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ABSTRACT

Aims. We present the fully differentiable physical Differentiable Lensing Lightcone (DLL) model, designed for use as a forward model
in Bayesian inference algorithms that require access to derivatives of lensing observables with respect to cosmological parameters.
Methods. We extended the public FlowPM N-body code, a particle-mesh N-body solver, while simulating the lensing lightcones and
implementing the Born approximation in the Tensorflow framework. Furthermore, DLL is aimed at achieving high accuracy with
low computational costs. As such, it integrates a novel hybrid physical-neural (HPN) parameterization that is able to compensate
for the small-scale approximations resulting from particle-mesh schemes for cosmological N-body simulations. We validated our
simulations in the context of the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) against high-resolution
κTNG-Dark simulations by comparing both the lensing angular power spectrum and multiscale peak counts. We demonstrated its
ability to recover lensing C` up to a 10% accuracy at ` = 1000 for sources at a redshift of 1, with as few as ∼0.6 particles per Mpc h−1.
As a first-use case, we applied this tool to an investigation of the relative constraining power of the angular power spectrum and peak
counts statistic in an LSST setting. Such comparisons are typically very costly as they require a large number of simulations and do
not scale appropriately with an increasing number of cosmological parameters. As opposed to forecasts based on finite differences,
these statistics can be analytically differentiated with respect to cosmology or any systematics included in the simulations at the same
computational cost of the forward simulation.
Results. We find that the peak counts outperform the power spectrum in terms of the cold dark matter parameter, Ωc, as well as on
the amplitude of density fluctuations, σ8, and the amplitude of the intrinsic alignment signal, AIA.

Key words. methods: statistical – cosmology: large-scale structure of Universe – gravitational lensing: weak

1. Introduction

Weak gravitational lensing by large-scale structures (LSS) is
one of the key probes used to test cosmological models and
gain insights into the constituents of the Universe. Upcoming
stage IV surveys, such as the Legacy Survey of Space and Time
(LSST) of the Vera C. Rubin Observatory Ivezić et al. (2019),
Nancy Grace Roman Space Telescope (Spergel et al. 2015), and
the Euclid Mission (Laureijs et al. 2011), will provide measure-
ments for billions of galaxy shapes with unprecedented accuracy.
This development, in turn, will lead to tighter constraints on dark
energy models (e.g., Mandelbaum et al. 2018).

With the increased statistical power of these surveys comes
the question of their optimal analysis. Traditional cosmologi-
cal analyses rely on measurements of the two-point statistics:
either the shear two-point correlation functions or its Fourier
transform, that is, the lensing power spectrum. However, the
two-point statistics are only optimal for Gaussian fields and do
not fully capture the non-Gaussian information imprinted in the
lensing signal at the scales that future surveys will be able to
access (e.g., information encoded in the peaks and in the fila-
mentary features of the matter distribution).

This has led to the introduction of a number of higher order
statistics to access the non-Gaussian information from weak-
lensing data: the weak-lensing one-point probability distribu-
tion function (PDF, Liu & Madhavacheril 2019; Uhlemann et al.
2020; Boyle et al. 2021), lensing peak counts (Liu et al.
2015a,b; Lin & Kilbinger 2015; Kacprzak et al. 2016; Peel et al.
2017; Shan et al. 2018; Martinet et al. 2018; Ajani et al. 2020;
Harnois-Déraps et al. 2022; Zürcher et al. 2022), Minkowski
functionals (Kratochvil et al. 2012; Petri et al. 2013), moments
of mass maps (Gatti et al. 2022), wavelet and scattering trans-
forms (Ajani et al. 2021; Cheng & Ménard 2021), and three-
point statistics (Takada & Jain 2004; Semboloni et al. 2011;
Rizzato et al. 2019; Halder et al. 2021).

More recently, machine learning-based methods that
broadly fall in the category of simulation-based inference
(SBI, Fluri et al. 2019, 2021, 2022; Kacprzak & Fluri 2022;
Jeffrey et al. 2021) and Bayesian forward-modeling frameworks
(Porqueres et al. 2021; Boruah et al. 2022) have also been intro-
duced to attempt to fully account for the non-Gaussian content
in the weak-lensing signal. Unlike the methods described above,
these approaches are designed to access the full field-level
information content. Even though these techniques are
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asymptotically and theoretically optimal in terms of
information recovery, they still suffer from significant
limitations.

SBI methods are characterized by the absence of an ana-
lytical model that would describe the observed signal and
instead rely on learning a likelihood from simulations. Mod-
ern approaches employ deep learning-based density estimation
methods to model the likelihood without the need to make any
Gaussianity assumptions and have thereby drawn the commu-
nity’s attention (Alsing et al. 2018; Jeffrey et al. 2021).

A key element common to most of these methodologies is
their ability to benefit from gradient information. For exam-
ple, Porqueres et al. (2021) presented a Bayesian hierarchical
approach to infer the cosmic matter density field simultaneously
with cosmological parameters using the Hamiltonian Monte
Carlo (HMC) algorithm to explore the full high-dimensional
parameter space. The HMC algorithm exploits the informa-
tion encoded in the gradients of the joint likelihood function to
inform each update step and thus requires the derivatives of the
forward model.

As a different class of examples, Makinen et al. (2021)
demonstrated that the full information content of a cosmolog-
ical field can be represented by optimal summaries, allowing
for likelihood-free and near-exact posteriors for cosmological
parameters. In particular, they use neural networks trained on
simulations to maximize the Fisher information, which requires
access to derivatives of the simulation model to compute a Fisher
matrix.

One possible way of evaluating these gradients with respect
to cosmological parameters is by using numerical differentiation,
for instance, by computing a finite difference of a given statis-
tic by varying the simulation fiducial values by a small amount.
However, numerical differentiation is expensive in terms of com-
putational resources and simulation time and also requires hyper-
parameter tuning for the step size used in the finite difference
scheme. An alternative option consists of computing the gradient
analytically. Both these solutions are faced with limitations: the
first approach gets computationally intractable in high dimen-
sions, while the analytic gradients are sometimes impossible to
estimate. All of these new techniques for cosmological analy-
ses make the development of fast and differentiable simulations
necessary.

Böhm et al. (2021) developed MADLens, a CPU-based
Python package for producing non-Gaussian lensing conver-
gence maps. These maps are differentiable with respect to the
initial conditions of the underlying numerical simulations and
to the cosmological parameters Ωm and σ8. In this paper, we
aim to efficiently compute gradients that benefit the develop-
ment of new inference algorithms for weak-lensing surveys.
To do so, we extended the framework of the FlowPM package
Modi et al. (2021) by implementing the Born approximation and
simulating lensing lightcones in the Tensorflow framework. Ten-
sorFlow is a tensor library that includes the ability to perform
automatic differentiation. Automatic differentiation enables us
to compute gradients exactly as opposed to finite differences,
which only provide approximate gradients. Specifically, Ten-
sorFlow implements the backpropagation algorithm to com-
pute gradients, namely: first it creates a graph (e.g., data struc-
tures representing units of computation), then it works backward
through the graph by applying the chain rule at each node. Unlike
MADlens, our tool is GPU-based and provides derivatives with
respect to all the cosmological parameters. There are also dif-
ferences in the implementation of various functions to improve
accuracy and speed.

We validated our simulations against the cosmological N-
body simulations κTNG-Dark (Osato et al. 2021) by compar-
ing both the lensing angular power spectrum and multiscale
peak counts. In particular, as a first application, we show how
the differentiability of numerical simulations can be exploited
to evaluate the Fisher Matrix. We then compare the constrain-
ing power of two map-based weak-lensing statistics: the lensing
power spectrum and peak counts, and investigate the degeneracy
in high dimensional cosmological and nuisance parameter space
through Fisher forecasts.

