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SOME MODULI OF n-POINTED FANO FOURFOLDS

HANINE AWADA, MICHELE BOLOGNESI, AND GIOVANNI STAGLIANÒ

Abstract. The object of this note is the moduli spaces of cubic fourfolds (resp.,
Gushel-Mukai fourfolds) which contain some special rational surfaces. Under some
hypotheses on the families of such surfaces, we develop a general method to show the
unirationality of the moduli spaces of the n-pointed such fourfolds. We apply this to
some codimension 1 loci of cubic fourfolds (resp., Gushel-Mukai fourfolds) appeared in
the literature recently.

1. Introduction

One of the most active areas of research in algebraic geometry is related to the study
of the birational geometry of Fano varieties, notably those of dimension four. In the
last 20 years, algebraic geometers have been working on the problem of rationality of
smooth cubic hypersurfaces in P5(cubic fourfolds for short). Recall that cubic fourfolds
are parametrized by an open subset U in the 55-dimensional projective space P(OP5(3)).
The moduli space of cubic fourfolds is the GIT quotient C = U//PGL6, a quasi-projective
variety of dimension 55 − 35 = 20. It is classically well-known that all cubic fourfolds
are unirational and that some of them are rational. While the general suspicion is that
most cubic fourfolds are non rational, no cubic fourfold has yet been proven to be non
rational.

Hassett, in his works [15, 16] (see also [17]), adopted a Hodge theoretic approach while
studying cubic fourfolds. He defined the Noether-Lefschetz locus as the subset of the
moduli space C consisting of the special cubic fourfolds, that is, fourfolds X containing
an algebraic surface S that is not homologous to a complete intersection. One says that
X has discriminant d, which is defined as the determinant of the intersection form on
the saturated sublattice of H2,2(X,Z) generated by h2 and [S], where h denotes the
hyperplane section class of X. Using the period map and the geometry of the period
domain, Hassett proved that special cubic fourfolds form a countably infinite union
of irreducible divisors Cd ⊂ C, corresponding to fourfolds having discriminant d, and
where d runs over all integers d ≥ 8 with d ≡ 0, 2 (mod 6). For small values of the
discriminant d, these divisors are characterized by the families of surfaces, not unique,
that they contain (see [16, 27, 29, 30]). Moreover, for an infinite values of d, cubic
fourfolds in Cd are associated to a degree d polarized K3 surface via Hodge theory. This
seems to relate strongly to the rationality of cubic fourfolds. In fact, it is conjectured
that fourfolds with an associated K3 surface should be precisely the rational ones (see
[21, 1, 22, 17, 4, 29, 30]).

Another class of Fano fourfolds has emerged also: Gushel-Mukai fourfolds (GM four-
folds, for short), prime Fano fourfolds of degree 10 and index 2. By a result of Mukai
[25], they can be realized as smooth dimensionally transverse intersection of a cone
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C(G(1, 4)) ⊂ P10 over the Grassmannian G(1, 4) ⊂ P9 with a linear subspace P8 ⊂ P10

and a quadric hypersurface Q ⊂ P10. The fourfolds for which the P8 ⊂ P10 does not pass
by the vertex of the cone are called ordinary. These can be viewed as smooth quadric
hypersurfaces in a smooth del Pezzo fivefold Y5 = G(1, 4) ∩ P8 ⊂ P8, thus parametrized
by an open subset V in the 39-dimensional projective space P(OY5(2)); recall also that all
such Y5 are projectively equivalent. The moduli space of GM fourfolds has dimension 24
and is denoted by M4

GM (see [5]). The ordinary GM fourfolds correspond to the points

of an open subset M̊4
GM in M4

GM , which is the complementary of an irreducible closed

subset of codimension 2 in M4
GM . We can view M̊4

GM as the quotient V//PGL9.
Under the point of view of birational geometry, GM fourfolds behave very much like

cubic fourfolds and share many properties with them. They are again all unirational,
rational examples are easy to construct, but no examples have yet been proven to be
nonrational. Once again, by the study of the period map via Hodge theory, in [5] the
authors introduced the Noether-Lefschetz locus inside the moduli space M4

GM , defined
as the set of those fourfolds containing a surface whose cohomology class does not come
from the Grassmannian G(1, 4). This locus consists of a countable infinite union of
divisors (M4

GM )d ⊂ M4
GM , labelled by the integers d > 8 with d ≡ 0, 2, 4 (mod 8). The

divisor (M4
GM )d is irreducible if d ≡ 0, 4 (mod 8), and it has two irreducible components

(M4
GM )′d and (M4

GM )
′′

d if d ≡ 2 (mod 8); see [5, 6]. Recently, the third-named author
[35] (see also [18]), inspired by the work of Nuer [27], gave an explicit description of
the first irreducible components of this Noether-Lefschetz locus in terms of classes of
rational smooth surfaces that the fourfolds have to contain.

