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Abstract. Mining patterns in a dynamic attributed graph has received
more and more attention recently. However, it is a complex task because
both graph topology and attributes values of each vertex can change
over time. In this work, we focus on the discovery of frequent sequen-
tial subgraph evolutions (FSSE) in such a graph. These FSSE patterns
occur both spatially and temporally, representing frequent evolutions of
attribute values for general sets of connected vertices. A novel algorithm,
named FSSEMiner, is proposed to mine FSSE patterns. This algorithm is
based on a new strategy (graph addition) to guarantee mining efficiency.
Experiments performed on benchmark and real-world datasets show the
interest of our approach and its scalability.

Keywords: dynamic attributed graph · frequent sequential pattern ·
graph mining

1 Introduction

Dynamic attributed graphs have recently received a lot of attention [6]. The
reason is that this graph type provides a rich representation of real-world phe-
nomena. It has been widely used to describe many complex datasets (e.g. spatio-
temporal data, health data, biological data or social data) [2,3,8]. A dynamic at-
tributed graph depicts a time-ordered sequence of graphs to capture the evolution
of a real-world phenomena. Specifically, vertices and edges between vertices of
each graph of the sequence represent respectively objects and spatial relations
or other types of interactions between objects that are valid at the graph times-
tamp. Attributes are used to complete the semantics of vertices. Objects and
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their relations may evolve over time. Indeed, changes may happen in two levels:
at the topological level, there may be addition and removal of objects and rela-
tions; at the object level, changes may also happen in attribute values. Mining
patterns in a dynamic attributed graph allows analysing how objects, relations
and attribute values of objects evolve over time.

Existing pattern mining approaches in dynamic attributed graphs allow fol-
lowing sequential evolutions within an individual vertex [8] or a set of vertices
[1,5,7] that occur frequently over time. None of these approaches allows finding
frequent sequential evolutions for general sets of connected vertices (i.e., frequent
subgraphs). For instance, in the case of monitoring the spread of a virus, exist-
ing patterns may reveal sequential changes of individuals’ health status within
a specific group. However, if this specific group is special (for example, they
have innate resistance to this virus, or they were vaccinated), existing patterns
lose general representativeness and cannot provide meaningful analysis for virus
transmission. Indeed, the objective of doctors is to understand how virus spread
among general groups instead of specific ones. Therefore, our objective is to find
frequent sequential evolutions for general sets of connected vertices. To do so, we
propose a novel pattern type denoted as frequent sequential subgraph evolutions
(FSSE). After describing a formal representation of FSSE (Section 3), we present
the FSSEMiner algorithm to find FSSE patterns in a dynamic attributed graph
(Section 4). The scalability of the algorithm is studied through some experimen-
tal assessments based on both real-world and benchmark datasets (Section 5).

2 Related work

Several research works are proposed to analyse dynamic attributed graphs.
Desmier et al. [2] defined a cohesive co-evolution pattern. This pattern represents
a set of vertices with the same attribute variations and a similar neighbourhood
during a time interval. The authors extended their work in [3] by integrating
constraints on topology and on attribute values to extract maximal dynamic at-
tributed subgraphs. Yet, these patterns do not represent sequential evolutions.

Kaytoue et al. [8] defined the triggering pattern problem, which allows finding
temporal relationships between attribute values and topological properties of
vertices. The TRIGAT algorithm allows mining triggering patterns by using a
projection strategy. However, triggering patterns do not consider neighbouring
vertices, neither their evolutions since they focus on a single vertex.

Fournier-Viger et al. [5] proposed significant trend sequences patterns. Such
patterns allow discovering the influence of attribute variations of a single ver-
tex on its neighbours. The authors extended these patterns in [7] by defining
attribute evolution rules (AER) to discover the influence of multiple vertices on
other vertices. The AER-Miner algorithm allows mining AER patterns by us-
ing breadth first search (BFS) strategy. Yet, AER patterns represent sequential
evolutions of attributes, but not sequential evolutions of connected vertices.

Cheng et al. [1] proposed a recurrent pattern, which is a frequent sequence
of attribute variations for a set of connected vertices. The RPMiner algorithm,
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based on successive graph intersections strategy, allows mining recurrent pat-
terns. However, recurrent patterns focus only on the evolutions of a specific set
of vertices, as they depend on their vertices’ temporal occurrences instead of
considering the spatio-temporal occurrences.

