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1.  Introduction
The interannual variability of tropical and global land-atmosphere carbon flux, linked to the El Niño-Southern 
Oscillation (ENSO), has been a hot topic (Bowman et  al.,  2017; Jung et  al.,  2017; Liu et  al.,  2017; Palmer 
et al., 2019; Peylin et al., 2013; Piao et al., 2020; Rodenbeck et al., 2018; J. Wang et al., 2016; J. Wang, Zeng, 
Wang, Jiang, Chen, et al., 2018; Zeng et al., 2005). In particular, these year-to-year variations reveal how terres-
trial ecosystems cope with the abiotic stresses induced by ENSO events, and may shed some light on the future 
changes of terrestrial carbon cycle under greenhouse warming (Arora et al., 2020; Cox et al., 2018; Friedlingstein 
et  al.,  2006). The tropical rainforests, with the largest areas located over Amazonia, make the second largest 
contribution (approximately 28%) to the interannual variability of global net biome productivity based on the 

Abstract  The magnitude and spatial pattern of anomalous net biome exchange (NBE) induced by the 
2015/16 El Niño over Amazonian rainforests remain uncertain. We here investigated them using multi-model 
posterior NBE products in the Orbiting Carbon Observatory-2 (OCO-2) version 10 modeling intercomparison 
project. Results suggest that relative to the annual NBE average in 2017/18, larger anomalous carbon release 
occurred over the eastern and northern Amazonian rainforests in 2015/16, with a total flux of approximately 0.4 
PgC yr −1 after assimilating satellite-observed column CO2 concentrations (XCO2) over land. We further find 
that this anomalous spatial pattern was predominantly determined by soil dryness, while the total positive NBE 
anomaly was dominated by higher temperature with its contribution of approximately 68～70%. We believe that 
atmospheric inversions assimilating more satellite-observed XCO2 in future can provide us more comprehensive 
understanding how Amazonian rainforests cope with the abiotic stresses induced by El Niño events.

Plain Language Summary  Interannual variability of carbon flux associated with its drivers over 
Amazonian rainforests are not fully understood. We here used several groups' newly available posterior CO2 
flux estimates to comprehensively investigate the net carbon flux anomaly induced by the 2015/16 extreme 
El Niño. A total net carbon flux anomaly of approximately 0.4 PgC yr −1 was estimated, which showed larger 
carbon release over the eastern and northern Amazonian rainforests. We further suggest that although dry 
conditions greatly shaped the spatial pattern of the anomalous carbon flux, the total carbon flux anomaly 
was  controlled by the higher temperature, with its contribution of approximately 68∼70%.
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Key Points:
•	 �Net biome exchange (NBE) anomalies 

over Amazonian rainforests induced 
by the 2015/16 El Niño were 
investigated based on multiple 
atmospheric inversions

•	 �The spatial pattern of NBE anomaly 
was regulated by soil water with 
larger anomalies over the eastern and 
northern Amazonian rainforests

•	 �The total NBE anomaly was estimated 
at about 0.4 PgC yr −1 in 2015/16 
relative to the average in 2017/18, 
dominated by higher temperature
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TRENDY multi-model simulations (Ahlstrom et al., 2015). Amazonia has been long recognized as a hot spot 
of carbon cycle research due to its interannual anomalies (Koren et al., 2018; Phillips et al., 2009; van Schaik 
et al., 2018) and long-term changes (Cox et al., 2004; Gatti et al., 2021; Green et al., 2020).

During the recent 2015/16 extreme El Niño, the gross primary productivity and solar-induced fluorescence 
(SIF) were suppressed over Amazonia due to anomalously higher temperature and lower soil moisture (Koren 
et al., 2018; van Schaik et al., 2018); however, forest canopy greenness showed a small increase due to enhanced 
solar radiation (Yang et al., 2018). As for the net carbon flux to atmosphere, an inverse modeling study suggested 
approximately 0.5 PgC release anomaly from Amazonia from September 2015 to June 2016, by assimilating in situ 
observations and vertical profile data in the Amazon (Gloor et al., 2018). Liu et al. (2017) suggested 0.9 ± 0.29 
Pg more carbon into atmosphere in 2015 than in the previous La Niña year 2011 over tropical South America, 
which was estimated by an atmospheric inversion constrained with CO2 observations from the Orbiting Carbon 
Observatory-2 (OCO-2), SIF, and carbon monoxide observations from Measurements of Pollution in the Trop-
osphere. However, these two studies did not show the spatial characteristics of anomalous net land-atmosphere 
carbon flux, and qualitatively discussed the related climate drivers.