Lately, the first and second named authors were interested in these objects, but under
a slightly different point of view. In a fashion very similar to curves and K3 surfaces
[12, 11, 23, 3], universal families were defined on cubic fourfolds [2]. Since a generic
cubic fourfold in any divisor Cd doesn’t have projective automorphism, universal cubic
fourfolds Cd,1 → Cd were introduced over divisors for 8 ≤ d ≤ 42. These universal cubic
fourfolds Cd,1 correspond to the moduli space of 1-pointed cubic fourfolds. The authors
prove the unirationality of Cd,1 for 8 ≤ d ≤ 42, using the presentation of the divisors
Cd as cubics containing certain rational surfaces (see [27, 30]). This, combined with a
theorem of Kollár [20] on the unirationality of smooth cubic fourfolds over an arbitrary
field, gives the result. Inductively, they prove the unirationality of Cd,n for the same
range of values of d, for all n [2, Theorem 4.10].

In this paper we propose a unified, general, abstract method to show the unirationality
of the n-pointed universal (cubic and GM) fourfolds over their moduli spaces. This can
be applied to any family XS of (cubic and GM) fourfolds that contains surfaces from a
given family S, under some hypotheses (see Rmk. 3.2) on XS and S.

Theorem 1.1. The universal n-pointed fourfold over the following irreducible codimension-
one loci:

C14, C26, C38, C42, (M4
GM )′10, (M4

GM )
′′

10, (M4
GM )20,

are unirational.

In the last section of the paper we restrict our attention to a codimension one locus
(M4

GM )nod20 inside (M4
GM )20, defined via certain genus 11 K3 surfaces contained in a
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Noether-Lefschetz divisor. By describing the birational geometry of the NL divisor in
the moduli of K3 surfaces, and exploiting the relation between these surfaces and the
GM fourfolds, we prove that (M4

GM )nod20 and the universal family (M4
GM )nod20,1 above it

are rational.
Plan of the paper: in Section 2, we give explicit descriptions of certain divisors

parametrizing (cubic or GM) fourfolds in their moduli space. We recall the constructions
of several families S of surfaces characterizing these divisors and highlight some of their
properties crucial for the next section. Section 3 is devoted to the proof of the main
result of this paper. Finally, in Section 4 we describe the locus (M4

GM )nod20 ⊂ (M4
GM )20

and show its rationality as well as that of the unviersal family (M4
GM )nod20,1.

2. Explicit geometric descriptions of some Nother-Lefschetz divisors in

the moduli space C of cubic fourfolds and in the moduli space M4
GM of

GM fourfolds

In this section, we shall recall some explicit descriptions of unirational irreducible
families S in the Hilbert scheme of P5 (respectively in the Hilbert scheme of a fixed
smooth del Pezzo fivevold Y5 = G(1, 4) ∩ P8 ⊂ P8) such that the closure of the locus
of cubic fourfolds (resp., GM fourfolds) containing a surface of the family S describes
a Noether-Lefschetz divisor in the corresponding moduli space. We shall focus on the
fact that starting from a pair (S,X), where S is a general member of the family S and

X is a general fourfold containing S, we can build an explicit birational map X
≃
99K P4,

defined over the same field of definition as S and X.

2.1. Cubic fourfolds containing a quintic del Pezzo surface. A quintic del Pezzo
surface is the image of P2 via the linear system of cubic curves with 4 base points in
general position.

Theorem 2.1 ([9, 4]). The cubic fourfolds containing a quintic del Pezzo surface describe
the divisor C14 ⊂ C of fourfolds of discriminant 14.

Theorem 2.2 ([24, 9, 4]). A quintic del Pezzo surface S ⊂ P5 admits a conguence of
secant lines: through the general point of P5 there passes a unique secant line to S.

The general line of this congruence can be realized as the general fiber of the dominant
map

µ : P5
99K P4

defined by the linear system |H0(IS(2))| of quadric hypersurfaces through S.
If X is a general cubic fourfold containing S, then the restriction of µ induces a

birational map µ|X : X
≃
99K P4.

