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Abstract

Speaker diarization is the task of answering Who spoke and
when? in an audio stream. Pipeline systems rely on speech
segmentation to extract speakers’ segments and achieve robust
speaker diarization. This paper proposes a common framework
to solve three segmentation tasks in the distant speech scenario:
Voice Activity Detection (VAD), Overlapped Speech Detection
(OSD), and Speaker Change Detection (SCD). In the literature,
a few studies investigate the multi-microphone distant speech
scenario. In this work, we propose a new set of spatial fea-
tures based on direction-of-arrival estimations in the circular
harmonic domain (CH-DOA). These spatial features are ex-
tracted from multi-microphone audio data and combined with
standard acoustic features. Experiments on the AMI meeting
corpus show that CH-DOA can improve the segmentation while
being robust in case of deactivated microphones.

Index Terms: speech segmentation, multi-microphone, speaker
diarization
1. Introduction

Speaker diarization is the task of answering Who spoke and
when? in an audio stream [1, 2]. Many speaker diariza-
tion approaches are based on pipeline architectures [2, 3, 4].
Those approaches rely on a speech segmentation step that ex-
tracts speaker-homogeneous segments. Speaker clustering is
then performed by extracting and grouping speaker embeddings
via clustering algorithms [2]. This paper focuses on automatic
speech segmentation, which can be divided into three sub-tasks:
Voice Activity Detection (VAD), Overlapped Speech Detection
(OSD), and Speaker Change Detection (SCD).

VAD detects speech segments in the audio signal. It is
the first step in most speaker diarization pipelines [2]. Finally,
since overlapping speech is one of the major sources of errors in
speaker diarization pipelines [5, 6], OSD is required. It consists
in detecting speech segments in which multiple speakers are si-
multaneously active. SCD is also required to detect speaker
turns in the audio signal, i.e., when the currently active speaker
is changing.

Early studies on VAD [7, 8], OSD [9, 10, 11] and SCD [12,
13] are based on the statistical modeling of acoustic features.
The latter is originally solved by comparing the statistics of two
adjacent segments.

Statistical models have then been replaced by neural net-
works due to their strong modeling capacities. VAD [5, 14, 15],
OSD [5, 16, 17], and SCD [18, 19, 20] can be solved by mod-
eling a sequence of acoustic features and performing a frame-
level binary classification. SCD is also tackled as the regression
of functions in which maxima are located at turn locations [20].

Most VAD, OSD, and SCD studies are conducted on single-
channel data. In the meeting context, recording signals with a
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distant device offers practical benefits since it does not require
participants to carry an individual microphone. Microphone ar-
rays are commonly used as distant devices to capture additional
spatial information. Few studies have been conducted on multi-
microphone speech segmentation [17, 21, 22, 23]. In particular,
Cornell et al. [17] explore the use of Interaural Phase Difference
(IPD) spatial features for joint VAD and OSD and report a no-
ticeable performance gain. Hu et al. [21] investigate the use of
Time Difference of Arrival (TDOA) features to detect speaker
changes. Although the authors show diarization performance
gain, experiments were only conducted on simulated data. To
the best of our knowledge, no other work has been reported on
the use of spatial features for distant SCD.

Several spatial features have been investigated in various
multi-microphone speech processing tasks [24, 25, 26, 27]. In
particular, SongGong et al. [28] propose a speaker localization
method based on circular harmonics (CH). Although these fea-
tures require the use of a circular array, they depend little on the
number of available microphones. Hence, circular harmonics
are an interesting framework for feature extraction to rely less
on the array configuration.

In this paper, we tackle VAD, OSD, and SCD tasks with the
same architecture. We propose the use of CH to extract spa-
tial features for multi-microphone speech segmentation. This
choice is motivated by the common use of circular microphone
arrays to capture distant speech in meetings [29, 30]. The pro-
posed spatial features consist of direction-of-arrival estimation
in the CH framework (CH-DOA). Spatial features are combined
with commonly used acoustic features to solve segmentation
tasks. As far as authors are aware, this is the first investiga-
tion on the use of CH features for distant speech segmentation.
Furthermore, we report the impact of IPD spatial features for
SCD since no work has been found considering their use for this
task. We demonstrate that adding spatial information drastically
improves the detection of speaker turns. Finally, we present
encouraging results of CH-DOA-based OSD and SCD systems
under mismatched array conditions. The code will be available
soon in a large-scale diarization toolkit'.