Recently, net biome exchange (NBE) from the OCO-2 version 10 modeling intercomparison project (MIP) have 
become available. The NBE is sum of net ecosystem exchange (NEE) and wildfire-induced carbon emissions 
(Ffire). We expect that these models can better capture the characteristics of regional carbon flux anomalies after 
assimilating satellite-observed XCO2 data, compared with the traditional atmospheric inversions used in previous 
studies (Bastos et al., 2018; J. Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018). Therefore, based on the posterior 
NBE optimized by these multiple inversion models, we revisit the magnitude and spatial pattern of anomalous 
NBE over Amazonian rainforests induced by the extreme 2015/16 El Niño. Further, we will attempt to quantita-
tively reveal the effects of different climate drivers.

2.  Materials and Methods
2.1.  Posterior NBE From Multiple Atmospheric Inversion Models

This study used the NBE products optimized by 13 atmospheric inversion models (Table S1 in Supporting Infor-
mation S1) from the OCO-2 v10 MIP, which is an international collaboration of CO2 flux inversion modelers. 
Modelers performed a standard suit of inversion experiments, constrained by CO2 observations from OCO-2 and 
in situ (Byrne et al., 2022; Crowell et al., 2019; Peiro et al., 2022), reported posterior results for years 2015–2020. 
For each inversion experiment, modelers prescribed a common fossil fuel emission, but independently adopted 
other prior surface carbon flux estimates (NEE, ocean, and wildfire emissions) (Peiro et al., 2022). The common 
fossil fuel emission adopted the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission data 
product with the monthly gridded 1° × 1° emissions up to 2019 (Oda et al., 2018) and extrapolated emissions in 
2020 with additional information from the Carbon Monitor emission product (https://carbonmonitor.org/). In this 
study, we adopted results from three experiments, including: (a) IS: Assimilation of in situ CO2 measurements 
from an international observational network; (b) LNLG: Assimilation of OCO-2 ACOS v10 land nadir and land 
glint XCO2 retrievals (OCO-2 Science Team/Gunson & Eldering, 2020); (c) LNLGIS: Assimilation of in situ 
CO2 measurements and OCO-2 ACOS v10 land nadir and land glint XCO2 retrievals.

Taking the inter-model spread into account, we made a simple screening of the models over the Amazonian rain-
forests by using the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012):

KGE(𝑦𝑦𝑦 𝑦𝑦𝑦) = 1 −

√

(𝑟𝑟(𝑦𝑦𝑦 𝑦𝑦𝑦) − 1)
2
+ (𝛽𝛽(𝑦𝑦𝑦 𝑦𝑦𝑦) − 1)

2
+ (𝛾𝛾(𝑦𝑦𝑦 𝑦𝑦𝑦) − 1)

2� (1)

where y and 𝐴𝐴 𝐴𝐴𝐴 here represent the reference and simulated total NBE fluxes, respectively. The term of 𝐴𝐴 𝐴𝐴(𝑦𝑦𝑦 𝑦𝑦𝑦) shows 
their Pearson's correlation coefficient, 𝐴𝐴 𝐴𝐴(𝑦𝑦𝑦 𝑦𝑦𝑦) the bias ratio, and 𝐴𝐴 𝐴𝐴(𝑦𝑦𝑦 𝑦𝑦𝑦) the variability ratio. We can derive 𝐴𝐴 𝐴𝐴(𝑦𝑦𝑦 𝑦𝑦𝑦) 
and 𝐴𝐴 𝐴𝐴(𝑦𝑦𝑦 𝑦𝑦𝑦) as follows:

⎧

⎪

⎨

⎪

⎩

𝛽𝛽(𝑦𝑦𝑦 𝑦𝑦𝑦) =
𝜇𝜇𝑦̂𝑦

𝜇𝜇𝑦𝑦

𝛾𝛾(𝑦𝑦𝑦 𝑦𝑦𝑦) =
𝜎𝜎𝑦̂𝑦∕𝜇𝜇𝑦̂𝑦

𝜎𝜎𝑦𝑦∕𝜇𝜇𝑦𝑦

� (2)
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where μ represents the mean, and σ the standard deviation. Clearly, the range of KGE is (−inf,1], with the best 
possible score of 1 when the simulated result is exactly equal to the reference.