2.2. Cubic fourfolds containing a 3-nodal septic scroll. Let S ⊂ P5 be the pro-
jection of a rational normal septic scroll Σ7 ⊂ P8 from a plane spanned by three general
points on the secant variety of Σ7. Thus S is a rational septic scroll having 3 non-normal
nodes.

Theorem 2.3 ([10]). The family of rational 3-nodal septic scrolls, constructed as above,
is irreducible, unirational and of dimension 44 = 74 + 5 · 3− dimPGL9 + dimPGL6.

The cubic fourfolds containing such a surface describe the divisor C26 ⊂ C of fourfolds
of discriminant 26.
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Theorem 2.4 ([30, 31]). Let S ⊂ P5 be a general rational 3-nodal septic scroll. Then
S admits a conguence of 5-secant conics: through the general point of P5 there passes a
unique conic curve which is 5-secant to S.

The general conic curve of this congruence can be realized as the general fiber of the
dominant map

µ : P5
99K P4

defined by the linear system |H0(I2
S(5))| of quintic hypersurfaces with double points

along S.
If X is a general cubic fourfold containing S, then the restriction of µ induces a

birational map µ|X : X
≃
99K P4.

2.3. Cubic fourfolds containing a “generalized” Coble surface. Let S ⊂ P5 be
the image of P2 via the linear system of curves of degree 10 with 10 general triple points.
We have that S is a smooth rational surface of degree 10 and sectional genus 6 cut out
by 10 cubics.

Theorem 2.5 ([27]). The surfaces S ⊂ P5 obtained as above form an irreducible unira-
tional family S10,6 ⊂ HilbP5 of dimension 47 = 10 · 2− dimPGL3 + dimPGL6.

The cubic fourfolds containing a surface of the family S10,6 describe the divisor C38 ⊂ C
of fourfolds of discriminant 38.

Theorem 2.6 ([29, 30, 31]). A general surface [S] ∈ S10,6 admits a conguence of 5-
secant conics: through the general point of P5 there passes a unique conic curves which
is 5-secant to S.

The general conic curve of this congruence can be realized as the general fiber of the
dominant map

µ : P5
99K P4

defined by the linear system |H0(I2
S(5))| of quintic hypersurfaces with double points

along S.
If X is a general cubic fourfold containing S, then the restriction of µ induces a

birational map µ|X : X
≃
99K P4

2.4. GM fourfolds of discriminant 10.

2.4.1. τ -quadric surfaces. A τ -quadric surface is a two-dimensional linear section of a
Schubert variety Σ1,1 ≃ G(1, 3) ⊂ G(1, 4). Thus the class of such a surface in G(1, 4) is
σ21 · σ1,1 = σ3,1 + σ2,2. A standard parameter count (see [5, Proposition 7.4], and also
[35]) shows that the closure insideM4

GM of the family of fourfolds containing a τ -quadric
surface forms the divisor (M4

GM )′10 ⊂ M4
GM , one of the two irreducible components of

the Noether-Lefschetz locus in M4
GM parametrizing fourfolds of discriminant 10. In

particular, since the family of τ -quadric surfaces in G(1, 4) is unirational, we deduce
that the divisor (M4

GM )′10 is also unirational.

Theorem 2.7 ([5]; see also [18]). The projection of a general fourfold [X] ∈ (M4
GM )′10

containing a τ -quadric surface S, from the linear span 〈S〉 ≃ P3 of S, gives a birational
map X 99K P4.
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2.4.2. Quintic del Pezzo surfaces. A quintic del Pezzo surface can be realized as a two-
dimensional linear section of G(1, 4). Thus the class of such a surface in G(1, 4) is σ41 =
3σ3,1 +2σ2,2. A standard parameter count (see [5, Proposition 7.7], and also [35]) shows
that the closure inside M4

GM of the family of fourfolds containing a quintic del Pezzo

surface forms the divisor (M4
GM )

′′

10 ⊂ M4
GM ; one of the two irreducible components of

the Noether-Lefschetz locus in M of fourfolds of discriminant 10. In particular, since the
family of quintic del Pezzo surfaces in G(1, 4) is unirational, we deduce that the divisor

(M4
GM )

′′

10 is also unirational.

Theorem 2.8 ([28]; see also [5, 8, 34]). The projection of a general fourfold [X] ∈

(M4
GM )

′′

10 containing a quintic del Pezzo surface S, from the linear span 〈S〉 ≃ P5 of S,
induces a dominant map X 99K P2 whose generic fiber is a quintic del Pezzo surface. (In
particular, X is rational. Indeed, from a classic result of Enriques, a quintic del Pezzo
surface defined over an infinite field K is rational over K.)