The paper is organized as follows. Sect. 2 presents VAD,
OSD, and SCD tasks. Sect. 3 presents the CH-DOA feature
extraction. Sect. 4 introduces the speech segmentation model
along with the dataset and the experimental protocol before pre-
senting results in Sect. 5 and conclusions in Section 6.

2. Segmentation Tasks

This section describes the segmentation tasks considered. The
labeling procedure for each task is presented in figure 1.

'mttps://git-lium.univ-lemans.fr/speaker
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Figure 1: VAD, OSD, and SCD labels along with the refer-
ence diarization. VAD and OSD are formulated as a binary
frame classification task while SCD is solved as the regression
of Gaussian-like functions.

2.1. Voice Activity and Overlapped Speech Detection

VAD is formulated as a framewise binary sequence classifica-
tion task [3]. Let X = [Xo,...,X¢,...,X7r—1] be a se-
quence of features extracted from the audio signal with 7" be-
ing the length of the sequence. The VAD task aims at pre-
dicting the sequence P = [Py,..., P, ..., Pr_i1], where
P, = {p(Nopr = 0/X¢),p(Nspr > 1|X;)} is the pseudo-
probability of the ¢-th frame to belong to each class. Ny, de-
notes the number of active speakers in the current frame.

OSD formulation is similar to VAD. However, positive la-
bels correspond to frames containing strictly more than one ac-
tive speaker: P = {p(Nspr < 1|X%), p(Nspr > 2| X4) }

2.2. Speaker Change Detection

In this paper, SCD is formulated as a regression task [20]. This
approach consists in estimating functions in which maxima are
located at speaker change points. Speaker changes are repre-
sented as Gaussian-like functions® following the binary label
encoding of [31]. In this work, the speech-to-non-speech tran-
sition is considered as a speaker turn (Fig. 1).

3. Circular Harmonics Features

Circular harmonics (CH) are a set of elementary 2-d functions.
They are similar to cylindrical harmonics or spherical harmon-
ics in the 3-d domain [32]. An acoustic signal can be repre-
sented as a weighted sum of CH components. This section
presents this formulation and introduces the CH-DOA features
used for speech segmentation.

3.1. Circular harmonics framework

Let us consider a uniform circular microphone array (UCA)
composed of M microphones with a radius 7. The X, (f,t)
signal captured by the m-th microphone can be expressed in
the short-time Fourier transform (STFT) domain as a weighted
sum of circular harmonics [33]:

Xa(f,t) = Y Culf,t)e™, $))

n=—oo

2The variance o2 of the Gaussian functions used as labels is ran-
domized during training. It follows a uniform distribution ¢/ such as
2
o ~ U,

where f denotes a frequency bin and ¢ the frame index. In equa-
tion (1), j = v/—1, ¢ is the DOA of the sound source, '™ is
the n-th order CH and C,(f,t) the associated coefficient. By
using a circular microphone array, the sound field is sampled at
some discrete locations. CH coefficients are estimated as fol-
lows [28, 33]:

M

N 1 i

Co(fit) = 57 D Xm(frt)e "0, @)
m=1

where C., (f, t) is the estimated CH coefficient and ., = (m—
1) QM” denotes the angle of the m-th microphone.

3.2. CH-DOA feature extraction

Spatial filtering, i.e. beamforming, can be performed in the CH
domain [33]. This is also known as modal beamforming and
can be expressed as follows [28]:

z én(f ) t) jné

with By, (k, t) being the n-th order beamformed signal and k =
27 f /¢ the wave number with ¢ the speed of sound. J,(kr) is
the n-th order Bessel function of the first kind and 6 indicates
the steering direction.