In response to the previous limitations, we propose a novel pattern denoted as
frequent sequential subgraph evolutions (FSSE). Compared to existing work, the
main advantage of this pattern is to consider evolutions independently of sub-
graphs in which they occur. In a spatio-temporal context, it means that such pat-
tern would highlight phenomena independently of their locations. However, none
of the previous algorithms mines FSSE patterns. Indeed, mining such patterns
in a dynamic attributed graph is so complex that all existing strategies cannot
guarantee both the mining efficiency and the completeness of patterns. For this
purpose, we propose a novel algorithm called FSSEMiner to mine FSSE. The
algorithm is based on a new strategy called graph addition to guarantee mining
efficiency. It requires traversing only once each graph, instead of an exponential
graph traversing operation.

3 Notations

3.1 Dynamic Attributed Graph

A dynamic attributed graph, denoted as G = ⟨Gt1 , Gt2 , ..., Gtmax
⟩, represents

the evolution of a graph over a set of ordered and consecutive timestamps T =
{t1, t2, ..., tmax}. It is composed of the set of vertices denoted as V. The set
of attributes A is used to describe all the vertices. Each attribute a ∈ A is
associated with a domain value. A domain value Da (numerical or categorical)
is associated to each vertex and attribute a ∈ A. For each time t ∈ T , Gt =
(Vt, Et, λt) is an attributed undirected graph where: Vt ⊆ V is the set of vertices,
Et ⊆ Vt × Vt is the set of edges, and λt : Vt −→ 2AD is a function that associates
each vertex of Vt with a set of attribute values AD = ∪a∈A(a× Da).

When attribute values are numerical, a dynamic attributed graph is usually
preprocessed to derive trend values from these attributes, since we are not in-
terested in their absolute variations [6]. A trend is an increase (+), decrease (−)
or stability (=) which means the value of a vertex’s attribute increase, decrease
or does not change between two consecutive timestamps.

3.2 A New Pattern Domain

Definition 1 (frequent subgraph) Let (λ,Occurrence(λ) in T ′) be an at-
tributed subgraph of G, where λ is a set of attribute values (trends or cate-
gorical values) representing a pattern and Occurrence(λ) in T ′ represents the
occurrences of λ in the set of times T ′ ⊆ T . More precisely, Occurrence(λ) in T ′

is a set of subgraphs such that Occurrence(λ) ⊆ Vt where t ∈ T ′, Vt ⊆ V. As
shown in Fig. 1, ⟨{(a1−a2+, a1−a2+, a1+a2 =)}, {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 :
(13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)}⟩ is an attributed subgraph in t1 and
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Fig. 1: Dynamic attributed graph.

t2. The set of attribute values λ = (a1 − a2+, a1 − a2+, a1 + a2 =) represents
a size-1 pattern, i.e., a pattern composed of only one set of attribute values.
Occurrence(λ) in t1 = {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)} represents the
set of occurrences of λ in t1 (in red and orange). Occurrence(λ) in t2 = {t2 :
(1, 2, 3)|t2 : (7, 8, 10)} represents the set of occurrences of λ in t2 (in red). So the
frequency of the subgraph is 5 because it occurs 5 times in time and space.
Definition 2 (frequent sequential subgraph evolution) A frequent sequen-
tial subgraph evolution (FSSE) of G appearing in the time intervals {T1, . . . , Tk},
Ti ⊆ T , is a sequence P = ⟨{λ1; ...;λn}, {T1 : Occurrence1(λ1); . . . ;Occurrence1
(λn), | . . . |Tk : Occurrencek(λ1); . . . ;Occurrencek(λn)}⟩. The first set
represents the frequent sequential subgraphs where each subgraph is sep-
arated by semicolons. The second set is composed of all patterns’ oc-
currences, where each occurrence is separated by vertical bars. For each
Ti = {ti, ..., tj}, 1 ≤ i ≤ j ≤ |T |, ti represents the starting time of this
occurrence and tj represents the end time of this occurrence. As shown in Fig. 1,
⟨{(a1− a2+, a1− a2+, a1 + a2 =); (a1− a2+, a1 + a2+, a1 + a2−, a1− a2−)},
{t1, t2 : (1, 2, 3); (1, 4, 5, 6)|t1, t2 : (7, 8, 10); (8, 11, 12, 17)|t1, t2 : (13, 14, 15);(13,
14, 15, 16)|t2, t3 : (1, 2, 3); (1, 4, 5, 6)|t2, t3 : (7, 8, 10); (8, 11, 12, 17)}⟩ is a FSSE
starting at t1 and t2. It is a sequence of size 2 composed of a frequent subgraph
with the pattern (a1− a2+, a1− a2+, a1+ a2 =) in {t1, t2} (in red and orange)
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and a frequent subgraph with the pattern (a1−a2+, a1+a2+, a1+a2−, a1−a2−)
in {t2, t3} (in green and orange).