2.5. GM fourfolds of discriminant 20. Throughout this subsection, we continue to
let Y5 ⊂ P8 denote a fixed del Pezzo fivefold.

Recall first two well-known ways to parametrize Y5 over its field of definition.

(1) If P ⊂ Y5 is a plane in Y5 with class σ2,2 in G(1, 4), then the projection of Y5

from P gives a birational map Y5
99K P5, whose inverse is defined by the linear

system of quadrics through a rational normal cubic scroll Σ3 ⊂ P4 ⊂ P5.
(2) If C ⊂ Y5 is a conic such that its linear span P is not contained in Y5, then

the projection of Y5 from P gives a birational map Y5
99K P5, whose inverse is

defined by the linear system of cubics through a rational quartic scroll Θ4 ⊂ P5,
obtained as a general projection of a rational normal threefold scroll in P6.

Now we breafly recall the construction due to [30, 18] of a 25-dimensional unirational
family S9,2 ⊂ HilbY5 of smooth rational surfaces of degree 9 and genus 2 having class
6σ3,1 + 3σ2,2 in the Chow ring of G(1, 4).

Let T ⊂ P6 be the image of the plane via the linear system of quartic curves having
8 general base points p1, . . . , p8. Thus T is a smooth rational surface of degree 8 and
sectional genus 3 cut out by 7 quadrics. These 7 quadrics define a special Cremona
transformation

ϕ : P6
99K P6

of type (2, 4), which has been classically studied in [33] (see also [19]).

Let us recall a bit of geometry from the papers [33, 19]. The pencil of plane cubics
through the 8 base points p1, . . . , p8 yields a pencil of elliptic normal quartic curves on T
passing through a special point q ∈ T , and the union of the linear spans of these curves
gives a cone of vertex q over a Segre threefold P1 × P2 ⊂ P5.

Let H ≃ P5 ⊂ P6 be a general hyperplane in P6. The restriction of ϕ to H gives a
birational map

ϕ|H : P5
99K Z ⊂ P6

onto a quartic hypersurface Z ⊂ P6, whose base locus, that is the intersection of T with
the hyperplane H, is an octic curve C ⊂ P5 of arithmetic genus 3 contained in a Segre
threefold Σ ≃ P1 × P2 ⊂ P5. The image ϕ(Σ) is a smooth quadric surface Q ⊂ Z ⊂ P6
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(which is double as a component of the base locus of the inverse of ϕ|H). The pullback
via the restriction ϕ|H of a line in one of the two pencils of lines on Q is a P2 of the
ruling of Σ, while the pullback of a general line in the other pencil of lines on Q is a
smooth quintic del Pezzo surface containing C. In particular, the curve C is the base
locus of a pencil {Dλ}λ of quintic del Pezzo surfaces contained in Σ and whose general
member is smooth.

Everything we have said about C continues to hold true even if we take the hyperplane
H ⊂ P6 to be general among the hyperplanes containing a general tangent plane to T .
But in this case (and only in this case), the curve C has a node and it can be embedded
in a rational quartic scroll Θ4 ⊂ P5 as the one considered above. Indeed, such a nodal
curve C can be realized as a nodal projection of a smooth curve of degree 8 and genus 2
contained in a smooth rational normal quartic scroll threefold in P6; see [30, Section 4]
for more details on this last step. Then the birational map P5

99K Y5 ⊂ P8 defined by the
linear system of cubics through Θ4 induces an isomorphism between a general quintic
del Pezzo surface of the pencil {Dλ}λ with a smooth rational surface S ⊂ Y5 ⊂ P8 of
degree 9 and sectional genus 2, cut out by 19 quadrics, and having class 6σ3,1 +3σ2,2 in
G(1, 4).

Theorem 2.9 ([30], see also [18]). The surfaces S ⊂ Y5 produced by the construction
above form an irreducible unirational family S9,2 ⊂ HilbY5 of dimension 25.

The closure of the family of quadric hypersurfaces in Y5 containing a surface of the
family S9,2, after passing to the quotient modulo PGL9, describes the divisor (M

4
GM )20 ⊂

M4
GM , the irreducible component of the Noether-Lefschetz locus in M4

GM of fourfolds of
discrimiant 20.