This paper is structured as follows. In Sect. 2, we briefly
review the weak-lensing modeling including the theoretical
framework and the summary statistics used in this work. In
Sect. 3, we introduce the numerical simulations illustrating the
numerical methods used to generate mock WL maps. In Sect. 4,
we describe how we validate the simulations by comparing the
statistics from our simulations and κTNG-Dark ones. The Fisher
forecast formalism and the survey and noise setting are shown in
Sect. 5. Finally, we discuss our results and present our conclu-
sions in Sects. 6 and 7.

2. Modeling weak lensing

2.1. Cosmic shear

Weak gravitational lensing is a powerful probe to infer the dis-
tribution of matter density between an observer and a source.
The effect of gravitational lensing can be quantified in term of
the separation vector, x, between two light rays separated by an
angle, θ:

x(θ, χ) = fk(χ)θ

−
2
c2

∫ χ

0
dχ′ fk(χ − χ′)[∇⊥Φ(x(θ, χ′), χ′) − ∇⊥Φ(0)(χ′)], (1)

with Φ and Φ0 as the gravitational potential along the two light
rays and fk(χ) and χ as the angular and radial comoving distance.

Formally, the effect of the linearized lens mapping is
described by the Jacobian matrix:

A(θ, χ) =
1

fk(χ)
∂x
∂θ
. (2)

In the limit of weak-field metric (small Φ), the integral in Eq. (1)
can be approximated by considering the series expansion in the
power of Φ and truncating the series at the first term. With these
assumptions, given that ∇⊥Φ0 is not dependent from θ, the Jaco-
bian matrix can be written as:

Ai j(θ, χ) = δi j −
2
c2

∫ χ

0
dχ′

fk(χ − χ′) fk(χ′)
fk(χ)

Φi j( fk(χ′)θ, χ′). (3)

This, also known as Born approximation, corresponds to inte-
grating the potential gradient along the unperturbed ray. If we
define the 2D potential, the lensing potential as:

ψ(θ, χ) ≡ −
2
c2

∫ χ

0
dχ′

fk(χ − χ′) fk(χ′)
fk(χ) fk(χ′)

Φ( fk(χ′)θ, χ′), (4)

the Jacobian matrix can be written as:

Ai j = δi j − ∂i∂ jψ. (5)

From the parametrization of the symmetrical matrix A, we
can define the spin-two shear γ = (γ1, γ2) and the scalar conver-
gence field, κ. Hence, the convergence and the shear are defined
as the second derivative of the potential:

κ =
1
2

(∂1∂1 + ∂2∂2)ψ; (6)
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γ1 =
1
2

(∂1∂1 − ∂2∂2)ψ; γ2 = ∂1∂2ψ; (7)

the two fields γ and κ describe the distortion in the shape of
the image, and the change in the angular size, respectively. By
combining the 2D Poisson equation with the Eq. (6), the conver-
gence, κ, becomes:

κborn(θ) =
3H2

0Ωm

2c2

∫ χs

0

dχ
a(χ)

g(χ)δ( fk(χ)θ, χ), (8)

where we define the lensing efficiency:

g(χ) ≡
∫ χlim

χ

dχ′n(χ′)
fk(χ′ − χ)

fk(χ′)
. (9)

Thus, the Born-approximated convergence can be interpreted
as the integrated total matter density along the line of sight,
weighted by the distance ratios and the normalized source galaxy
distribution n(χ)dχ = n(z)dz.

2.2. Intrinsic alignments

The galaxy ellipticity observed by a telescope can be decom-
posed in the cosmic shear signal, γ, and the intrinsic ellipticity of
the source, ε int, where the latter is the combination of the align-
ment term, εIA, and the random component, εran.

Different theoretical models have been proposed to describe
the physics of intrinsic alignments (IA), such as the nonlin-
ear tidal alignment model (NLA, e.g., in Bridle & King 2007),
the tidal torquing model (Hirata & Seljak 2004; Catelan et al.
2001), or the combination of both the tidal alignment and tidal
torquing model (TATT, Blazek et al. 2019). We modeled the IA
effect using the NLA description (Harnois-Déraps et al. 2022),
namely, by assuming a linear coupling between the intrinsic
galaxy shapes and the nonlinear projected tidal fields, si j:

εIA
1 = −

AIAC̄1ρ̄(z = 0)
D(z)

(sxx − syy), εIA
2 = −

2AIAC̄1ρ̄(z = 0)
D(z)

sxy,

(10)

from which the observed ellipticities are computed as:

εobs =
ε int + g

1 + ε int,∗g
, with ε int =

εIA + εran

1 + εIA,∗εran . (11)

The AIA term in Eq. (10) defines the strength of the tidal cou-
pling, C̄1 is a constant calibrated in Brown et al. (2002), D(z) is
the linear growth function and ρ̄ is the matter density.

2.3. Lensing summary statistics

To extract the cosmological information from the simulated κ-
maps, we used two summary statistics for the weak-lensing
observable: the angular power spectrum and the starlet peak
counts (Lin et al. 2016).

2.3.1. Angular Cls

Second-order statistics, both in the form of a shear two-point cor-
relation function, ξ±(θ), or its counterpart in Fourier space that is
the angular power spectrum C`, have been widely used to extract
the cosmological information from weak-lensing surveys. In the

Limber approximation, the angular power spectrum of the con-
vergence field for a given tomographic bin can be computed as:

Cκ(`) =
9Ω2

mH4
0

4c4

∫ χlim

0
dχ
g2(χ)
a2(χ)

Pδ

(
k =

`

fK(χ)
, χ

)
, (12)

where Pδ defines the matter power spectrum of the density
contrast.

The intrinsic alignment (IA) signal adds an excess corre-
lation to the two-point shear correlation function (also known
as cosmic shear GG or shear-shear correlation) with two terms:
1) the intrinsic-intrinsic (II) term, tracing the correlation of the
intrinsic shape of two galaxies and 2) the intrinsic-shear cou-
pling (GI) term, describing the correlation between the intrin-
sic ellipticity of one galaxy with the shear of another galaxy
(Kilbinger 2015). The matter power spectra for the IA terms are
defined as:

PII(k, z) =

(
AIAC̄1ρ̄(z)

D̄(z)

)2

a4(z)Pδ(k, z), (13)

PGI(k, z) =
AIAC̄1ρ̄(z)

D̄(z)
a2(z)Pδ(k, z), (14)

where D̄(z) ≡ D(1 + z) (Harnois-Déraps et al. 2022). Under the
Limber approximation, the projected angular power spectra for
the IA terms become:

CII =

∫ χlim

0
dχ

n2(χ)
a2(χ)

PII(k, χ), (15)

CGI =
3ΩmH2

0

2c2

∫ χlim

0
dχ
g(χ)n(χ)

a(χ)
PGI(k, χ). (16)

2.3.2. Wavelet peak counts

Wavelet transform. The wavelet transform has been widely
used in analyzing astronomical images due to its ability to
decompose astronomical data into components at different
scales. This multiscale approach is well-suited for the study of
astronomical data because of their complex hierarchical struc-
ture. A wavelet function ψ(x) is a function that satisfies the
admissibility condition:∫
R+

|ψ̂(k)|2
dk
k
< ∞, (17)

where we indicate with ψ̂(k) the Fourier transform of ψ(x), with∫
ψ(x)dx = 0 in order to satisfy the admissibility condition. A

given signal is decomposed in a family of scaled and translated
functions:

ψa,b(x) =
1
√

a
ψ

(
x − b

a

)
, (18)

where ψa,b are the so-called “daughter wavelets”, scaled and
translated version of the “mother” wavelet, with a and b scaling
and translation parameters. The continuous wavelets transform
is defined from the projections of a function f ∈ L2(R) onto the
family of daughter wavelets. The coefficients of this projection
represent the wavelet coefficient, obtained by:

W f (a, b) =

∫
R

f (x)ψ∗a,b(x)dx =
1
√

a

∫
R

f (x)ψ∗
(

x − b
a

)
dx, (19)

with ψ∗ the complex conjugate of ψ, and ∀a ∈ R+, b ∈ R.
In this work, we filter the original convergence maps with the
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starlet transform, an isotropic and undecimated (i.e., not down-
sampled) wavelet transform, suited for astronomical applications
where objects are mostly (more or less) isotropic (Starck et al.
2007).