The example shown in Fig. 1 can also illustrate the difference between the
closest pattern type (i.e, recurrent pattern [1]) and the FSSE. With a frequency of
2, two recurrent patterns are extracted. The first pattern represents a subgraph
in red (1 : a1 − a2+, 2 : a1 − a2+, 3 : a1 + a2 =) which is followed by another
subgraph in green (1 : a1 − a2+, 4 : a1 + a2+, 5 : a1 + a2−, 6 : a1 − a2−). The
frequency of this pattern is 2, as it appears twice over time: the first time from
t1 to t2 and the second from t2 to t3. Similarly, another recurrent pattern is a
subgraph in red (7 : a1 − a2+, 8 : a1 − a2+, 10 : a1 + a2 =) which is followed
by another subgraph in green (8 : a1 − a2+, 11 : a1 + a2+, 12 : a1 + a2−, 17 :
a1 − a2−) with a frequency of 2. Moreover, it can be observed that another
sequence of subgraphs in orange, (13 : a1−a2+, 14 : a1−a2+, 15 : a1+a2 =)(13 :
a1−a2+, 14 : a1+a2+, 15 : a1+a2−, 16 : a1−a2−), represents exactly the same
evolution as the two patterns extracted above. However, it is not considered as
a recurrent pattern as its temporal frequency is 1. In comparison, one extracted
frequent sequential subgraph evolution is a subgraph (a1− a2+, a1− a2+, a1 +
a2 =) which is followed by another subgraph (a1−a2+, a1+a2+, a1+a2−, a1−
a2−) where each subgraph is composed of a general set of vertices. It groups all
the frequent and especially all the infrequent recurrent patterns to generate a
much more general pattern. Indeed, the frequency of this pattern is considered
in one more dimension, the spatial one. So, the spatio-temporal frequency of this
pattern is 5.