The posterior NBE was provided by the OCO-2 v10 MIP community at 1° × 1°. In order to lower the noise in space 
to some extent, we in this study performed the analyses at 2.5° × 2.5° which were interpolated by using the Climate 
Data Operators tool based on the approach of the first order conservative remapping scheme (Jones, 1999):

𝐹𝐹𝑘𝑘 =
1

𝐴𝐴𝑘𝑘 ∬ 𝑓𝑓𝑓𝑓𝑓𝑓� (3)

where 𝐴𝐴 𝐹𝐹𝑘𝑘 represents the area-averaged destination terrestrial carbon flux, Ak the area of grid k, and f the original 
carbon flux.

2.2.  Meteorological and Land Cover Data Sets

The soil dryness condition here was indicated by the terrestrial water storage (TWS) from a reconstructed product 
of the Gravity Recovery and Climate Experiment (GRACE-REC) which was generated by a statistical model 
trained with GRACE observations (Humphrey & Gudmundsson, 2019). The GRACE-REC product was provided 
in six reconstructed TWS data sets of 100 ensemble members each at both daily and monthly timesteps over 
the period of 1901 to present with a 0.5° × 0.5° resolution, based on two different GRACE products (JPL and 
GSFC mascons) and three meteorological forcing data sets. Considering the time span and product evaluation 
(Humphrey et al., 2021), this study adopted the ensemble mean of the GSFC-ERA5 monthly product which had 
the time span from January 1979 to July 2019. In order to independently assess this product, we further compared 
it with other three soil moisture products, and found that they consistently have high spatial correlation coeffi-
cients in pairs over Amazonian rainforests (Table S2 in Supporting Information S1).

We adopted the surface air temperature at 2 m and calculated the vapor pressure deficit (VPD) based on the 
ERA5 data on single levels at 0.25° × 0.25° (Hersbach et al., 2020). Specifically, we first calculated VPD hourly 
according to the Tetens' formula for temperature above 0°C (Monteith & Unsworth, 2007):

VPD = 0.61078 ×

(

𝑒𝑒

17.27𝑇𝑇𝑎𝑎𝑎𝑎

𝑇𝑇𝑎𝑎𝑎𝑎+237.29 − 𝑒𝑒

17.27𝑇𝑇𝑑𝑑

𝑇𝑇𝑑𝑑+237.29

)

� (4)

where Tas and Td are surface air temperature and dew-point temperature in degrees Celsius, respectively. The 
derived VPD is in kilopascals (kPa). Then we aggregated calculated hourly VPD into monthly and annual 
averages.

The Oceanic Niño Index (ONI) was adopted here to infer the ENSO conditions, which was the running 3-month 
area-averaged sea surface temperature anomalies for the Niño3.4 region (5°S–5°N, 120°–170°W).

In order to retrieve the domain of Amazonian rainforests (evergreen broadleaf forests) in this study, we adopted 
the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Climate 
Modeling Grid (MCD12C1) Version 6 data product (Friedl & Sulla-Menashe, 2015), which were also consist-
ently resampled into 2.5° × 2.5° by the approach of the largest area fraction remapping (Figure S1 in Supporting 
Information S1).

2.3.  Calculation of NBE and Climate Anomalies

According to the ONI table, an extreme El Niño occurred in 2015/16 with the maximum ONI of 2.6°C, followed 
by two weak La Niña events in 2016/17 and 2017/18. Owing to the short period of posterior NBE products, the 
climatology cannot be accurately derived which can be greatly influenced by the extreme El Niño event. Hence, 
we derived the anomalies of NBE and climate factors in each grid over Amazonian rainforests by calculating the 
difference between the averages during 2015/16 and those during 2017/18. It is similar to the approach of Liu 
et al. (2017) in which they calculated the anomaly in 2015 relative to the value in 2011.