It decomposes an image c0 as the sum of all the wavelet
scales and the coarse resolution image cJ:

c0(x, y) = cJ(x, y) +

Jmax∑
j=1

w j(x, y), (20)

where Jmax is the maximum number of scales and w j is the
wavelet images showing the details of the original image at
dyadic scales with a spatial size of 2 j pixels and j = Jmax + 1.

The starlet wavelet function is a specific translational invari-
ant wavelet transform:

1
4

Ψ

( x1

2
,

x2

2

)
= φ(x1, x2) −

1
4
φ
( x1

2
,

x2

2

)
, (21)

specified by an isotropic scaling function, φ, that, for astronom-
ical application, can be defined as a B-spline on the order of 3:

φ1D(x) =
1

12
(|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x + 1|3 + |x + 2|3). (22)

The N-dimensional scaling functions can be built starting
from the separable product of N φ1D: φ(x1, x2) = φ1D(x1)φ1D(x2).
Each set of wavelet coefficients, w j, is obtained as the convo-
lution of the input map with the corresponding wavelet ker-
nel. For a full description of the starlet transform function, see
Starck et al. (2007, 2010).

Peak counts. It has been shown that it is necessary
to go beyond second-order statistics to fully capture the
non-Gaussian information encoded in the peaks of the mat-
ter distribution (Bernardeau et al. 1997; Jain & Seljak 1997;
van Waerbeke et al. 1999; Schneider & Lombardi 2003). Sev-
eral studies have shown that the weak-lensing peak counts pro-
vide a way to capture information from nonlinear structures that
is complementary to the information extracted by power spec-
trum (Lin & Kilbinger 2015; Peel et al. 2017; Ajani et al. 2020;
Harnois-Déraps et al. 2022; Zürcher et al. 2022). The peaks
identify regions of weak-lensing map where the density value
is higher, in this way, they are particularly sensitive to massive
structures. There are two different ways to record weak-lensing
peaks: as 1) local maxima of the signal-to-noise field or 2) local
maxima of the convergence field. In both cases, they are defined
as pixels of larger value than their eight neighbors in the image.

3. Fast and differentiable lensing simulations

Analytical models with which to predict the observed signals do
not exist for most higher order summary statistics. To circum-
vent this issue, one approach is to rely on generating a suite
of numerical simulations. In the following section, we intro-
duce our weak-lensing map simulation procedure, including a
description of the N-body simulator and the lightcone construc-
tion.

3.1. Differentiable particle-mesh N-body simulations

Numerical simulations provide a practical way to model the
highly nonlinear universe and extract cosmological information
from observations at different scales.

However, collision-less N-body simulations typically require
significant computational effort in terms of time and CPU/GPU
power, in particular, computing the gravitational interactions
between the particles is typically the most time-consuming
aspect and where most of the approximations are done. For
that reason, several quasi-N-body schemes have been developed
to reduce the simulation time and the computational cost of
full numerical simulations. Our weak-lensing simulation tool is
mainly based on the FastPM algorithm (Feng et al. 2019) and
its FlowPM (Modi et al. 2021) implementation which provides
a fast particle-mesh (PM) solver estimating the gravitational
forces by computing fast Fourier transforms (FFTs) on a 3D grid.

3.2. Automatic differentiation through black-box ODE solvers

In this work, we extend the FlowPM approach by implement-
ing the time integration of the ordinary differential equations
(ODEs) that describe the gravitational evolution of the particles
in the simulation using a black-box ODE integrator. This stands
in contrast to the leapfrog integration method used in FastPM.
One reason for this change is that adaptive ODE solvers are able
to automatically adjust the time step of the simulation based
on the desired accuracy for the result. Another reason for this
approach is that modern automatic differentiation frameworks
such as TensorFlow provide automatically differentiable solvers,
which significantly reduce the memory footprint of the simula-
tion when computing the gradients. This approach is described
below.

We begin by describing the set of equations used in the sim-
ulation:

dx
da

=
1

a3E(a)
v

dv
da

=
1

a2E(a)
F(x, a),

(23)

with x and v as the position and the velocity of the particles, a
as the cosmological scale factor, E(a) as the ratio between the
Hubble expansion rate and the Hubble parameter, and F as the
gravitational force experienced by the dark matter particles in
the mesh.

To evaluate the gradients of the solution with respect to
input cosmological parameters, it is therefore necessary to back-
propagate through the ODE solver. Very recently the adjoint sen-
sitivity method Chen et al. (2018), Pontryagin et al. (1962) has
gained a lot of attention in the field of deep learning, as it allows
to compute these gradients by solving a second ODE backward
in time and treat the ODE solver as a black box.

Consider an ODESolve(z(t0), f , t0, t1, θ), where z(t) is the
state variable, f is the function modeling the dynamics, t0 is the
start time, and t1 is the stop time and θ the dynamic parameter.
The function, F , of its output is:

F (z(t1)) = F (ODESolve(z(t0), f , t0, t1, θ)), (24)

which can be differentiated with respect to the input, θ. First, we
need to compute the adjoint a(t) = ∂F /∂z(t), namely, the gradi-
ent of F respect to the hidden state z(t). Then, we can determine
the dynamics of the adjoint via:

da(t)
dt

= −a(t)T ∂ f (z(t), t, θ)
∂z

. (25)

Finally, we compute the gradients with respect to the parameters
θ evaluating a third integral:

dF
dθ

=

∫ t0

t1
a(t)T ∂ f (z(t), t, θ)

∂θ
dt; (26)
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Table 1. Approximate execution times of different parts of the
simulations.

Model Time

LPT 744 ms± 10.7 ms
N-body (1283) 16.5 s± 7.89 ms
N-body ODE (1283) 13 s± 120 ms
N-body ODE+HPN (1283) 1 min 24 s± 573 ms
N-body (2563) 1 min 14 s± 14.1 ms
N-body ODE (2563) 1 min 39 s± 181 ms
Raytracing (Born approximation) 320 ms± 16.9 ms

Notes. The values represent the mean and the standard deviation of
seven runs of one loop each.

thus, all the integrals are evaluated in a single call to the ODE
solver and the Jacobian is computed by automatic differentiation.

The choice to extend the FlowPM code with the ODE imple-
mentation is motivated by the fact that to compute the gradient of
the forward model, the original algorithm needs to store all the
intermediate steps of the simulations. This induces a memory
overhead that scales with the number of time steps in the simu-
lation. In the adjoint ODE approach, this is instead replaced by
solving another ODE backward in time when evaluating the gra-
dient. We illustrate the potential of differentiating through ODE
solvers, highlighting the fact that the simulations and the gradi-
ents presented in this paper are computed using one single GPU
for 1283 particles. The computational cost of the various steps of
the simulations is listed in Table 1.

It should be noted that when computing the gradient, some
instability may arise from the ODE solver due to numerical
errors in discretizing the continuous dynamics. This can result
in the adaptive solvers taking too many time steps and slow-
ing down the gradient evaluation. However, this can be miti-
gated simply by limiting the number of time steps in adaptive
ODE solvers. Another way to control these numerical errors is
by using Leapfrog ODE solvers where it is possible to exploit
the reversibility of the Leapfrog dynamics in evaluating the gra-
dients with adjoint methods, as done in Li et al. (2022).