Remark 2.10. An implementation of the construction of the family S9,2 is provided by
the Macaulay2 package SpecialFanoFourfolds [14, 36]. In particular, one is able to find
explicit equations of a general member of the family.

Remark 2.11 ([35]). Let Σ3 ⊂ P4 ⊂ P5 be a rational cubic scroll surface, and let ψ :
P5

99K Y5 ⊂ P8 be the birational map defined by the quadrics through Σ3. Take D ⊂ P5

to be a quintic del Pezzo surface intersecting Σ3 along a hyperplane section of Σ3. Then
the restriction of ψ induces an isomorphism between D and a surface S belonging to the
family S9,2. However, the surfaces S obtained by this “simplified” construction do not
describe the whole family S9,2.

Theorem 2.12 ([18]). Let S ⊂ Y5 be a surface corresponding to a general member of
the family S9,2. Then S admits inside Y5 a congruence of 3-secant conic curves, that is,
through the general point of Y5 there passes a unique conic which is 3-secant to S and
is contained in Y5.

The general conic curve of this congruence can be realized as the general fiber of the
dominant map

µ : Y5
99K P4

defined by the linear system |H0(I2
S,Y5(5))| of quintic hypersurfaces in Y5 with double

points along S.
If X is a general quadric hypersurface in Y5 containing S, then the restriction of µ

induces a birational map µ|X : X
≃
99K P4.
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Remark 2.13. The above theorem suggests an alternative construction for the general
surface S ⊂ Y5 of the family S9,2, which historically was the first to be discovered [18].

Indeed, the inverse map of µ|X : X
≃
99K P4 is defined by the linear system |H0(I2

U,P4(9)|

of hypersurfaces of degree 9 singular along a surface U which is obtained as an internal
projection of a triple projection of a minimal K3 surface of degree 20 and genus 11 in
P11. We can reverse this construction by starting with a general K3 surface of degree 20
and genus 11 in P11.

2.6. Cubic fourfolds of discriminant 42. The 25-dimensional family S9,2 ⊂ HilbY5

considered in the previous subsection and the 3-dimensional family of planes in Y5

with class σ2,2 can be combined together to get a family of surfaces in P5 of dimension
48 = 25+3−dimAut(Y5)+dimAut(P5). Indeed, let S ⊂ Y5 be a surface corresponding
to a general member of the family S9,2, and let P ⊂ Y5 be a general plane with class σ2,2
in G(1, 4). Then the projection of S from P gives a rational surface S̃ ⊂ P5 of degree
9 and sectional genus 2, cut out by 9 cubics and having 5 non-normal nodes. Let us

denote by S̃9,2 ⊂ HilbP5 the (closure of the) family of surfaces S̃ obtained as above.

Theorem 2.14 ([30]). The family S̃9,2 ⊂ HilbP5 is irreducible and unirational of di-
mension 48.

The cubic fourfolds containing a surface of the family S̃9,2 describe the divisor C42 ⊂ C
of fourfolds of discriminant 42.

Theorem 2.15 ([30]). Let S̃ ⊂ P5 be a surface corresponding to a general member of

the family S̃9,2. Then S̃ admits a congruence of 8-secant twisted cubic curves, that is,

through the general point of P5 there passes a unique twisted cubic which is 8-secant to S̃.
The general cubic curve of this congruence can be realized as the general fiber of the

dominant map
µ : P5

99KW ⊂ P7

onto a smooth del Pezzo fourfoldW = G(1, 4)∩P7, defined by the linear system |H0(I3
S̃,P5

(8))|

of octic hypersurfaces with triple points along S̃.
If X is a general cubic fourfold containing S, then the restriction of µ induces a

birational map µ|X : X
≃
99KW .

Remark 2.16. It follows from well-known classic results that a del Pezzo fourfold W =
G(1, 4) ∩ P7 defined over an infinite field K is rational over K.

3. Main Theorem

The goal of this Section is to prove the following result.