2.4.  Contributions of Climate Drivers to NBE Anomalies

Surface air temperature, soil moisture, and VPD are the main climate factors, driving the interannual variability 
of land-atmosphere carbon flux (He et al., 2022; Humphrey et al., 2018; Jung et al., 2017; J. Wang et al., 2016; 
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W. Wang et al., 2013). In order to quantitatively derive the contributions of these three climate drivers to NBE 
anomalies over Amazonian rainforests, we calculated their pattern correlation coefficients and adopted the multi-
ple linear regression model to apparently decompose NBE anomalies which has been widely used in previous 
studies (Dannenberg et al., 2022; Humphrey et al., 2021; Jung et al., 2017).

Specifically, decomposition of NBE anomalies into individual contributions was achieved as follows:

NBE = 𝛼𝛼𝑇𝑇 𝑇𝑇 + 𝛼𝛼TWSTWS + 𝛼𝛼VPDVPD + 𝜀𝜀� (5)

where α T, α TWS, and α VPD represent the sensitivities of NBE to temperature, TWS, and VPD anomalies, respec-
tively. The term of ε represents the residual. We can further rewrite Equation 5 using the more compact symbols:

NBE = NBE𝑇𝑇 + NBETWS + NBEVPD + 𝜀𝜀� (6)

where NBE T, NBE TWS, and NBE VPD denote the NBE anomalies induced by temperature, TWS, and VPD, respec-
tively. In addition, we randomly combined two of these three climate drivers to linearly decompose NBE anom-
alies in the same way, so as to comprehensively understand the contributions of climate drivers to the total NBE 
anomaly.

3.  Results
3.1.  Performance of Inversion Models

Although these inversion models assimilated the same CO2 observations and followed the same protocols, large 
inter-model spreads still existed in the posterior NBE (Byrne et al., 2022; Crowell et al., 2019; Peiro et al., 2022) 
which can be caused by the settings for errors in prior surface carbon fluxes, the errors in the atmospheric 
transport induced by different transport models and meteorological products used, and choices in the optimi-
zation techniques (Table S1 in Supporting Information S1) (Basu et al., 2018; Chevallier et al., 2010; Schuh 
et al., 2019). Hence, we conducted a simple model screening here. First, we calculated the total posterior NBE 
over the Amazonian rainforests for each inversion model in the period of 2015–2018. Second, taking the inverted 
total net carbon flux from Gatti et al. (2021) (denoted as “Gatti2021”) which was estimated based on 590 aircraft 
vertical profiling measurements of lower-tropospheric CO2 and CO concentrations at four sites in Amazonia as 
the reference, we calculated their correlation, bias, and variability in the same period to derive the KGE scores for 
each model (Equation 1). We can find that most of models show big KGE scores in LNLG and LNLGIS exper-
iments, indicating that the posterior NBE in these models are consistent with the Gatti2021. Taking the mean 
flow benchmark (KGE = −0.41) (Knoben et al., 2019) as the threshold, we screened out Baker (KGE = −7.58 
in LNLG and −6.67 in LNLGIS) and CMS-Flux (KGE = −4.83 in LNLG and −1.65 in LNLGIS) models so as 
to make the multi-model ensemble (MME) to perform the following analyses. And the resulting MME shows the 
KGE of 0.48 in LNLG and 0.59 in LNLGIS, respectively.

3.2.  Anomalous Posterior NBE Over Amazonian Rainforests

The geographical distributions of calculated annual NBE anomalies over Amazonian rainforests related to the 
extreme 2015/16 El Niño are presented in Figure 2. The ensemble NBE anomalies in OCO-2 v10 MIP Prior were 
nearly neutral (Figure 2a), which suggested that the obvious posterior NBE anomalies in IS, LNLG, and LNLGIS 
experiments originated from the information of the in situ and satellite-observed atmospheric CO2 concentrations 
(Figures 2b–2d). In detail, the ensemble NBE anomalies constrained by in situ CO2 observations (IS experiment) 
showed moderate anomalous carbon release (positive values) with the slightly stronger magnitudes over the 
eastern Amazonia (Figure 2b). Compared to the limited stations of in situ CO2 observations (Figure 2b), the 
OCO-2 XCO2 product largely increases the coverage of atmospheric CO2 observations over the tropical South 
America (Figure 2c). The ensemble posterior NBE anomalies in LNLG and LNLGIS had the similar spatial 
patterns, showing the much stronger carbon release over the eastern and northern parts of Amazonian rainforests 
(Figures 2c and 2d). More detailed spatial characteristics of posterior NBE anomalies for each model in LNLG 
and LNLGIS can be referred to in Figures S2 and S3 of Supporting Information S1.