3.3 Interesting Measures and Constraints

Let P = ⟨{λ1; ...;λn}, {T1 : Occurrence1(λ1); . . . ;Occurrence1(λn) | . . . |Tk :
Occurrencek(λ1); . . . ;Occurrencek(λn)}⟩ be a pattern. Several measures and
constraints are defined for two purposes: (i) to let the user express his prefer-
ences to select patterns via a set of constraints, and (ii) to reduce the search
space and improve the efficiency of the algorithm.
Spatio-temporal frequency The frequency constraint, denoted as minsup, is
a user-defined threshold to filter patterns which occur more than a minimum
number in time and in space. The frequency of P is the number of occurrences
of pattern P , sup(P ) = k. Consequently, P is a frequent evolution iff sup(P ) ≥
minsup. For example, in Fig. 1, the frequency of the sequence (a1 − a2+, a1 −
a2+, a1 + a2 =); (a1 − a2+, a1 + a2+, a1 + a2−, a1 − a2−) is 5, as the pattern
appears 5 times.
Connectivity During pattern extraction, vertices should be connected by edges
to extract potentially correlated evolutions among a set of objects. In Fig. 1, the
pattern (a1 − a2+, a1 − a2+, a1 + a2 =); (a1 − a2+, a1 + a2+, a1 + a2−, a1 −
a2−) occurs in {t1, t2} on a sequence of sets of connected vertices such as
(1, 2, 3); (1, 4, 5, 6).
Volume The volume measure defines the number of vertices of a subgraph. Let
vol(P ) = min∀i∈[1,n] |λi| be the volume of a pattern P . A pattern P is sufficiently
voluminous iff vol(P ) ≥ minvol, where minvol is a minimum number of vertices
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of a subgraph defined by the user. The user can also define the maximum number
of vertices of a subgraph, denoted as maxvol, such as vol(P ) ≤ maxvol. For
example, the pattern (a1− a2+, a1− a2+, a1+ a2 =); (a1− a2+, a1+ a2+, a1+
a2−, a1− a2−) has a volume of 3.
Temporal continuity An evolution may include different vertices at each times-
tamp. However, it is difficult for end users to interpret the evolution of vertices
without a direct relation between them at each step. Hence, it is desirable to
study evolution around a common core of vertices. To do so, a constraint, de-
noted as mincom and set by the user, is defined to follow a minimum number
of common vertices over time. Let denote Occurrencej(P ) is a jth instance of
pattern P and com(Occurrencej(P )) = |∩∀i∈1,...,nOccurrencej(λi)| be the com-
mon number of vertices occurring in the instance sequence j. P is a continuous
pattern iff ∀j ∈ {1, .., k} com(Occurrencej(P )) ≥ mincom. Consider P the pat-
tern (a1− a2+, a1− a2+, a1 + a2 =); (a1− a2+, a1 + a2+, a1 + a2−, a1− a2−)
in Fig 1. All instances of the pattern P have at least one common vertex. For
instance, the subgraphs of the occurrence (7, 8, 10); (8, 11, 12, 17), at t1 and t2,
have one common vertex, which is 8.

4 Mining Frequent Sequential Subgraph Evolutions

In this section, we propose an algorithm, called FSSEMiner, to mine FSSE pat-
terns in a dynamic attributed graph. This algorithm allows dealing with the
following mining problem: Given a dynamic attributed graph G, the problem is
to extract the complete set of frequent sequential subgraph evolutions in G, de-
noted as Sol, such that ∀P ∈ Sol, (i) P is frequent (i.e., sup(P ) ≥ minsup); (ii)
the occurrences of P are connected at each time; (iii) P is sufficiently voluminous
(i.e., minvol ≤ vol(P ) ≤ maxvol); (iv) P is centered around a core of vertices
sufficiently large (i.e., com(P ) ≥ mincom), where minvol,maxvol,minsup and
mincom are user-defined thresholds.

This algorithm solves the above-mentionned problem in three steps: (i) iden-
tify subgraphs (Section 4.1); (ii) count the spatio-temporal frequency of sub-
graphs (Section 4.2); (iii) construct sequences of subgraphs using frequent sub-
graphs (Section 4.3). The sequence of the three steps is illustrated via the
FSSEMiner algorithm (Algorihtm 1).

4.1 Extraction of Subgraph Candidates

The first step of the algorithm is to construct all possible candidate subgraphs
(frequent and infrequent) based on a dynamic attributed graph G (Lines 1-2).
More precisely, the algorithm constructs all possible sets of patterns λi whose
volume is between minvol and maxvol. For each generated pattern λi, a depth-
first search (DFS) strategy is used to compute its occurrences Occurrence(λi) in
each Gt ∈ G. The anti-monotonicity property is respected to find anti-monotonic
subgraphs [4]. The result is the set of subgraphs satisfying the volume and
connectivity constraints and denoted as S = {Si set of subgraphs of Gt, t ∈ T |



4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS 7

Algorithm 1: FSSEMiner : Mining frequent sequential subgraph evo-
lutions

Input: G : a dynamic attributed graph, minsup, minvol, maxvol, mincom
Output: Sol: set of frequent sequential subgraph evolutions satisfying the constraints
/* Step 1: Extraction of subgraph candidates */