The Pseudo-Intensity Vector (PIV) uses only zero- and first-
order beamformers. The zero-order beam is obtained from
equation (3) by setting N = 0:

Bo(f,t) = C;Z((ir t)). )

For N = 1, two orthogonal beams can be defined oriented
towards the 6, = 0 and 6, = 7/2 respectively. The beam
Bix(f,t) (respectively By, with 0,) is expressed following:

o
Bi(f.) =) jif}ijz’k?) e, 5)

—1

Then, the PIV components I, and I,, can be calculated as:
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where R denotes the real part and * the complex conjugate.

The PIV is supposed to be oriented in the propagation di-
rection of the impinging acoustic wave. Thus, the angular di-
rection of the PIV in the frame of reference of the microphone
corresponds to the source DOA [28]:

gzg(f, t) = arctan { Iy(£,1) } @

L(f1)

The estimated DOA ngS is used as a spatial feature for speech
segmentation and is denoted as CH-DOA. The following sec-
tion presents how these features are integrated into our segmen-
tation systems. The CH-DOA features offer a similar compu-
tational complexity as IPD/CSIPD since it only relies on the
multi-microphone STFT without any additional loop.

4. Experimental protocol

This section presents the experimental protocol to evaluate
the impact of CH-DOA spatial features on multi-microphone
speech segmentation.



4.1. Dataset

Experiments are conducted on the AMI meeting corpus [29].
This dataset is about 100h of speech acquired during realistic
meetings. The majority of participants are non-native English
speakers and were asked to conduct a design project. Speech
can be either spontaneous or scripted depending on the ses-
sion. Meetings have been recorded using various devices. Ex-
periments are conducted on the AMI Array I data, which is
an 8-microphone circular array placed in the center of the ta-
ble. Training, development, and evaluation partitions follow the
protocol proposed in [4]. Labels for VAD, OSD, and SCD are
extracted from the manual annotation of the segments. Speech
signals are sampled at 16kHz.

4.2. Segmentation architecture

The segmentation architecture — figure 2 — is composed of the
following modules. The acoustic feature module extracts a rep-
resentation A € R *T from the multi-microphone signal with
F, being the acoustic feature size. The spatial feature module
extracts a representation S € R™ %7 from the same signal with
F; being the spatial feature size. Both kinds of features are
concatenated on the first dimension to produce a F'-long feature
vector. The feature sequence is fed to the sequence modeling
network which outputs the prediction P € R*7 with C' be-
ing the output size.
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Figure 2: Segmentation architecture used for VAD, OSD, and
SCD. Acoustic and spatial features are extracted from the multi-
microphone signal. W denotes the concatenation operation.
The model has two outputs (C = 2) for classification and one
output (C = 1) for regression.

4.2.1. Acoustic features

Acoustic features are extracted from the signal captured by the
first channel of the microphone array. Mel Frequency Cep-
stral Coefficients (MFCC) and Log-Mel spectrogram are used
as acoustic features following [17]. Both types of features are
extracted on a 25ms sliding window with a 10ms shift. The mel
spectrogram is obtained using 80 mel-scale filters before con-
version to the log scale. Time-frequency masking is applied as
data augmentation during training. This results in a vector of
F, = 80 features.

20 MFCC are computed from a mel-spectrogram extracted
using 40 triangular filters since it leads to the best performance.
The first MFCC coefficient (energy) is removed and both A and
AA are computed. This results in a vector of F,, = 59 features.

4.2.2. Spatial features

The proposed CH-DOA features are computed for each fre-
quency bin of the STFT which results in a vector of Fs = 257
features. To ensure alignment with the acoustic features, spatial

features are extracted on 25ms sliding windows with a 10ms
shift. Interaural Phase Difference (IPD) and cosine and sine
IPD (CSIPD) are considered as baseline spatial features fol-
lowing [17]. In this work, we consider 4 microphone pairs
with the microphones in opposition. This results in a vector
of Fiy = 1028 and F; = 2056 features respectively.