More specifically, longitudinal changes of NBE anomalies showed that although large inter-model spread 
existed, the ensemble posterior NBE anomalies in LNLG and LNLGIS had significantly stronger carbon release 
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(approximately double, >0.05 PgC yr −1) from 57.5°W to 67.5°W than results in IS (p  <  0.1) (Figure  2e). 
The ensemble NBE anomalies over the entire Amazonian rainforests were 0.03 ± 0.07 PgC yr −1 in Prior and 
0.29 ± 0.23 PgC yr −1 in IS. After assimilating OCO-2 XCO2 land nadir and glint observations, the total ensem-
ble NBE anomalies were 0.43 ± 0.14 PgC yr −1 in LNLG and 0.40 ± 0.16 PgC yr −1 in LNLGIS, showing their 
enhanced carbon release by approximately 48% and 38%, respectively, relative to the estimated magnitude in IS. 
The magnitudes of these ensemble NBE anomalies in LNLG and LNLGIS were closer to that of Gatti2021 with 
its value of 0.48 PgC yr −1 (Figure 1f). Hence, we will focus on the results in LNLG and LNLGIS in the following 
text. The NBE anomaly composed of NEE and Ffire anomalies, in which Ffire anomaly was estimated at 0.05 PgC 
yr −1 based on GFEDv4.1s product (Figure 1f), suggesting that the dominant contributor to the NBE anomaly is 
NEE. Additionally, the inter-model spread in the total NBE anomalies in IS was larger than that in LNLG, indi-
cating that larger discrepancies existed in assimilating in situ observations in these atmospheric inversion models.

3.3.  Anomalous Pattern-Related Climate Drivers

Interannual NBE anomalies were predominantly controlled by temperature, soil moisture, and VPD,as suggested 
by previous studies (He et al., 2022; Humphrey et al., 2018; Jung et al., 2017; J. Wang et al., 2016; W. Wang 
et al., 2013; Zeng et al., 2005). Regression analysis revealed that 1K increase of ONI in the preceding December 
can increase the annual temperature by 0.34 K (R 2 = 0.35, p < 0.05), enhance VPD by 0.02 kPa (R 2 = 0.41, 
p < 0.05), and reduce TWS by 0.16 TtH2O (R 2 = 0.84, p < 0.05) over the entire Amazonian rainforests (Figure 3a). 
Accordingly, the climate condition showed the higher temperature and VPD and drier soil in 2015/16, whereas it 
had the lower temperature and VPD and wetter soil in 2017/18 (Figure 3a). Relative to the averages in 2017/18, 
higher temperature occurred over the entire Amazonian rainforests (Figure 3b), which can potentially inhibit 
the vegetation photosynthesis and enhance soil respiration (Crowther et al., 2016; Zeng et al., 2005). The soil 
and atmospheric dryness mainly occurred over the northeastern Amazonia albeit with some differences in their 
spatial patterns (Figures 3c and 3d), which both can reduce vegetation photosynthesis (Lopez et al., 2021; Stocker 
et al., 2019; Werner et al., 2021; Yuan et al., 2019). Therefore, these three climate drivers simultaneously contrib-
uted to the positive NBE anomalies (Figures 2c and 2d).