3.3. Hybrid physical-neural ODE

PM simulations can be used as a viable alternative to full N-body
to model the galaxy statistics and create fast realizations of large-
scale structures at lower computational costs. Nevertheless, these
kinds of simulations lack resolution on small scales and are not
able to resolve structures on scales smaller than the mesh res-
olution. To compensate for the small-scale approximations and
recover the missing power, we adopted a hybrid physical-neural
(HPN) approach, presented in Lanzieri et al. (2022). The correc-
tion scheme we implement consists of computing the short-range
interaction as an additional force parameterized by a Fourier-
space neural network (NN). This residual force is modeled by
applying a learned isotropic Fourier filter acting on the PM-
estimated gravitational potential φPM:

Fθ(x, a) =
3Ωm

2
∇

[
φPM(x) ∗ F −1(1 + fθ(a, |k|))

]
, (27)

where F −1 is the inverse Fourier transform and fθ(a, |k|) is
a B-spline function whose coefficients are the output of the
NN of parameters, θ, trained using the CAMELS simulations
(Villaescusa-Navarro et al. 2021). In particular, we used a sin-
gle CAMELS N-body simulation at the fiducial cosmology of

h = 0.6711, ns = 0.9624, Mν = 0.0 eV, w = −1, Ωk = 0,
Ωm = 0.30, and σ8 = 0.8.

We adopt a loss function penalizing both positions of the par-
ticles and the overall matter power spectrum at different snapshot
times s:

L =
∑

s

||xCamels
s − xs||

2
2 + λ||

Ps(k)
PCamels

s (k)
− 1||22, (28)

where λ is a hyper-parameter balancing the contributions of the
two terms. By comparing the results obtained from different val-
ues of λ in the fiducial setting and outside the training regime,
we find that λ = 0.1 provided the optimal balance in terms of
overall correction and overfit.

In Lanzieri et al. (2022) we tested the robustness of the HPN
correction scheme to changes in resolution and cosmological
parameters, namely: we applied the correction parameters found
with the setting described above to simulations of larger volume
or different Ωm and σ8. We observed that most of the miss-
ing power that characterizes the matter power spectrum in the
PM approximation is still recovered when the HPN correction is
applied to simulations different from the ones used to train the
NN. So, from these tests, we can conclude that the HPN is still
robust to differences among simulation settings.

3.4. Differentiable lensing simulations

To extract the lens planes and construct the lightcone, we
exported 11 intermediate states from the N-body simulation of
a fixed interval of 205 h−1 Mpc in a redshift range between
z = 0.03−0.91. To recover the redshift range of the lightcone,
one unit box is replicated using periodic boundary conditions.
First, we generate rotation matrices along the three axes, hence,
each snapshot is rotated around each of the three axes; finally,
all the particles are randomly shifted along the axes. To obtain
the final density field, each snapshot is projected in a 2D plane
by estimating its density with a cloud-in-cell (CiC) interpolation
scheme (Hockney & Eastwood 1988). After creating a Cartesian
grid of coordinates, each slice is interpolated onto sky coordi-
nates. This procedure differs from the one implemented in the
MADLens package (Böhm et al. 2021). In MADLens the light-
cone is built by translating the redshift of the particles into dis-
tances, then the particles are projected onto the convergence map
at the proper evolution step corresponding to that distance.

3.4.1. Implementation of Born lensing

We generate the convergence map by integrating the lensing den-
sity along the unperturbed line of sight, i.e. applying the Born
approximation (Schneider 2006). In particular we discretize the
Eq. (8), so that it becomes:

κborn =
3H2

0Ωm

2c2

∑
i

δ̄i

(
1 −

χi

χs

) (
χi

ai

)
∆χ, (29)

where the index, i, runs over the different lens planes, δ̄i indicates
the matter overdensity projected into the lightcone, χs defines the
comoving distance of the source, and ∆χ is the width of the lens
plane.

3.4.2. Implementation of IA with NLA

We modeled the effect of IA on the convergence map level fol-
lowing the model proposed by Fluri et al. (2019). This allows
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us to create pure IA convergence maps to combine with shear
convergence maps in order to generate a contaminated signal.
Following Harnois-Déraps et al. (2022), the Fourier transform of
the intrinsic ellipticities can be phrased as:

ε̃IA
1 (k⊥) ∝

k2
x − k2

y

k2

 δ̃2D(k⊥)G2D(σg), (30)

ε̃IA
2 (k⊥) ∝

(
kxky

k2

)
δ̃2D(k⊥)G2D(σg),

where σg defines the smoothing scale of a two-dimensional
smoothing kernel G2D, the tilde symbols ∼ refers to the Fourier
transformed quantities, and k⊥ denotes the two Fourier wave-
vector components perpendicular to the line of sight. By combin-
ing Eqs. (10) and (30), we can calculate the intrinsic alignment
as part of the convergence map:

κIAi = −AIAC̄1ρcΩm

∫ zmax

zmin

ni(z)δsi

dz
D(z)

, (31)

where the index, i, refers to the ith redshift bins.

3.4.3. Differentiable peak counts

One of the difficulties in estimating derivatives of traditional
peak count statistics is that it relies on building a histogram
of peak intensities and, therefore, due to the discrete nature of
the bins, histograms are not differentiable. However, the under-
lying idea of peak counting is just meant to build an esti-
mate of the density distribution of the number of peaks as a
function of their intensity. Histograms are one way to build
such an estimate, and have been historically preferred, but for
no particular reason. To circumvent the non-differentiability
of histograms, here we prefer to estimate this density using
an alternative method, namely, the kernel density Eestima-
tion (KDE). As a continuous equivalent to a histogram, KDEs
are differentiable and can just as well be used to define the
peak counts statistic. We defined the KDE for the peak counts
as:

KDE =
1

bw
√

2π
exp

(
−

(X − x)2

2b2
w

)
, (32)

where bw is the smoothing bandwidth parameter, X is the number
of peaks in a given bin, and x is the center of each bin.

This procedure yields a peak count statistic that is smoothly
differentiable with respect to the input map and can thus be used
for applications, such as Fisher forecasting (discussed later in
this paper).

4. Validating simulations for LSST

In this section, we compare the results from our simulation to
other works, including the analytic models for the matter power
spectrum Halofit (Smith et al. 2003; Takahashi et al. 2012) and
the cosmological N-body simulations, κTNG-Dark (Osato et al.
2021).

The κTNG simulations is a suite of publicly available weak-
lensing mock maps based on the cosmological hydrodynami-
cal simulations IllustrisTNG, generated with the moving mesh
code AREPO (Springel 2010). In particular, we used the κTNG-
Dark suit of maps based on the corresponding dark matter-only
TNG simulations. The simulations have a side length of the box
equal to 205 Mpc h−1 and 25003 CDM particles. To model the

propagation of light rays and simulate the weak-lensing maps,
a multiple-lens plane approximation is employed. The simula-
tion configuration consists of a map size of 5 × 5 deg2, 1024 ×
1024 pixels, and a resolution of 0.29 arcmin/pixel. For a com-
plete description of the implementation, we refer to Osato et al.
(2021).

To produce our simulations, we follow the evolution of
1283 dark matter particles in a periodic box of comov-
ing volume equal to 2053 (h−1 Mpc)3, with initial conditions
generated at z = 6 using the linear matter power spec-
trum as implemented by Eisenstein & Hu (1998). In partic-
ular, we implement the Eisenstein-Hu transfer function in
the Tensorflow framework, in order to compute its gradients
automatically.

We assumed the following cosmological parameters: h =
0.6774, ns = 0.9667, Mν = 0.0 eV, w = −1, Ωk = 0., Ωm =
0.3075, and σ8 = 0.8159, such that they match the results of
Planck 2015 (Ade et al. 2016). We reproduced the same config-
uration of κTNG-Dark, namely, each map is on a regular grid of
10242 pixels and 5 × 5 deg2.