4.2.3. Sequence modeling

Sequence modeling is performed using the Temporal Convolu-
tional Network®. It consists of 1-d convolutional layers with ex-
ponentially increasing dilatation to learn a large temporal con-
text. Our architecture is composed of 3 stacked TCN blocks
of 5 convolutional layers. A residual connection is added af-
ter each TCN block. Before feeding the sequence of feature
vectors to the TCN blocks, a 1-d bottleneck convolution com-
presses the feature sequence from F'-dimensional vectors to 128
dimensions. Prediction is obtained by adding a 1-d convolution
followed by a softmax activation function for the classification
tasks or a linear activation in the case of regression (SCD).

4.3. Training and evaluation procedures

VAD, OSD, and SCD systems are trained on the AMI train sub-
set. The classification models — VAD and OSD - are optimized
using cross-entropy loss. SCD models are optimized with the
Mean Squared Error training objective. Model weights are up-
dated using the ADAM optimizer with a learning rate set to
Ir = 0.001. Each system is trained on 2s audio segments ran-
domly sampled from the training set. The batch size is set to
64. Overlaps augmentation [16] is applied to 50% of the train-
ing segments. Models are trained on Nvidia RTX6000 GPU
cards.

Models are evaluated on the AMI evaluation set. Inference
is performed on 2s segments with a 0.5s shift. The VAD, OSD,
and SCD detection thresholds are tuned on the development set.
VAD is evaluated in terms of False Alarm rate (FA) and missed
detection (Miss). OSD is evaluated using F1-score and average
precision (AP) [22]. Finally, SCD is evaluated using purity (P)
and coverage (C) as suggested in [18, 19]. The F1-score, i.e. the
harmonic mean, of purity and coverage is also reported and is
denoted as Segmentation Error (SER). We also report the 95%
confidence interval calculated on the file-level performance for
each metric.

5. Experimental study

This section presents the experimental results obtained with
CH-DOA features on VAD, OSD, and SCD. The performance
on each task is presented in table 1.

5.1. VAD performance

Considering only MFCC shows robust VAD performance with
3.5% Miss and 3.0% FA. Adding IPD or CSIPD slightly de-
grades the performance as shown by the imbalanced Miss and
FA. The proposed CH-DOA shows similar performance as the
MFCC with 3.4% FA and 3.1% Miss. VAD performance is sim-
ilar when considering Log-Mel features. Using Log-Mel fea-
tures offers 3.2% FA and 3.5% Miss. Again, IPD and CSIPD
fail at improving the VAD performance. CH-DOA features
show a similar performance as the Log-Mel with 3.2% FA and
3.3% Miss but without improvement. Since the performance
is the same between MFCC and CH-DOA, it seems the model

3https://github.com/popcornell/0SDC



Table 1: Performance of VAD, OSD, and SCD systems on the AMI meeting corpus with each type of features. The number of parameters
is given for the VAD and OSD systems. The number of parameters of the regression model-SCD—is slightly lower. Bold values indicate
the best-performing model for each type of acoustic feature. MFCC and Log-Mel correspond to single-channel models.

VAD OSD SCD

#param.  FAg, Missy,y  Fl-scoregs APy Py Cor SE Ryt

MFCC 026M  3.5+0.5 3.0+1.3 64.5+5.6  65.1£7.2 822422 79.24+2.6 80.7£0.9
+1IPD 033M 42408 3.0+12 60.7£55  62.5+7.5 748428 764429 75.640.7

+ CSIPD 040M  3.0£03 4.1%1.6 717445 759455 819413 859427 83.9+12
+CH-DOA  028M 34404 31+14  69.3+46  73.0+£58 84.6+1.6 843134 84.4+14
Log-Mel 027M 32404 3.5+14  66.1%£59 689479 839+1.7 804423 82.1%12
+1IPD 033M  3.0£04 43%13 652459 659472 795430 76.8+42 78.1£1.3
+ CSIPD 0.40M 3.7£04 3.1+£13 734453 75,6+6.1 85.5+1.8 83.9+39 84.7k1.6
+CH-DOA  028M 32404 33+13 673+55 683+7.1 87.2+14 825434 84.8%+1.5

does not use spatial information for VAD. Other information fu-
sion schemes could be investigated instead of feature concate-
nation.

