
HAL Id: hal-04117373
https://hal.science/hal-04117373v1

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Fuzzy C-Means with Alternating
Direction Method of Multipliers
Benoit Albert, Violaine Antoine, Jonas Koko

To cite this version:
Benoit Albert, Violaine Antoine, Jonas Koko. Optimization of Fuzzy C-Means with Alternating
Direction Method of Multipliers. International Conference on Optimization and Learning, May 2023,
Malaga, Spain. pp.277-286, �10.1007/978-3-031-34020-8_21�. �hal-04117373�

https://hal.science/hal-04117373v1
https://hal.archives-ouvertes.fr


Optimization of Fuzzy C-Means with
Alternating Direction Method of Multipliers

Benoit Albert, Violaine Antoine, and Jonas Koko
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Abstract. Among the clustering methods, K-Means and its variants
are very popular. These methods solve at each iteration the first-order
optimality conditions. However, in some cases, the function to be mini-
mized is not convex, as for the Fuzzy C-Means version with Mahalanobis
distance (FCM-GK). In this study, we apply the Alternating Directions
Method of Multiplier (ADMM) to ensure a good convergence. ADMM
is often applied to solve a separable convex minimization problem with
linear constraints. ADMM is a decomposition/coordination method with
a coordination step provided by Lagrange multipliers. By appropriately
introducing auxiliary variables, this method allows the problem to be
decomposed into easily solvable convex subproblems while keeping the
same iterative structure. Numerical results have demonstrated the sig-
nificant performance of the proposed method compared to the standard
method, especially for high-dimensional data.

Keywords: Clustering · FCM · Mahalanobis distance · Optimization ·
ADMM

1 Introduction

Clustering is a data analysis process that consists to split n objects of the dataset
into c subsets, with the idea that each group (subset) has similar objects and
that the subsets are quite distinguishable from each other [15]. It allows the
detection of hidden structures in data sets without prior knowledge. Several
different approaches exist, the methods are distinguished by the nature of the
partitions created. Among the models using centroids to represent clusters, there
is a variant of K-Means called Fuzzy C-Mean (FCM) [2,3] which allows to take
into account the uncertainty. This method creates a fuzzy partition that model
the degree to which each object belongs to each cluster. It is still used in various
fields such as bioinformatics [1] and image analysis [5,21]. The similarity between
objects and centroids in the FCM algorithm is calculated with the Euclidean
distance. The algorithm of Gustafson and Kessel FCM-GK [13] is an extension
of FCM that adjusts an adaptive distance for each cluster. It allows us to take
into account the shape of the clusters, to detect not only spherical structures
but also ellipsoidal structures. Indeed, based on the Mahalanobis distance, the
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algorithm adapts symmetric positive definite matrices interpreted as the inverse
of the fuzzy covariance matrices of clusters. FCM and GK are two non-convex
optimization problems under constraints for which the standard optimization
method is the alternating optimization (AO) method, an iterative method of
the Gauss-Seidel type.

The Alternating Direction Method of Multiplier (ADMM) is a simple but
powerful decomposition-coordination method. It decomposes the problem into
sub-problems, and the solutions obtained locally are coordinated by Lagrange
multipliers to find a solution for the global problem. This method was intro-
duced in the mid-1970s for the numerical approximation of non-smooth convex
problems from mechanics [9,12]. This method has been used in many fields, first
of all in nonlinear mechanics [8,11,12,16], also in image restoration [17], in neu-
ral networks [7], in large scale optimization [6,16], etc. A summary of ADMM
applications in machine learning is available in [4]. The standard ADMM fo-
cuses on the minimization of separable (convex) functions with linear coupling
constraints.

In this paper, we extend the application of ADMM to the non-convex cost
function of FCM-GK. ADMM divides the FCM-GK problem into a sequence
of simpler, uncoupled subproblems, through the appropriate introduction of un-
known auxiliary variables. The solution formulation is close to the one obtained
by alternating optimization for the original variables (centroids, distance-related
membership matrices). The auxiliary variables sub-problem leads to the solution
of small uncoupled linear systems. Numerical experiments on UCI machine learn-
ing data show that the proposed FCM-ADMM algorithm is robust, insensitive
to random initialization, and generally creates better partitioning.

The paper is organized into four sections. Section 2 presents the GK model
and the standard method optimization (AO). Then, in Section 3, we describe the
application of the ADMM method in this context. In Section 4, the numerical
experiments are presented. Finally, the conclusion and perspectives are given in
Section 5.

2 FCM-GK model

2.1 Optimisation problem

Let the data set represented by X = (x1 . . .xn) contain n objects xi ∈ Rp,
p is the number of attributes. The objective is to group objects into c clusters
2 ≤ c < n. The variables used in the FCM-GK method are

– the matrix of membership degrees (n× c), U = (uij) such that,

uij ∈ [0, 1],

c∑
j=1

uij = 1,

n∑
i=1

uij > 0. (1)

– the centroids of each group V = {v1, . . . ,vc}, vj ∈ Rp,
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– the positive definite matrices, S = {S1, . . . ,Sc}, inducing the norm of each
group, Sj ∈ Rp×p.