The actual choice of bins to include in the forecasting is
made following the DESC data requirement for the angular
power spectra (Mandelbaum et al. 2018), namely, by adopting
`max,shear = 3000 and `min,shear = 300.

4.1. HPN validation

To compensate for the small-scale approximations resulting
from PM, we applied the HPN approach presented in Sect. 3.3.
In Fig. 1, we show the power spectrum and the fractional power
spectrum of PM simulations before and after the HPN cor-
rection compared to analytic Halofit predictions (Smith et al.
2003; Takahashi et al. 2012) for redshift z = 0.03 and z =
0.91. We observe a bias between our measured power spec-
trum and the theoretical prediction at low k. This reduced
power is explained by the small box size of our simula-
tion and the associated reduced number of large-scale modes.
At redshift z = 0.91, most of the missing power is recov-
ered by the HPN correction up to k ∼ 1, after which the
method overemphasizes the small-scale power. In this article
however, we can assume that this effect does not impact the
results of the cosmological parameters forecast, since it con-
cerns scales that are beyond the range of frequencies that are
taken into account for the analysis. Then, at redshift z =
0.03, the correction model does not significantly improve the
results.

In Fig. 2 we show an example of our convergence map
at z = 0.91, from pure PM simulation (first panel) and the
HPN corrected simulation (second panel). The HPN model
sharpens structures in the lensing field without introducing any
artifacts.

In the upper panel of Fig. 3, we present the angular power
spectrum computed from our differentiable lensing lightcone
(DLL hereafter) complemented by the HPN scheme and a con-
ventional DLL simulation with the same resolution. Both the
outputs are compared to the κTNG-Dark prediction. In the lower
panel of Fig. 3 the fractional differences between the conver-
gence power spectra from the two maps and the κTNG-Dark
are shown. Both the power spectra and ratios are averaged over
N = 100 realizations. We can see that the HPN model reduces
the relative deviations of the angular power spectra to within
30%. We also observe a perfect match at large scales, since the
κTNG-Dark and the DLL simulations have the same box size of
205 Mpc h−3.
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Fig. 1. Matter power spectrum and fractional matter power spectrum
of PM simulations before and after using the HPN correction model
and the theoretical halofit model for redshift z = 0.03 (upper panel)
and redshift z = 0.91 (lower panel). The power spectra and ratios are
represented as the means over 100 independent map realizations. The
shaded regions represent the standard deviation from 100 independent
DLL realizations.

4.2. IA validation

In the upper panel of Fig. 4, we present the CII
` and CGG

`
contributes from our DLL simulations compared to theoreti-
cal Halofit predictions (Smith et al. 2003). In the lower panel
of the same figure, we show the fractional differences between
the mentioned contributions. To validate the IA infusion (only
for this experiment), we ran simulations while keeping the term
AIA = 1. As we can see, the fractional difference for the CII

`

term features uncertainty consistent with CGG
`

term, validating
our infusion process. The signal is computed for the source red-
shift zs = 0.91 and is averaged over 100 realizations. The theo-
retical predictions are computed using the public1 Core Cosmo-
logical Library (CCL, Chisari et al. 2019).

4.3. Lensing C`

To quantify the accuracy of the simulations, we aim to reproduce
the summary statistics from the “dark matter only” κTNG-Dark

1 https://ccl.readthedocs.io/en/latest/

simulations. We compare the results from the angular power
spectrum for different source redshift, just by investigating how
well we can recover the power spectrum for a given source plane.
The results of the angular power spectrum from the sources red-
shift z = [0.25, 0.46, 0.65, 0.91, 1.30] are shown in the upper
panel of Fig. 5, as well as the fractional differences between the
κTNG-Dark and DLL maps in the lower panel. We observe that
the differences for zs = 0.91 and zs = 1.30 curves are within
10% of accuracy for scales larger than ` = 1000, within 25%
for scales 1000 < ` < 2000, and within 25% and 45% for scales
2000 < ` < 3000. For lower source redshifts, the deficit of power
in our simulations becomes worse. This can be explained con-
sidering that a given value of ` at lower redshift corresponds to
smaller scales, some of those below the resolution of our simu-
lations. We conclude that, if for z = 0.91 and z = 1.30, we have a
general agreement with κTNG-Dark; with this specific setting of
the model, we cannot model cases correctly with sources redshift
lower than z = 0.91.

We want to highlight that the results shown are produced
keeping the resolution of the simulations extremely low, and we
do not expect to get the same precision as κTNG-Dark. The pur-
pose of these tests and the overall goal of the paper is to present
a proof of concept of the DLL package and its potential. In prac-
tice, we do not work at this resolution. Nevertheless, we note
that the simulations presented here already achieve a similar res-
olution of the MassiveNus simulations (Liu et al. 2018), despite
having been generated using one single GPU.

4.4. Peak counts

We compute the starlet peak counts as wavelet coefficients with
values higher than their eight neighbors. We define Jmax = 7 in
Eq. (20), this starlet filter applied to our map with a pixel size
of 0.29 arcmin, corresponds to a decomposition in 7 maps of
resolution [0.59, 1.17, 2.34, 4.68, 9.33, 18.79, and 37.38] arcmin
and a coarse map. To satisfy the survey requirement and keep
the analysis centered in the range ` = [300, 3000], we consider
only the scales corresponding to [9.33, 18.79, 37.38] arcmin. The
peaks are counted for 8 linearly spaced bins within the range
(κ ∗W) = [−0.1, 1.].

As with the power spectrum, we compare the peak counts
statistic from our map to the one from the κTNG-Dark for differ-
ent redshift bins. We present the results in Fig. 6. These results
are shown in terms of S/N, where the signal-to-noise is defined as
the ratio between the amplitude of wavelet coefficients over the
noise expected for our survey choice. At a wavelet scale θ = 9.33
arcmin the differences for the zs = 0.91 curves are within the
20% up to S/N = 3; for S/N > 3 the accuracy is between the
20% and the 50%. At larger scales, θ = 18.79 arcmin the accu-
racy is within 20%. Finally, at θ = 37.38 arcmin the accuracy is
within 15%, except for S/N < 1 where the accuracy decreases
up to 28%. The results slightly improve for z = 1.30, showing an
accuracy within the 35% for scale θ = 9.33 arcmin, within the
10% for θ = 18.79 arcmin and 25% for θ = 37.38 arcmin. As
for the power spectrum case, we observe higher discrepancies at
lower redshift; hence we can conclude that with the current set-
ting of our simulation, we cannot correctly model such redshifts.

5. Application: Fisher forecast

As an example of the application of differentiable simulations,
we aim to investigate the degeneracy between the cosmolog-
ical parameters in high dimensional space in cases where the
systematics, such as the intrinsic alignment, is included in the
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Fig. 2. Example of convergence maps from DLL simulations. Left panel: convergence map at source redshift z = 0.91 from DLL, PM only. Right
panel: same convergence map when the HPN correction is applied.
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Fig. 3. Validation of DLL simulations against high-resolution κTNG-
Dark simulations before and after using the HPN correction model.
Upper panel: angular power spectra. Lower panel: fractional angular
power spectra. The power spectra and ratios are means over 100 inde-
pendent map realizations and the shaded regions represent the standard
deviation from 100 DLL realizations. The spectra are computed for the
source redshift zs = 0.91.

analysis. Thanks to automatic differentiation, taking the deriva-
tive through the simulation with respect to the initial cosmo-
logical and nuisance parameters is now possible, thus allowing
(among other things) for Fisher forecasts. In this section, we

briefly introduce the Fisher forecast formalism. We also describe
in detail the specific choices for the analysis we used throughout.