1 S = {Si set of subgraphs of Gt, t ∈ T | ∀si ∈ Si, si = (λi, Occurrence(λi) in t),minvol ≤
|Occurrence(λi)| ≤ maxvol}

2 Candi = ∅, ∀i ∈ {1, 2, ..., |T |}
/* Step 2: Generation size-1 patterns by graph addition */

3 for k = 1 to |T | do
4 for each Tk

1 ⊆ T such as t1 ∈ Tk
1 do

5 Punion = {Sunion set of frequent subgraphs in Tk
1 , | ∀sunion ∈ Sunion, sunion =

(λ,Occurrenceunion), Occurrenceunion = Union(Occurrencet) where (t ∈
Tk
1 ) and |Occurrenceunion| ≥ minsup}

6 Cand1 = Cand1 ∪ Punion

7 end
8 end

/* Step 3: Extension of patterns */
9 Soli = ∅, ∀i ∈ {1, 2, ..., |T |}

10 for i = 2 to |T | do
11 for each Tk

i ⊆ T such as ti ∈ Tk
i do

12 for each Pi ∈ Punion = {Sunion set of frequent subgraphs in Tk
i | ∀sunion ∈

Sunion, sunion = (λ,Occurrenceunion), Occurrenceunion =

Union(Occurrencet), where (t ∈ Tk
i ) and |Occurrenceunion| ≥ minsup} do

13 for each P such as P ∈ Candi−1 do
14 P ′ = ExtendWith(P, Pi)

15 if com(P ′) ≥ mincom and |P ′| ≥ minsup then
16 Candi = Candi ∪ {P ′}
17 end
18 else
19 Soli−1 = Soli−1 ∪ {P}
20 Candi = Candi ∪ {Pi}
21 end
22 end
23 end
24 end
25 end
26 Sol = MergeUpdate(

⋃
∀i∈T Soli)

∀si ∈ Si, si = (λi, Occurrence(λi) in t),minvol ≤ |Occurrence(λi) ≤ maxvol}.
For example, occurrences of (a1 − a2+, a1 − a2+, a1 + a2 =) are extracted at
each time. They are represented by the two red connected subgraphs in t1 and
t2 in Figure 1.

4.2 Generation of Size-1 Patterns by Graph Addition

The second step of the algorithm is to combine the candidate subgraphs gener-
ated in the previous step (Section 4.1) to create size-1 patterns (i.e., sequences
composed of one subgraph) (Line 3-8). The construction of size-1 patterns is
the fundamental building block for constructing the final patterns. To do so, a
new strategy, called graph addition, is proposed. It consists in adding the oc-
currences (of different times) of candidate subgraphs having the same pattern.
Then, the algorithm verifies if the spatio-temporal frequency of this subgraph
union respects the minsup constraint.
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Let be n times ti, ..., tj ∈ T , where 1 ≤ n ≤ |T | and 1 ≤ i < j ≤
|T |. The addition of n subgraphs si = (λi, Occurrence(λi) in ti),..., sj =
(λj , Occurrence(λj) in tj) is denoted as sunion = (λ,Occurrenceunion(λ)) where
λ = λi = ... = λj and Occurrenceunion(λ) = Occurrence(λi) in ti ∪ ... ∪
Occurrence(λj) in tj . sunion is a subgraph composed of the union of occurrences
of the n initial subgraphs having the same pattern (i.e., same attribute values).
If |Occurrenceunion(λ)| ≥ minsup, the algorithm keeps sunion in the mining
process. For the special case where n = 1 and i = j the result of the addition
of a subgraph is itself. However, this case is necessary because a size-1 pattern
(one subgraph) could also be spatially frequent in one timestamp.

Graph addition is applied to all sets of time combinations, denoted as T k,
1 ≤ k ≤ |T |. The number of linear additions is |T k| = 2|T | − 1 and depends only
on the number of timestamps in G. The advantage of the graph addition strategy
is to avoid performing a huge amount of subgraph traversals for the generation
of patterns of size 1.

Let us suppose that minsup = 4. In Fig. 1, there is the subgraph s1 =
⟨{(a1− a2+, a1− a2+, a1+ a2 =)}, {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)} in
t1 and s2 = ⟨{(a1 − a2+, a1 − a2+, a1 + a2 =)}, {t2 : (1, 2, 3)|t2 : (7, 8, 10)}
in t2 having the same attribute values. By adding s1 and s2, the pattern
sunion = ⟨{(a1 − a2+, a1 − a2+, a1 + a2 =)}, {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 :
(13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)} is obtained. It can be observed that s1 and
s2 are infrequent. However, sunion is frequent after the addition of the subgraphs.