Theorem 3.1. The moduli spaces of n-pointed fourfolds over the following moduli loci
are unirational:

(1) C14: cubic fourfolds containing a quintic del Pezzo surface (Subsection 2.1);
(2) C26: cubic fourfolds containing a 3-nodal septimic scroll (Subsection 2.2);
(3) C38: cubic fourfolds containing a generalized Coble surface (Subsection 2.3);
(4) C42: cubic fourfolds containing a 5-nodal rational surface of degree 9 and sectional

genus 2 (Subsection 2.6);
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(5) (M4
GM )′10: GM fourfolds containing a τ -quadric surface (Subsection 2.4.1);

(6) (M4
GM )

′′

10: GM fourfolds containing a quintic del Pezzo surface (Subsection 2.4.2);
(7) (M4

GM )20: GM fourfolds containing a smooth rational surface of degree 9 and
sectional genus 2 (Subsection 2.5);

Remark 3.2. Recall that we denoted by U ⊂ H0(OP5(3)) (respectively, V ⊂ H0(OY5(2)))
the open set parametrizing smooth cubic hypersurface in P5 (respectively, smooth quadric
hypersurfaces in Y5). If S is a family of surfaces in the the Hilbert scheme HilbP5 of P5

(respectively, in the Hilbert scheme HilbY5 of Y5), then we denote by XS the closure in-
side U (respectively, inside V) of the family of fourfolds that contain some surface [S] ∈ S,

and we let X̃S = XS//Aut(P
5) ⊆ C (respectively, X̃S = XS//Aut(Y5) ⊆ M4

GM ). We ob-
serve that the families of fourfolds described in Section 2 (and object of Theorem 3.1)
all share the following properties:

(1) S is irreducible and unirational; so that the same holds true for the corresponding

family XS , and hence for X̃S .
(2) If (S,X) is a couple where S is a general member of the family S and X is a

general fourfold containing S, then we are able to build, starting from the pair

(S,X), an explicit birational map ψ(S,X) : P
4 ≃

99K X, defined over the same field
of definition as S and X.

Remark 3.3. The family XS carries the universal 1-pointed fourfold XS,1 → XS . And
inductively one can define a tower of maps

· · · → XS,n → XS,n−1 → · · · → XS,1 → XS .

By quotienting out by the automorphisms of P5 or Y5, we can give straight away the
following definition.

Definition 3.4. We will denote by X̃S,n the moduli space of n-pointed (cubic or GM)
fourfolds. It is the quotient by the respective group of automorphisms of the family
XS,n.

Remark 3.5. The existence over an open subset of X̃S of the moduli spaces in Def. 3.4
is guaranteed by the fact that the very general cubic fourfold and GM fourfold has no
nontrivial automorphisms ([13, Theorem 3.8], [7, Proposition 3.21]). In fact, a family
of cubic fourfolds with at least a non-trivial projective automorphism has dimension at
most 14 [13, Theorem 3.8]. Since we are working in the birational category, this will be
enough for our goals.

Of course there are forgetful maps

X̃S,n
πn→ X̃S,n−1

πn−1
→ X̃S,n−2 → · · · ,

with evident meaning.

Proof of Theorem 3.1. Let us consider the unirational family S of surfaces inside P5

(resp., Y5). Over the function field of S, we can write the equations of the surface
S ∈ S, and notably describe their ideal. Call m the dimension of H0(P5,IS(3)) (resp.,
H0(Y5,IS(2))). This is generically constant over S. This means that the Hilbert scheme
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of couples (S,X), where X is a fourfold containing the surface S ∈ S, is birational to
a Pm−1−bundle over S, and hence unirational. Let us denote it by P(S,X). This sits
naturally inside the product S × X , where X is the moduli space of cubic (resp., GM)
fourfolds, and has two natural projections to the two components.

Now we observe that, by definition, over P(S,X) there is a natural double universal
family. That is: since P(S,X) parametrizes the couples (S,X), then on one side we have
the universal family S1 of 1-pointed surfaces - that is the universal family of surfaces
over S, pulled-back to P(S,X), on the other we have the universal family XS,1 of 1-pointed

cubic (resp., GM) fourfolds with the forgetful map XS,1
π
−→ P(S,X). By definition there

is a fiberwise inclusion:

S1
�

�

//

""❊
❊❊

❊❊
❊❊

❊❊
XS,1

{{✇✇
✇✇
✇✇
✇✇
✇

P(S,X)

Remark that different points of P(S,X) may parametrize the same GM fourfold but a
different surface.

Now, by assumption (2) of our working hypotheses at the beginning of this section, we
have that - over P(S,X) - we can define a relative linear system on XS,1 (with base locus

supported on S1) that defines a birational map from XS,1 to a P4-bundle over P(S,X),

that we denote P4
P(S,X)

. Now P4
P(S,X)

is rational over P(S,X) and P(S,X) is unirational,

hence the universal family XS,1 is unirational, since it is birational to P4
P(S,X)

.