5.1. Forecast formalism

Fisher forecast is a widely used tool in cosmology for differ-
ent purposes, for instance, to investigate the impact of system-
atic sources or forecast the expected constraining power of the
analysis (Tegmark et al. 1997). It can be thought of as a tool to
forecast error from a given experimental setup and quantify how
much information we can extract from it. The Fisher matrix is
defined as the expectation value of the Hessian matrix of the
negative log-likelihood L(C(`); θ):

Fαβ =

〈
∂2L

∂θα∂θβ

〉
, (33)

where we indicate, using θ, the cosmological parameters or any
systematics included in the simulation. If we assume a Gaussian
likelihood and a Covariance matrix Ci j independent of θ, we can
calculate the Fisher matrix as

Fαβ =
∑

i j

∂µ

∂θα
C−1

i j
∂µ

∂θβ
, (34)

where we use ∂µ
∂θα

to indicate the derivatives of the summary
statistics with respect to the cosmological or nuisance parame-
ters evaluated at the fiducial values. So, under the assumption
of Gaussian likelihood, the Fisher information matrix provides a
lower bound on the expected errors on cosmological parameters.

5.2. Analysis choices

To perform our study we used a single source redshift at z =
0.91. Specifically, we generated 5000 independent map realiza-
tions, to which we added Gaussian noise with mean zero and
variance, as follows:

σ2
n =

σ2
e

Apixngal
, (35)

where we set the shape noise as σe = 0.26, the pixel area
as Apix = 0.086 arcmin2, and the galaxy number density as
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` contributes. We can see that we
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predictions. This can be explained by the small volume of our simula-
tion and the related low number of large-scale modes. The power spec-
tra and ratios are means over 100 independent map realizations and the
shaded regions represent the standard deviation from 100 realizations.

ngal = 20 arcmin−2. We assume a parameter-independent covari-
ance matrix computed as:

Ci j =

N∑
r=1

(xr
i − µi)(xr

j − µ j)

N − 1
, (36)

where N is the number of independent realizations, xr
i is the

value of the summary statistics in the ith bin for a given real-
ization, r, and µ is the mean of the summary statistics over all
the realization in a given bin. In addition, we adopted the esti-
mator introduced by Hartlap et al. (2007) to take into account
the loss of information caused by the finite numbers of bins and
realizations, namely, we compute the inverse of the covariance
matrix as:

C−1 =
N − nbins − 2

N − 1
C−1
∗ , (37)

where C∗ is the covariance matrix defined in Eq. (36). As men-
tioned before, we want to focus on a fair comparison between the
power spectrum and the peak counts method. To be sure we are
considering the same scales for both statistics, we apply a wavelet
pass-band filter to the maps to isolate particular scales before
measuring the power spectrum. We used the same scales used

102 103
10 7

10 6

10 5

10 4

10 3

10 2

(
+

1)
C

()
/2

z=0.25
z=0.46
z=0.65

z=0.91
z=1.30

TNG
DLL

102 103

0.8

0.6

0.4

0.2

0.0

0.2

0.4

C
D

LL
()

/C
TN

G
()

1

z=0.25
z=0.46

z=0.65
z=0.91

z=1.30

Fig. 5. Validation of DLL simulations for 5 source redshift against
κTNG-Dark simulations. Upper panel: angular power spectra from our
DLL maps compared to the κTNG-Dark predictions. Lower panel: frac-
tional angular power spectra of DLL simulations and κTNG-Dark simu-
lations. The power spectra mean over 100 independent map realizations
and the shaded regions represent the standard deviation from 100 inde-
pendent DLL realizations.

for the Peak counts, namely, we decomposed the noisy conver-
gence map in seven images, we summed up only the three maps
corresponding to [9.33, 18.79, 37.38] arcmin and computed the
angular C` on the resulting image. An example of the C` com-
puted for each individual starlet scale image and for the summed
image is depicted in Fig. 7. For each map, we computed the angu-
lar power spectrum and the peak counts by using our own differ-
entiable code implemented in the TensorFlow framework2.

The derivatives with respect to all parameters were evaluated
at the fiducial cosmology as the mean of 1500 and 2600 inde-
pendent measurements for the peak counts and C`, respectively.
Indeed, while the peak counts reach the convergence with ∼1500
simulations, the C` proves to be more sensitive to noise and thus,
requires more realizations to convergence. In Fig. B.1, we tested
the stability of the Fisher contours by changing the number of
simulated maps used to compute the Jacobian.

The priors used in the forecast process, are listed in Table 2
following Zhang et al. (2022). To take into account the par-
tial coverage of the sky, we scaled the Fisher matrix by the
ratio fmap/ fsurvey, where fmap is the angular extend of our κmap

2 Code publicly available at:
https://github.com/LSSTDESC/DifferentiableHOS/
statistics

A61, page 9 of 18

https://github.com/LSSTDESC/DifferentiableHOS/tree/main/DifferentiableHOS/statistics
https://github.com/LSSTDESC/DifferentiableHOS/tree/main/DifferentiableHOS/statistics


Lanzieri, D., et al.: A&A 679, A61 (2023)

0 1 2 3 4 5
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

N
D

LL
p

/N
TN

G
p

1

ker =  9.3 arcminz=0.25
z=0.46
z=0.65

z=0.91
z=1.30

0 1 2 3 4 5
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

N
D

LL
p

/N
TN

G
p

1

ker =  18.7 arcminker =  18.7 arcmin

0 1 2 3 4 5
S/N

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

N
D

LL
p

/N
TN

G
p

1

ker =  37.4 arcminker =  37.4 arcmin

Fig. 6. Fractional number of peaks of DLL simulations and κTNG-Dark
simulations for different source redshifts. The peak counts distributions
are shown for each starlet scales resolutions used: 9.34 (upper panel),
18.17 (center panel), and 37.38 arcmins (lower panel). The results mean
over 100 independent map realizations and the shaded regions represent
the standard deviation from 100 independent DLL realizations.

fmap = 25 deg2 and fsurvey corresponds to the size of the conver-
gence maps for a Stage IV-like survey fsurvey = 15 000 deg2.

5.3. Results

We go on to compare the relative constraining power of the two
statistics described in Sect. 2.3 using the Fisher matrix formal-
ism. As mentioned before, our interest is to investigate the sensi-
tivity of the two weak-lensing statistics when systematics, such
as the intrinsic alignment, and more cosmological parameters are
included in the forecast. The results presented here are obtained
from one single source redshift at z = 0.91, assuming the fidu-
cial cosmology and survey requirement presented in Sect. 4 and
Sect. 5.2. The fiducial and priors ranges of the parameters are
listed in Table 2.

Figure 8 shows the 2σ contours on the full ΛCDM param-
eter space and intrinsic alignment term considered for the two
analyses. The contours obtained by the angular C` analysis are
plotted in grey, and the ones for the peak counts in yellow. We
find that in constraining Ωc, σ8 and AIA peak counts outperform
the power spectrum, while h, ns, and Ωb parameters, within the
limit of our setting, are not constrained by either and are prior
dominated.

This is an interesting result, confirming the higher constrain-
ing power of weak-lensing peak counts as found in Ajani et al.
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Fig. 7. Example of the filtered C` used for the analysis. The colored lines
show the C` computed on maps with a different resolution of the starlet
decomposition. Specifically: the blue line (multiscale map) corresponds
to C` computed on the summed image; the black dashed line (Original
map) corresponds to the standard C` computed from a non-filtered map.

Table 2. Prior and fiducial values used for the forecasting.

Parameter Prior Fiducial value

Ωc N (0.2589, 0.2) 0.2589
Ωb N (0.0486, 0.006) 0.0486
σ8 N (0.8159, 0.14) 0.8159
h N (0.6774, 0.063) 0.6774
ns N (0.9667, 0.08) 0.9667
AIA N (0, 3) 0.0

(2020), especially considering that the two studies differ in
multiple aspects. The most important difference between these
two analyses is the parameters they include. While Ajani et al.
(2020) derived constraints on the sum of neutrino masses, Mν,
the total matter density, Ωm, and the primordial power spec-
trum normalization, As, we include the five cosmological param-
eters of the ΛCDM model and intrinsic alignment amplitude.
The constraining power of the peak count statistic keeps being
higher even in high dimensional cosmological parameter space
and when the intrinsic alignment is included.

