v(x 2 , t)| = 0. (21) 
Indeed, condition [START_REF] Huang | L 1 convergence to the Barenblatt solution for compressible Euler equations with damping[END_REF] assures that the support of the solution is uniformly bounded, thus defining the "flock", while condition (21) yields that alignment occurs, i.e. the diameter of the set of velocity states within the support I(t) goes to zero timeasymptotically.

We observe that solutions obtained in Theorem 1 satisfy condition (20) immediately by combining (8), [START_REF] Dafermos | A system of hyperbolic conservation laws with frictional damping[END_REF] and [START_REF] Dafermos | Hyperbolic systems of balance laws with weak dissipation[END_REF]. Therefore, to establish the time-asymptotic flocking property, it suffices to show [START_REF] Holden | Front Tracking for Hyperbolic Conservation Laws[END_REF], or equivalently that lim t→∞ ess sup

x 1 ,x 2 ∈I(t) |v(x 1 , t) -v| = 0
where v is defined at [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF]. Assuming that the initial data satisfy

e 2q M 2 < α max {ρ 0 (a 0 +), ρ 0 (b 0 -)} , (22) 
where q stands for the initial bulk:

q := 1 2 TV {ln(ρ 0 )} + 1 2α TV {v 0 } (23) 
and TV the total variation in the support I 0 , we show that flocking occurs. In fact, if initial bulk q is controlled by the initial density at the endpoints a 0 and b 0 according to [START_REF] Karper | Existence of weak solutions to kinetic flocking models[END_REF], then velocity decays to v at an exponential in time rate. The result is:

Theorem 2 Let (ρ, m) be the entropy weak solution with concentration to (1), ( 2), ( 4) with (3), the initial data (ρ 0 , m 0 ) ∈ BV(R) satisfying (5) and with q > 0 given in [START_REF] Karper | Hydrodynamic limit of the kinetic Cucker-Smale model[END_REF] as obtained in Theorem 1. Suppose that [START_REF] Karper | Existence of weak solutions to kinetic flocking models[END_REF] holds true, then the solution (ρ, m) admits time-asymptotic flocking. More precisely, the oscillation of the velocity decays exponentially fast, i.e. there exists t 0 > 0 such that ess sup

x 1 , x 2 ∈I (t) |v(x 1 , t) -v(x 2 , t)| ≤ C 2 e -C 1 t , ∀ t ≥ t 0 ( 24 
)
for some positive constants C 1 , C 2 .

Our strategy to prove Theorem 2 involves careful analysis of the long time behavior of the approximate solutions constructed in the existence part using the results about the wave strength dissipation for the system of isothermal flow that is, the homogeneous version of ( 1)-( 2) as obtained in [START_REF] Amadori | Global BV solutions and relaxation limit for a system of conservation laws[END_REF][START_REF] Amadori | On a model of multiphase flow[END_REF][START_REF] Amadori | Global weak solutions for a model of two-phase flow with a single interface[END_REF]. These properties are used to provide uniform bounds on the vertical traces of approximate solutions and for the time-asymptotic analysis. In addition, we introduce a new functional, called the total variation that is weighted by generation order

V(t) = k ≥1 ξ k F k (t)
for ξ ≥ 1 taking values in an appropriate interval and F k (t) being the total variation functional of generation k. This allows us to detect a geometric decay property in terms of the number of wave reflections for the homogeneous system and it turns out that we can control under assumption [START_REF] Karper | Existence of weak solutions to kinetic flocking models[END_REF], the possible increase of the functional which is due to the reflections produced by the damping term leading to the timeexponential decay established in [START_REF] Liu | Compressible flow with damping and vacuum[END_REF].

In a work in progress, we are going to relax the sufficient condition [START_REF] Karper | Existence of weak solutions to kinetic flocking models[END_REF] to allow for time-asymptotic flocking with any (ρ 0 , m 0 ) ∈ BV(R) that satisfies [START_REF] Bressan | Hyperbolic Systems of Conservation Laws -The one-dimensional Cauchy problem[END_REF].
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