5.2. OSD performance

Results show that adding IPD features (62.5% AP) degrades
OSD with regard to MFCC features (65.1%). This degradation
can be seen in both F1-score and AP metrics. Adding CSIPD
features (75.9% AP) significantly improves OSD performance
with a +10.8% absolute AP gain compared to MFCC. Then,
the proposed CH-DOA feature (73.0% AP) reaches a similar
performance as the CSIPD on both F1-score and AP with a little
degradation. This model, however, has only 0.28M parameters
to optimize against 0.40M for the CSIPD one.

Models trained with Log-Mel features behave similarly to
the MFCC with a global performance gain, except with CH-
DOA features. IPD features (65.9% AP) degrade the OSD per-
formance with regard to Log-Mel (68.9% AP). Again, CSIPD
(75.6% AP) offers the best OSD performance with a +6.7% AP
and a +7.3% F1-score absolute improvements with respect to
Log-Mel. In this configuration, CH-DOA features offer mit-
igated OSD performance (68.3% AP) without improving nor
degrading the detection.

5.3. SCD performance

SCD models behave similarly to OSD models. When MFCC
features are considered, IPD degrades the SCD performance
(75.6% SER) with respect to MFCC (80.7% SER). Considering
CSIPD features (83.9% SER) significantly improves SCD per-
formance with a +3.2% absolute SER gain. CH-DOA (84.4%
SER) reaches a similar performance, reaching a +3.7% absolute
SER gain. This system also shows the best balance between pu-
rity and coverage.

Considering Log-Mel features with IPD degrades the detec-
tion by an absolute -4.0% SER while both CSIPD and CH-DOA
improve SER by +2.6% and +2.7% respectively. The proposed
CH-DOA features offer similar performance as CSIPD while
reducing the number of trainable parameters. Moreover, this
model is not constrained to the array configuration used in the
training data as shown in the following section.

5.4. Robustness to the number of microphones

CH-DOA is based on zero- and first-order circular harmonics.
Hence, the feature extraction is not supposed to rely on the
number of available microphones in the UCA. This sub-section

evaluates the two best-performing MFCC-based OSD and SCD
models by desactivating 4 channels in the evaluation data. Per-
formance on OSD and SCD is presented in table 2. Results on
the OSD task show that CH-DOA features are more robust to
a mismatch in the microphone number, reaching a 71.4% AP.
This system remains better than MFCC (65.1% AP) with an ab-
solute +6.3% AP improvement. CSIPD features are less robust
to array mismatch with a 51.5% AP.

On SCD, the CH-DOA model shows the best performance
on both purity (84.1%) and coverage (83.2%) while still im-
proving single-channel MFCC (82.2%/79.2%). CSIPD features
degrade the performance with M = 4, mostly on coverage
(75.8%).

Table 2: OSD and SCD performance on AMI array 1 evaluation
data with M = 4 deactivated channels.

OSD SCD
M=4 F1-scoreg;; APy Py Copr
MFCC 64.5+5.6  65.1+£7.2 822422 79.242.6
+ CSIPD 55.4+6.7 51.5+79 81.1£1.7 75.843.0
+CH-DOA  69,6+5.3 714463 84.1+1.7 83.2+34

6. Conclusions

This paper introduces a new set of spatial features based on
direction-of-arrival (DOA) estimation in the circular harmon-
ics (CH) domain. CH-DOA is investigated on three automatic
speech segmentation tasks: Voice Activity Detection (VAD),
Overlapped Speech Detection (OSD), and Speaker Change De-
tection (SCD). The proposed CH-DOA is compared with state-
of-the-art spatial features and combined with commonly used
acoustic features. Although limited to circular arrays, CH-DOA
shows better segmentation performance than single-channel
acoustic features, particularly on OSD and SCD. Furthermore,
we demonstrate that adding spatial features significantly im-
proves SCD and reach the best performance with CH-DOA
(84.8% SER). Finally, CH-DOA shows encouraging robustness
to array mismatch by still improving SCD and OSD under these
conditions.

The use of information fusion schemes (e.g. cross atten-
tion) will be investigated in future work since spatial informa-
tion seems less exploited on the VAD. The segmentation models
remain to be evaluated in a full diarization pipeline.
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