The chosen angular scales differ as well. Ajani et al. (2020)
considered angular scales in the range l = [300, 5000], while we
focus, for both multiscale peak counts and C`, on scale approx-
imately corresponding to the range l = [300, 3000]. Despite the
fact that we are neglecting scales ` > 3000, containing a larger
amounts of non-Gaussian information, we find that for mildly
nonlinear scales we are considering, the peak counts statistic
still constrains the cosmological parameters the most. Finally,
we find that the contours on the galaxy intrinsic alignment are
significantly better constrained by the peak counts.

6. Discussion

In this section, we discuss the limitations of the methodology and
results obtained in this paper, while highlighting the strategies
for future extensions and applications.

In this work, we only used a single source plane in our
Fisher forecast analysis, which does not allow us to evaluate

A61, page 10 of 18



Lanzieri, D., et al.: A&A 679, A61 (2023)

 
C
Peak counts

0.7
6

0.8
0

0.8
4

0.8
8

8 

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

b 

0.8
4

0.9
0

0.9
6

1.0
2

1.0
8

n s
 

0.5
0.6
0.7
0.8

h 

0.2
25

0.2
50

0.2
75

0.3
00

c 

8

4

0

4

8

A I
A
 

0.7
6

0.8
0

0.8
4

0.8
8

8 
0.0

3
0.0

4
0.0

5
0.0

6
0.0

7

b 
0.8

4
0.9

0
0.9

6
1.0

2
1.0

8

ns 
0.5 0.6 0.7 0.8

h 
8 4 0 4 8

AIA 

Fig. 8. 2σ contours derived for one single source redshift at z = 0.91 and the survey setup presented in Sect. 4. The constraints are obtained by
applying the starlet Peak counts (yellow contours) computed on noisy maps filtered using a starlet kernel of [9.33, 18.70, 37.38] arcmin together
and the wavelet pass-band filter for the C` statistics (grey contours) as described in Sect. 4. The dashed black lines are located at the fiducial
parameter values.

the full impact that IA would have in a tomographic analysis.
In particular, we do not have a contribution from the GI term.
Many studies have demonstrated that the tomographic analy-
sis can significantly improve constraints on cosmological and
IA parameters (King & Schneider 2003; Heymans et al. 2004;
Troxel & Ishak 2015). Although it is straightforward to gener-
alize all the results shown in this paper to the tomographic case,
this would require increasing the resolution of the simulation at
lower redshifts (as illustrated by Fig. 5) in order to model cor-
rectly low redshift bins. Since the maximum number of parti-
cles we can adopt in a simulation is closely limited to the GPU
memory, we are building a distributed implementation of DLL
that will allow us to increase the resolutions of the simulations

to the point of modeling correctly even the smaller scales at
the lower redshifts. Indeed, current GPU-based simulations are
capable of simulating 2563 particles on most available GPUs,
and even 5123 particles on the latest h-100 NVIDIA GPUs,
which come with 80 GB of memory. This capability already
allows us to run realistic simulations for developing pipelines
for cosmological analysis. To surpass these limitations, we are
actively developing distributed implementations. It is worth not-
ing that this has already been achieved for previous generations
of simulations, such as FlowPM, which can run 20483 parti-
cles across 256 NVIDIA V100 GPUs. Additionally, we should
mention that these simulations can also run on CPUs, which are
less constrained by memory but lack GPU-based accelerations.
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A time-scaling comparison of GPU and CPU-based simula-
tions is presented in Modi et al. (2021) and Li et al. (2022). The
results clearly demonstrate the advantages of GPU-based sim-
ulations, even when not considering additional benefits such as
automatic differentiation capabilities.

Another direction for further development is ray tracing
methodology. In our method, we construct the weak-lensing
maps assuming the Born approximation. However, Petri et al.
(2017) shows that for an LSST-like survey, while the Born
approximation leads to negligible parameter bias for the power
spectrum, it can lead to significant parameter bias for higher
order statistics. Hence, the natural next step will be to implement
a ray-tracing algorithm beyond the Born approximation in our
pipeline. We aim to adopt the multiple-lens-plane approximation
(Blandford & Narayan 1986; Seitz et al. 1994; Jain et al. 2000;
Vale & White 2003; Hilbert et al. 2009), namely, by introduc-
ing lens planes perpendicular to the line-of-sight, the deflection
experienced by the light rays due to the matter inhomogeneities
will be approximated through multiple deflections at the lens
planes. More specifically, we will implement the memory-
efficient ray-tracing scheme proposed by Hilbert et al. (2009) in
the Tensorflow framework.

On the theoretical modeling side, we studied the impact of
the intrinsic alignment of galaxies while assuming a linear cou-
pling between the intrinsic galaxy shapes and the nonlinear pro-
jected tidal fields, namely, by adopting the NLA model. This
physical description for the IA is only an approximation since it
does not take into account the tidal torque field. In future work,
we aim to extend the NLA model by implementing the extended
δNLA model, described by Harnois-Déraps et al. (2022).

Finally, we have presented a tool based on only dark matter
simulations. We note that this would force us to perform con-
servative scale cuts in the inference analysis to avoid includ-
ing scales affected by baryonic effects. A future prospect is
to include baryonic effects in the analysis. One possible way
applicable to our methodology could be to extend the HPN
ODE approach and apply more sophisticated models to learn the
physics that controls the hydrodynamics simulations.

We expect that the methods illustrated in this paper will be
extended to different relevant use cases. A particularly suitable
example is related to the application of such algorithms as varia-
tional inference and Hamiltonian Monte Carlo, which are widely
used in the Bayesian inference context and were excluded thus
far due to the lack of derivatives. A further example is provided
by Zeghal et al. (2022), which demonstrates that having access
to the gradients of the forward model is beneficial in constraining
the posterior density estimates.

7. Conclusions

In this paper, we present the Differentiable Lensing Light-
cone (DLL) model, a fast lensing lightcone simulator provid-
ing access to the gradient. We extended the public FlowPM N-
body code, implementing the Born approximation in the Ten-
sorflow framework to create non-Gaussian convergence maps of
weak gravitational lensing. To allow DLL to run at low reso-
lution without affecting significantly the accuracy, we comple-
mented the FlowPM N-body code with the HPN scheme, a new
correction scheme for quasi N-body PM solver, based on neu-
ral networks implemented as a Fourier-space filter. We validate
our tool by comparing the C` and peak counts statistics against
predictions from κTNG-Dark simulations. To do this, we ran
simulations following the evolution of 1283 particles and we
produced weak-lensing convergence maps for several redshift

sources. We show that despite being generated at low compu-
tation costs, we recovered a good match for redshift equal to or
higher than z = 0.91. To demonstrate the potential of our tool, as
a first use case, we exploited the automatic differentiability of the
simulations to do Fisher forecast. Thanks to back-propagation,
accessing the derivative through the simulations with respect to
the cosmological parameters and AIA parameter is possible at the
same computational cost as the forward simulation. Assuming
an LSST-like setting, we simulated weak-lensing convergence
maps for a single source redshift z = 0.91 and an angular exten-
sion of 5◦, based on a periodic box of comoving volume equal to
205 h−1 Mpc. We computed the constraints on the resulting con-
vergence maps with the starlet peak counts and use a wavelet-
filtered lensing power spectrum as a benchmark for the compari-
son. Within the limits of the analysis choices made in this study,
we obtained the following results:

– We confirm that the peak count statistics outperform the two-
point statistics as found in Ajani et al. (2020), even in a high-
dimensional cosmological and nuisance parameter space.