In space, the stronger positive ensemble NBE anomalies over the eastern and northern parts of Amazonian rain-
forests (Figures 2c and 2d) were visually more consistent with the pattern of TWS anomaly (Figure 3c). Quan-
titatively, we find that the gridded NBE anomalies were significantly negatively correlated with TWS with the 
spatial correlation coefficients of −0.51 (confidence interval, CI from −0.65 to −0.33, p < 0.05) in LNLG and 
−0.64 (CI from −0.74 to −0.5, p < 0.05) in LNLGIS, respectively. In contrast, they were significantly positively 
correlated with VPD with the coefficients of 0.48 (CI from 0.31 to 0.62, p < 0.05) in LNLG and 0.54 (CI from 
0.38 to 0.67, p < 0.05) in LNLGIS, respectively (Figure 4a). Although the patterns of TWS and VPD anomalies 
show similarity (−0.70 with the CI from −0.80 to −0.56, p < 0.05) (Figures 3c and 3d), the higher coefficients 

Figure 1.  Kling-Gupta Efficiency (KGE) for each inversion model involved in the OCO-2 v10 modeling intercomparison 
project. Because there are no direct large-scale observations for the net biome exchange over Amazonian rainforests, we 
adopted results from Gatti et al. (2021) as the reference. The KGE was calculated for the period of 2015–2018 with the mean 
flow benchmark (KGE = −0.41) as the threshold.
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between NBE and TWS suggested the dominant role of TWS in shaping the NBE anomalous pattern related to 
the extreme 2015/16 El Niño.

3.4.  Total NBE Anomaly-Related Climate Drivers

In addition, we conducted the linear decomposition analysis (Equations 5 and 6) to understand which climate 
driver mostly contributed to the total NBE anomaly over the entire Amazonian rainforests (Figure  4b). We 
revealed that the total NBE anomaly of 0.43 ± 0.14 PgC yr −1 in LNLG composed of 0.30 ± 0.24 PgC yr −1 
induced by temperature, 0.10 ± 0.12 PgC yr −1 induced by TWS, and 0.03 ± 0.15 PgC yr −1 induced by VPD, 
respectively, with the approximately 70% contribution from temperature (Figure 4b). Similarly, the total NBE 
anomaly of 0.40 ± 0.16 PgC yr −1 in LNLGIS was predominantly contributed to by temperature-induced anomaly 
of 0.27 ± 0.22 PgC yr −1 with the approximately 68% contribution.

Furthermore, we randomly combined two of these three climate drivers (three different combinations) to perform 
the same linear decomposition for NBE anomaly (Figure 4c). When we choose temperature and TWS (or VPD) as 

Figure 2.  Geographical distributions of anomalous annual net biome exchange (NBE) induced by the 2015/16 El Niño 
over the Amazonian rainforests. Prior (a) and posterior ensemble NBE anomalies at 2.5° × 2.5° in inversion experiments 
of IS (b), LNLG (c), and LNLGIS (d) in the OCO-2 v10 modeling intercomparison project. The unit of NBE anomalies in 
(a–d) is gC m −2 yr −1. The red stars in (b) and inserted subplot in (c) show the locations of in situ observations and number 
of OCO-2 LNLG observations during 2015–2018 in this domain, respectively. (e) Longitudinal total ensemble NBE 
anomalies in the unit of PgC yr −1. The shaded areas represent the standard deviation (1-σ) of multi-model inversion results 
in each experiment. The bigger dots in LNLG and LNLGIS represent that they are significantly different from those in IS 
with statistical significance at p < 0.1 level estimated by the Wilcoxon signed-rank test (Wilcoxon, 1945). (f) Violin and 
boxplots of multi-model total NBE anomalies over entire Amazonia rainforests. The total NBE is in PgC yr −1. The pink and 
darkgoldenrod lines represent anomalous carbon emissions induced by wildfires estimated by the GFEDv4.1s data set and 
anomalous NBE estimated by Gatti2021.

 19448007, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103379 by C

ochrane France, W
iley O

nline L
ibrary on [05/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

WANG ET AL.

10.1029/2023GL103379

7 of 11

Figure 3.  Anomalous climate drivers over the Amazonian rainforests. (a) Relationship between detrended annual climate anomalies, including surface air temperature 
(Tas, red), terrestrial water storage (TWS, green), and vapor pressure deficit (VPD, blue), and Oceanic Niño Index in the preceding December from 2000 to 2018. The 
bigger markers represent the values in 2015, 2016, 2017, and 2018, which are denoted at x-axis. Anomalous climate patterns of (b) Tas, (c) TWS, and (d) VPD linked to 
the 2015/16 El Niño were consistently calculated by their differences between annual mean during 2015–2016 and that during 2017–2018.