Exactly as one does for XS,1, we can construct a universal cubic (resp., GM) fourfold
over XS,1, just by taking the pull-back π∗XS,1 over XS,1. We denote by XS,2 this family,
and we observe that it tautologically contains π∗S1, as the following diagram follows.

π∗S1
�

�

//

��

XS,2 = π∗XS,1

��

S1
�

�

// XS,1

Thus XS,2 has the same property (2) as XS,1 and one can define a relative linear system
defining the birationality between XS,2 and a P4-bundle over XS,1 - that we denote by
P4
XS,1

. By the same argument as above, since XS,1 is unirational, XS,2 is unirational as

well. Then, inductively, the same argument shows the unirationality of the universal
families XS,n, for all n.

Now the natural classifying maps, given by the quotient by the automorphisms groups,
make the following diagram commutes.



10 H. AWADA, M. BOLOGNESI, AND G. STAGLIANÒ

π∗S1
�

�

//

��

XS,2 = π∗XS,1

∼

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼

//Aut
//

��

X̃S,2

��

P4
XS,1

xxqq
qq
qq
qq
qq
qq

<<①①①①①①①①①

S1
�

�

//

��
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾
✾

��

XS,1

π

��

∼

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼

//Aut
// X̃S,1

��

P4
P(S,X)

xxqq
qq
qq
qq
qq
q

<<②②②②②②②②②

S P(S,X)
oo

//Aut
// X̃S

It is then clear that also the corresponding moduli space X̃S,n, corresponding to the
families XS,n are unirational.

To conclude the proof we observe that, thanks to the properties (1) and (2), we can
plug any one of the seven loci mentioned in the claim inside this construction, and get
the result. �

Remark 3.6. Several other special families of cubic (resp., GM) fourfolds verify the
hypotheses required in this section. We nevertheless decided to concentrate on certain
particular descriptions of codimension one loci.

In fact we did not only choose some codimension 1 loci, but we also chose a particular
description of them. For example, for cubic fourfolds in C14 we could have chosen quartic
scrolls as surfaces defining the divisor. We remark however that in that case our argument
would not have worked since the quartic scroll defines a birational map to a 4-dimensional
quadric, and a quadric bundle is not automatically rational over its base.

4. A rational Noether-Lefschetz divisor of genus 11 K3 surfaces, and

their associated GM fourfolds.

In this section we will consider a codimension 1 locus of (M4
GM )20, in order to show

that, once we restrict the family of GM-fourfolds to this locus, stronger rationality
statements hold.

As observed in Rem. 2.13 (see also [18, 30]), for the generic X ∈ (M4
GM )20 there

exists a birational map P4 //❴❴❴ X , defined by the linear system of hypersurfaces of
degree 9 having double points along a surface U , which is a projection of a genus 11 K3
surface.

More precisely, one starts from a K3 surface Z ⊂ P11 of degree 20 and sectional genus
11. We take two points p, q ∈ Z, and perform first a triple projection from p to P5, then
a simple projection off q to P4. The image is the required surface U .
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With this in mind, one can prove the following result (that we have already proven),
in a new fashion. We give a sketch of this different proof since it will be useful in the
following.

Theorem 4.1. The universal family (M4
GM )20,1 of 1-pointed GM-fourfolds is unira-

tional.

Proof. The philosophy is to do the above rationality construction in families. We need
then to consider the moduli space F11,2 of polarized K3 surface of genus 11 with two
marked points. The moduli space F11,3 comes equipped with an embedding inside a
P11-bundle over F11,2 and with two sections δ1, δ2 : F11,2 → F11,3. Performing a relative
triple projection from the image of δ1 and a simple one from the image of δ2 we obtain
a P4-bundle P(E) over F11,2 containing the family U of degree 10 surfaces.

F11,3 ⊂ P11 //❴❴❴❴❴❴

��

U ⊂ P(E)

��

F11,2

δ1

II

δ2

UU

F11,2

Since F11,2 is unirational [3, Theorem 0.1] , the projective bundle P(E) is unirational.
The relative linear system of degree 9 hypersurfaces, with multiplicity two along U gives
a rational dominant map between the P4-bundle P(E) and (M4

GM )20,1 �

In [18], Hoff and Staglianò also consider a codimension one subfamily of genus 11
K3 surfaces, that forms a Noether-Lefschetz divisor inside F11. This divisor seems
particularly interesting under our point of view, since the wealth of geometry going
on here allows us to strenghten our rationality results concerning the corresponding
universal families of GM fourfolds related to these K3 surfaces. But let us give a couple
more details about these surfaces.