– We find the peak counts to provide the most stringent con-
straints on the galaxy intrinsic alignment amplitude, AIA.

To conclude, the framework outlined here can provide many
advantages in the context of cosmological parameter inference,
as it marks the first step in the development of fully differentiable
inference pipelines for weak lensing. Furthermore, it serves as
a fast tool for further exploring the sensitivity of higher order
statistics to systematics.
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Appendix A: Validation against a theory prediction

We show the 2σ constraints obtained from our Fisher analysis of
standard C` (orange) and the theoretical prediction from halofit
(blue contours) in Figure A.1. The dashed black contours define
the prior used for the forecasting. The analysis is performed for
one single source redshift at z=0.91 and the survey setup pre-
sented in Section 4.

The constraints from the theoretical predictions are compat-
ible with the ones obtained from the mock DLL maps for all

cosmological parameters, except ns. Indeed, despite sharing the
same direction of the degeneracy, the theoretical contours for ns
are narrower compared to the ones obtained in our analysis. In
general, this translates into an increased uncertainty in constrain-
ing ns, most likely due to the deficit in power observed for the
C` at small scales.

The theoretical predictions are computed using the public
library jax-cosmo (Campagne et al. 2023). We want to high-
light that both the theoretical Fisher matrices and the ones from
our analysis are obtained by automatic differentiation.
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Fig. A.1. 2σ contours derived for one single source redshift at z=0.91 and the survey setup presented in Section 4. We compare the Fisher matrix
constraints on cosmological parameters and AIA amplitude obtained with the C` from our mock maps (orange) and the theoretical C` (blue)
obtained from the public library jax-cosmo (Campagne et al. 2023). In both cases, the constraints are obtained by applying the wavelet pass-band
filter for the C` as described in Section 4. The dashed black contours are the prior used for the forecasting.
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Appendix B: Validation of the stability of the Fisher
contours

To ensure that the shape of the ellipses and the direction of the
degeneracies are not the results of stochasticity, we prove the
stability of the Fisher analysis results by testing the convergence
of the Jacobians. In Figure B.1 we present the results for Fisher

constraints obtained when varying the number of independent
simulations used to compute the Jacobians. As we can see, the
convergence seems to be reached for the peak counts with, at
least, 1500 realizations. On the other hand, the angular C` proves
to be more sensitive to noise and thus requires at least 2600
realizations.

 
Nr=2100
Nr=2200
Nr=2300
Nr=2400
Nr=2500
Nr=2600

0.8
0

0.8
8

8 

0.8

0.0

0.8

b 

0.0

1.5

n s
 

5

0

5

h 

0.0 0.8

c 

15

0

15

A I
A
 

0.8
0

0.8
8

8 
0.8 0.0 0.8

b 
0.0 1.5

ns 
5 0 5

h 
15 0 15

AIA 

 

Nr=1000
Nr=1100
Nr=1200
Nr=1300
Nr=1400
Nr=1500

0.8
00

0.8
25

0.8
50

8 

0.0
0

0.1
5

b 

0.8

1.0

1.2

n s
 

0.0

0.8

1.6

h 

0.1
5

0.3
0

c 

1.5

0.0

1.5

A I
A
 

0.8
00

0.8
25

0.8
50

8 
0.0

0
0.1

5

b 
0.8 1.0 1.2

ns 
0.0 0.8 1.6

h 
1.5 0.0 1.5

AIA 

Fig. B.1. 1σ Fisher contours derived for one single source redshift at z=0.91 and the survey setup presented in Section 4 for the C` (upper
panel) and the Peak counts (lower panel). The different colors refer to the number of independent realizations used to mean the Jacobian in the
Equation 34. The dashed black lines are located at the fiducial parameter values.
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Appendix C: Validation with higher resolutions
simulations

In Section 4, we presented a validation of our simulations by
comparing the statistics from DLL and κTNG-Dark. In particu-
lar, we have seen a discrepancy on small scales for both the C`

and the peak counts. We have attributed this bias to the low res-
olution of the simulations. Therefore, to justify this assumption,
we simulated convergence maps of higher resolution; namely,
we raised the number of particles but keep the same box of
2053(h−1Mpc)3 in the simulation. In the left panel of Figure C.1,
we present the angular power spectrum computed from our DLL
with the original number count of particles (1283) and the power
spectrum computed from higher resolutions DLL simulations
(2123). The two outputs are compared to the κTNG-Dark predic-
tions. In the right panel of Figure C.1 the fractional differences
between the convergence power spectra from the two maps and
the κTNG-Dark are shown. We can see that by increasing the
number of particles, we can improve the accuracy of the lens-
ing C` up to 20%. In Figure C.2, we compare the peak counts
statistic from our map to the one from the κTNG-Dark for dif-
ferent resolutions. We use the same wavelet decomposition pre-
sented in Section 4.4. As for the power spectrum, we note the
same tendency to recover better accuracy when the resolution is
increased.

Finally, we reproduce the results of the Fisher analysis for
the intrinsic alignment parameter AIA with higher-resolution
simulations in Figure C.3. We adopted the same Forecast cri-
teria presented in Section 5. However, for this specific test,
we compute the derivatives numerically using the finite differ-
ences. The step sizes used for these variations are ∆xIA = 0.15
for the C` and ∆xIA = 1.2 for the peak counts. In order to
check the reliability of the numerical derivatives, we investi-
gate the stability of the Fisher forecast against different step
sizes used to compute them. The derivatives are computed as
the mean of 3000 independent realizations for both C` and peak
counts.

We confirmed the peak counts provide the most stringent
constraints on the galaxy intrinsic alignment amplitude AIA. As
for the full analysis, we tested the stability of the Fisher forecast
by varying the number of simulated maps used to compute the
derivatives. In Figure C.4 we present the 1σ error on AIA when
varying the number of independent realizations used to compute
the derivatives. It is interesting to note that even in this case,
the derivatives of the C` can not be considered fully converged.
However, as can be noted from the stability plots of Figure C.4,
the noise in the derivatives leads to tighter constraints in the
Fisher forecast. Hence, the fully converged derivatives of the C`

would result in even broader constraints, without changing the
results we found.

102 103
10 7

10 6

10 5

10 4

10 3

10 2

(
+

1)
C

()
/2

DLL nc= 128 
DLL nc= 212 
TNG

102 103
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
D

LL
()

/C
TN

G
()

1

DLL nc= 128
DLL nc= 212

Fig. C.1. Comparison of DLL simulations with original (number count 1283) and higher resolutions (number count 2123) against high-resolution
κTNG-Dark simulations. Left panel: Angular power spectra of PM simulations with original resolution (blue line) and higher resolution (red line)
compared to the κTNG-Dark prediction. Right panel: fractional angular power spectrum of PM simulations with original and higher resolution
and the κTNG-Dark prediction. The power spectra and ratios are means over 100 independent map realizations and the shaded regions represent
the error on the mean. The spectra are computed for the source redshift zs = 0.91.
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Fig. C.2. Fractional number of peaks of DLL simulations and κTNG-
Dark simulations. The results are shown for the number counts 1283

(blue lines) and 2123 (orange lines). The peak count distributions are
shown for each starlet scale resolution used: 9.34 (upper panel), 18.17
(center panel), and 37.38 arcmins (lower panel). The results show the
mean over 100 independent map realizations, the shaded regions repre-
sent the error on the mean. The statistics are computed for the source
redshift of zs = 0.91.
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Fig. C.3. 1σ error on AIA for one single source redshift at z=0.91 and the survey setup presented in Section 4, from mock simulations with 2123

particles. The results are obtained by applying the starlet Peak counts (yellow contours) computed on noisy maps filtered using a starlet kernel of
[9.33, 18.70, 37.38] arcmin together and the wavelet pass-band filter for the C` statistics (grey contours) as described in Section 4.
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