4.3 Extension of Patterns

The final step of the algorithm is to construct the complete sequential patterns
by extending each size-1 pattern of each successive set of times generated
in the previous step (Section 4.2) (Line 9-26). To do this, size-1 patterns
are iteratively extended by checking the mincom and minsup constraints to
connect other consecutive patterns to build sequences of frequent subgraphs.
This extension can be achieved by processing the times incrementally. Figure 2
shows an incremental construction of a pattern beginning from {t1, t2}. This
figure displays the parallel extensions of a pattern which occurs at t1 and
t2. Let s, s′ and s∗ be frequent subgraphs extracted in graph additions.
Additions between S1 and S2 result in a set of frequent subgraphs, such that
s = (λ,Occurrence(λ) in t1, t2) ∈ S1 ∪ S2. Candidate extensions for these
subgraphs can only be at t2 and t3 respectively (since gaps are not allowed).
Now consider times t2, t3 and suppose that s′ = (λ′, Occurrence(λ)′ in t2, t3) is
a frequent subgraph of S2∪S3. If s and s′ have at least minsup occurrences ver-
ifying the temporal continuity constraint, then we can extend s with s′ to obtain
P = ⟨{λ;λ′}, {t1, t2 : Occurrence(λ) in t1, t2; t2, t3 : Occurrence(λ′) in t2, t3}⟩.
The process continues until no more extensions can be performed. At each
iteration, subgraphs can be used to extend patterns from the previous iteration,
but they can also be "starting points" for new patterns. For a sequence of 3
subgraphs, the pattern will be constructed and extended seven times (from {t1},
from {t2}, from {t3}, from {t1, t2}, from {t2, t3}, from {t1, t3}, from {t1, t2, t3}).
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t1 t2

Iteration 1 : ∪S 1 S 2

Iteration 2 : ∪S 2 S 3

Iterationm : ∪S |T |−1 S |T |

t3 |T | − 1 |T |

s

s ′

s∗

s

s ′

s∗

...

Pattern : ⟨{s, , . . . , }, { , }⟩s ′ s∗ t1 t2

Fig. 2: Additions and extensions of patterns from {t1, t2}

Although the study of the combination {t1, t2} does not bring more information
compared to {t1, t2, t3}, it allows discovering other patterns to be extended. All
these time combinations are therefore necessary. This highlights the importance
of the proposed graph addition strategy described above, which requires only
|T | times instead of 2|T | − 1 graph traversals in a dynamic attributed graph.

5 Experiments

In this section, the performance of the FSSEMiner algorithm has been evaluated.
The algorithm was implemented in C ++. Experiments were conducted on a PC
(CPU: Intel(R) Core(T:) 3.5GHz) with 16 GB of main memory.
Datasets Benchmark data were generated by varying different parameters of
a dynamic attributed graph: the number of vertices/attributes/edges and the
number of graphs of the sequence (or the number of timestamps) by setting
the other parameters (minsup,minvol,maxvol,mincom). Edges (pairs of ver-
tices) and attribute values follow a uniform distribution. The first real-world
dataset is the Domestic US Flights traffic dataset during the Katrina hurri-
cane period (from 01/08/2005 to 25/09/2005) [3]. It is composed of 280 vertices
(airports) and 1206 edges in average (flight connections) per timestamp, 8 times-
tamps (data are aggregated by weeks) and 8 attributes (e.g. number of depar-
tures/arrivals/cancelled flights). The second real-world dataset is composed by a
travel flows in China dataset6 and a COVID-19 daily cases dataset7 during two
periods (from 25/01/2020 to 20/03/2020 and from 15/04/2022 to 15/05/2022).
It is composed of 232 vertices (cities) and 13260 edges (travel flows between
cities) in average, 6 timestamps (data are aggregated every 3 days) and 4 at-
tributes: the size of the city (small, medium-sized, big and megacity according
to the population), the total number of new COVID cases, of deaths, of recov-
eries since 25/01/2020, with 4 values (=:no new cases, +:]0,5],++:]5,15] and
+++:]15,]).
Quantitative results We have conducted a quantitative analysis of patterns
extracted from benchmark datasets to evaluate the scalability of the proposed