We start from a smooth Fano threefold Y of type X22 ⊂ P13. It is well known that the
generic tangent hyperplane sections of Y are one-nodal (a double point) K3 surfaces (see
[25], [32]). The projection off the node of such a K3 surface gives a K3 surface in P11,
of degree 20 and sectional genus 11, containing a further conic (the exceptional divisor
over the node). In fact, such a construction gives a Noether-Lefschetz divisor inside the
19-dimensional moduli space of K3 surfaces of genus 11, and the intersection lattice of
these surfaces contains a sublattice of type

(
20 2
2 −2

)
.

Before studying the universal family of GM fourfolds obtained from these special K3
surfaces, we need to show some results on the birational geometry of their Noether-
Lefschetz locus. We will denote by Vnod

n the moduli space of n−pointed one nodal
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K3 surfaces of sectional genus 12, obtained by cutting a X22-type 3fold with tan-
gent hyperplanes as above. The generic element of Vnod

n is represented by a vector
(Y, p,H, q1, . . . , qn), where Y is a Fano threefold of type X22, p is a point of Y , H is a
hyperplane tangent to Y in p, and q1, . . . , qn are n points on the surface SH := Y ∩H.
We will also denote by X22 the (rational, see [26]) moduli space of Fano threefolds of
type X22. All these Fano threefolds are rational and birational among them, we will

need to fix one X̃22 ∈ X22.

Theorem 4.2. The moduli space Vnod
n is rational if n ≤ 9.

Proof. Let us consider the rational map

ϕ : Vnod
n → X22 × X̃n+1

22(4.1)

(Y, p,H, q1, . . . , qn) 7→ (Y, p, q1, . . . , qn).(4.2)

Remark that X22×X̃
n+1
22 is rational (and of dimension 3n+9) since it is the product of

rational varieties. Then, the fiber of ϕ over (Y, p, q1, . . . , qn) is exactly the linear system
of hyperplanes in P13 that are tangent to Y in p, and pass through q1, . . . , qn. This

shows that Vnod
n is birational to a P9−n−projective bundle over X22 × X̃n+1

22 , and hence
is rational if n ≤ 9. �

We recall that the projection off the node sends birationally Vnod
n onto a (18 + 2n)-

dimensional NL locus inside F11,n. Let us denote by (M4
GM )nod20 , the moduli space of

GM fourfolds obtained from the NL K3 surfaces described above, and by (M4
GM )nod20,1

the universal family above, obtained by restricting the construction of Thm. 4.1. The
moduli space (M4

GM )nod20 is of dimension 22, and is contained in (M4
GM )20.

Corollary 4.3. The universal family (M4
GM )nod20,1 is rational. The moduli space (M4

GM )nod20

is rational.

Proof. The moduli space Vnod
3 of nodal, 3-pointed K3 surfaces can be embedded in a

P12-bundle, and endowed with two sections δ1, δ2 : Vnod
2 → Vnod

3 , over Vnod
2 . Since we

are working in the birational category, we can even consider (at least an open subset of)
Vnod
2 as contained in F11,2. Now, we project fiberwise off the node, obtaining a family of

NL K3 surfaces in a P11-bundle, with two sections, over Vnod
2 . Then, as we did in Thm.

4.1, we perform the two projections off the sections and we obtain a P4-bundle over
Vnod
2 , containing a family T of degree 10 surfaces. The moduli space Vnod

2 is rational,
hence the P4-bundle is rational as well. Then, by applying the relative linear system
of degree 9 hypersurfaces through T as in Theorem 4.1, we obtain a rational family of
GM fourfolds over Vnod

2 , hence (M4
GM )nod20,1 is rational. By construction (M4

GM )nod20 is

birational to Vnod
2 and hence rational. �

References

[1] N. Addington and R. Thomas, Hodge theory and derived categories of cubic fourfolds, Duke Math.
J. 163 (2014), no. 10, 1886–1927.

[2] H. Awada and M. Bolognesi, Unirationality of certain universal families of cubic fourfolds, 2020,
preprint: https://arxiv.org/abs/2001.01768.

https://arxiv.org/abs/2001.01768


SOME MODULI OF n-POINTED FANO FOURFOLDS 13

[3] I. Barros, Geometry of the moduli space of n-pointed K3 surfaces of genus 11, Bull. Lond. Math.
Soc. 50 (2018), no. 6, 1071–1084.
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