Figure 4.  Associations between ensemble annual net biome exchange (NBE) anomalies and climate drivers over Amazonian 
rainforests. (a) Spatial correlation coefficients between ensemble annual NBE anomalies and individual climate factor. The 
error bars represent 95% confidence intervals derived by 10,000 bootstrap estimates. The symbol of ** denotes the statistical 
significance at p < 0.05 level. (b and c) Linearly decomposed contributions of individual climate factors to total NBE 
anomalies induced by the 2015/16 El Niño over entire Amazonian rainforests, based on different combinations. The error bars 
represent the 1-σ of multi-model inversion results.
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the two regressors, the regression models show the comparable performance as the linear decomposition in Equa-
tions 5 and 6, with the R 2 in the range of 0.79–0.85 (Figure 4c). Importantly, the decomposed NBE anomaly induced 
by temperature consistently made the larger contribution to the total NBE anomaly, accounting for approximately 
73%–74% in LNLG and 68%–70% in LNLGIS, respectively. And TWS and VPD here accounted for nearly the same 
fraction of contribution (approximately 25% in LNLG and 30% in LNLGIS, respectively), which were caused by 
their similarity between TWS and VPD anomalous patterns (Figures 3c and 3d). In contrast, when we selected TWS 
and VPD to decompose the NBE anomaly, the magnitude of R 2 obviously decreased and the residual term showed 
large values. It laterally indicated the important contribution of temperature to the total NBE anomalies.

4.  Discussion
We here find that the anomalous spatial pattern induced by the extreme 2015/16 El Niño was predominantly 
determined by soil dryness, while the total positive NBE anomaly was dominated by higher temperature. It is 
worth mentioning that uncertainty may exist when we derived the individual contributions of different climate 
drivers through the linear decomposition upon the spatial NBE anomalies. For instance, (a) we potentially 
assumed the homogeneous climate sensitivities of Amazonian rainforests. However, although we focus on the 
consistent broadleaf forest on the basis of MODIS landcover, the uneven forest composition at the landscape level 
(topographic highs and lows) and along the precipitation gradient (Fancourt et al., 2022; Wittmann et al., 2006) 
can to some extent make our assumption inadequate. (b) Different climate drivers are not independent (Figure 3). 
In order to assess the impact of their interactions on the linear decomposition, we added some interaction terms 
(Equation S1 in Supporting Information S1) to further decompose their individual contributions (Luo et al., 2021). 
Although we agree that it is not strictly a nonlinear model yet because the dependence on the individual drivers is 
still of first order and it does not fully represent the complex soil-plant-atmosphere interactions, the contributions 
from those interaction terms are small and the derived temperature contributions are approximately 74% in LNLG 
and 70% in LNLGIS (Figure S4 in Supporting Information S1), which are consistent with the results derived by 
Equations 5 and 6. (c) Climate products have uncertainties in anomalous pattern and strength (Figure 3 and Figure 
S5 in Supporting Information S1). To further test the robustness of the results, we conducted the same analysis 
using the temperature and derived VPD (Equation S2 in Supporting Information S1) from the Climatic Research 
Unit gridded Time Series (CRU TS) v.4.05 product (Harris et al., 2020), and found that the main conclusion 
remained the same (Figure S6 in Supporting Information S1). Therefore, we believe that the results here are 
credible albeit the uncertainties are inevitable.

So what causes the inconsistency in the dominant climate drivers for NBE anomalous pattern and total flux over 
the rainforests? Actually, we think that this difference greatly links to the spatial scales of anomalous temperature 
and soil water, as discussed by Jung et al. (2017). Although it does not turn out the compensatory water effect 
here, the area of higher temperature is much larger than that of soil dryness (Figures 3b and 3c). This difference 
in spatial scale leads to the fact that the total NBE anomaly was not controlled by soil water availability, but by 
temperature. Results here suggest that it is necessary to distinguish the climate drivers for anomalous pattern 
and total flux of carbon in order to comprehensively understand how the abiotic stresses influence the regional 
carbon cycle.
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