6
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAEZIO

7
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAEZIO
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN
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Fig. 4: A pattern in US Flights dataset

algorithm. Fig.3 (a) shows the impact of the number of timestamps on the al-
gorithm’s runtimes for 2000 vertices and 8000 edges per graph, 2 attributes and
minvol = maxvol = 2,mincom = 1,minsup = 60% of the average number of
vertices. This impact is high, but performance of the algorithm is comparable
with the one in [1] since it generates more general and more complex patterns.
Fig.3 (b) shows the impact of the number of attributes on the algorithm’s run-
times for 8 timestamps and the other parameters are fixed as before. Execution
times remain low for less than 8 attributes, so for most of the real-world datasets.
Fig.3 (c) shows the impact of the number of vertices and edges at each timestamp
on the algorithm’s runtimes (the other parameters are fixed as before). It can
be noticed that the algorithm remains efficient for large dense graphs (10,000
vertices and 160,000 edges at each timestamp).
Qualitative results We have conducted a qualitative analysis of patterns ex-
tracted on the real-world datasets. Fig. 4 shows an example of a pattern ex-
tracted from the US Flights traffic dataset (minvol = 2,maxvol = 4,minsup =
25,mincom = 1). This pattern appears 28 times in the dataset. It shows the
impact of hurricanes on US airport traffic for 6 weeks. First, it is observed that
delays and cancellations increased at destination and arrival airports, while di-
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Fig. 5: Two patterns extracted from COVID dataset

verted flights always remained the same when the hurricane came. It shows that
hurricanes have strong impact on cancellations but have hardly any impact on
flight diversion. Second, it is noticed that cancellations and diverted flights be-
came stable while delays decreased when the hurricane became weaker at the
end. Third, this pattern shows the evolution in terms of network (the set of three
airports became four). It is observed that new flight routes via a new airport
were added by airlines from 11/09/2005. Moreover, referring to map, we notice
that the new added airport (for example, Chicago) in the airline network is usu-
ally located at the centre position of the previous airport network (for example,
Kalamazoo, Detroit and Minneapolis), which ensures that airline connections
are more convenient as it is close to all other airports.

In Fig. 5, we compare two extracted patterns to analyse the transmission
of COVID and its variant Omicron (minvol = 5,maxvol = 8,minsup =
15,mincom = 5). This pattern appears 21 times in the dataset. First, the two
chosen patterns highlight the transmission of COVID in a mixed city network
which is composed of mega, medium and small cities. We note that the city
size and new case numbers are strongly correlated. In 2020 and 2022, COVID
spreads very quickly in medium and mega cities, while new cases in small cities
shown almost zero growth. It is probably because in small cities, the transport
connections are much easier to control. For example, a small city has in general
only two train stations and one airport while in medium-sized and big cities,
it could have up to 109 train stations and 12 airports. Moreover, the flow is in
general 30 times higher than small cities, which makes it much more difficult
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to miss any positive case. Second, it is observed that the COVID caused many
severe consequences in 2020, as the death began to increase in three days af-
ter the emergence of new COVID cases, and it took in average more than 10
days for recovery. While in 2022, the virulence of variant Omicron became much
weaker, as there are almost no deaths, and the recoveries began to emerge only
three days after new detected cases. This analysis is very useful for anti-epidemic
measures. Indeed, many countries began to cancel isolation policies in 2022. To
conclude, these patterns allow studying virus transmission in different scale of
cities (among big cities, small cities, medium-sized or mixed city network).

6 Conclusion

This paper has proposed a novel type of patterns called frequent sequential sub-
graph evolutions (FSSE) in a dynamic attributed graph. Its main advantage is
to represent evolutions of general groups of objects. To mine FSSE, we have pro-
posed the FSSEMiner algorithm. The latter is based on a novel mining strategy,
called graph addition, to save computation time. Experiments on both bench-
mark and real-world datasets have shown the scalability of the algorithm and the
interest of these patterns. In the short-term, we plan to make new applications
by using new datasets and study the explainability of the found patterns. In the
long-term, a distributed version of the algorithm could be developed to further
improve the performance.
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