The K-Means algorithm and its variants focuses on minimizing the intra-class
inertia. In FCM-GK, the unknown variables (U ,V ,S) are determined by opti-
mizing the following problem

min
(U ,V ,S)

J(U ,V ,S) =

n∑
i=1

c∑
j=1

um
ijq

⊤
ijSjqij , (2)

with the constraints, ∀i, j ∈ [1, n]× [1, c],

uij ≥ 0,

c∑
j=1

uij = 1,

n∑
i=1

uij > 0, (3)

det(Sj) = ρj , ∀j ∈ [1, c] (4)

where
qij = xi − vj . (5)

The fuzzy parameter m allows us to control the fuzziness of the partition. It’s
usually fixed at 2 [19]. The constraint Eq. (4) avoid trivial solution for the
minimization is the solution with all Sj matrices zero. From a geometric point
of view, ρj is the constant volume of the cluster j.

2.2 Alternating Optimization method (AO)

The method used by Gustafson and Kessel to resolve this constrained problem is
the alternating optimization method (AO) [13]. It is also used for the other ver-
sions of k-means, such as PFCM [20] and ECM [18]. Starting from (U0,V0,S0),
the method successively minimizes U , V and S using first-order optimality con-
ditions :

Uk+1 = arg min
U∈U

J(U ,Vk,Sk), (6)

Vk+1 = argmin
V

J(Uk+1,V ,Sk), (7)

Sk+1 = arg min
S∈S1

J(Uk+1,Vk+1,S). (8)

With the two sets of constraints (3) and (4) :

U =

uij ≥ 0,

c∑
j=1

uij = 1,

n∑
i=1

uij > 0

 ,

S1 = {S, p× p symmetric positive matrix,det(S) = 1} .
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Algorithm 1 describes the FCM-GK algorithm. It stops when the partition is sta-
bilized, i.e. when the absolute error between two successive U matrices (member-
ship degrees) is smaller than a threshold fixed at 10−3. Note that for t iterations,
its complexity is O(tnc2p) [10].

Algorithm 1 FCM-GK

1: Intput : c
2: err = 0, k = 0,
3: U0 random initialization or through FCM.
4: while err > 10−3 do
5: k ← k + 1

6: compute Vk : vk
j =

∑n
i=1 uk−1

ij xi∑n
i=1 uk−1

ij

, qk
ij = xi − vk

j .

7: compute Sk : Σk
j =

∑n
i=1 u

k−1
ij qk

ij(q
k
ij)

⊤,Sk
j = det(Σj)

1
p (Σk

j )
−1.

8: compute Uk : uk
ij =

[∑c
ℓ=1

(qk
ij)

⊤Sk
jq

k
ij

(qk
iℓ

)⊤Sk
ℓqk

iℓ

]−1

.

9: err ←∥ Uk −Uk−1 ∥
10: end while
11: Output : Uk,Vk,Sk

3 Alternating Direction Method of Multipliers (ADMM)

The main idea of Alternating Direction Methods of Multipliers, introduced in
the mid-1970s, is to use a decomposition/coordination process where the coor-
dination is realized by Lagrange multipliers [8,9,12].

3.1 Augmented Lagrangien’s formulation

ADMM does not only minimize the objective function but also the associated
augmented Lagrangian. Before formulating the latter, it is necessary to intro-
duce auxiliary variables into the original problem to obtain a constrained block
optimization problem. First, we write the characteristic functions of the original
constraints to introduce them in the function to be minimized.

IU (U) =

{
0 if U ∈ U
+∞ else

, IS1
(Sj) =

{
0 if Sj ∈ S1

+∞ else.

and IS1
(S) =

∑
j IS1

(Sj). In addition to the auxiliary variables Q (5), we
introduce the variables P

pij = uijqij = uij(xi − vj).
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Thus, we reformulate the cost function as (2) which becomes :

J(U ,V ,S,Q,P) =

n∑
i=1

c∑
j=1

p⊤
ijSjpij . (9)

To simplify the writings we note :
UUU = (U ,V ,S) the set of variables of the problem and QQQ = (Q,P) the set of
auxiliary variables. The constrained minimization problem becomes (2)-(8)

min J(UUU,QQQ) + IU (U) + IS1
(S) (10)

under constraints

qij = xi − vj , (11)

pij = uijqij . (12)

The coupling constraints are defined in such a way as to guarantee the equiv-
alence (in terms of solution) with the original problem (2)-(8), while allowing
independent optimization of variables. With (10)-(12), the function of the aug-
mented Lagrangian is :

Lr(UUU,QQQ,YYY) = J(UUU,QQQ) + IU (U) + IS1
(S)

+
∑
i,j

[
y⊤
ij(qij − xi + vj) + z⊤

ij(pij − uijqij)
]

+
r

2

∑
i,j

[
∥ qij − xi + vj ∥2 + ∥ pij − uijqij ∥2

]
(13)

where r > 0 is the penalty term, ∥ · ∥ is the Euclidean norm, yij and zij are the
Lagrange multipliers associated with the constraints of the auxiliary variables
(11) and (12), represented by YYY = (Y ,Z).

3.2 Application of ADMM

We apply the ADMM method to the augmented Lagrangian (13) by the fol-
lowing iterative algorithm. Starting with QQQ0 : (Q0,P0) and YYY0 :(Y0,Z0), we
successively compute UUUk : (Uk,Vk,Sk), QQQk : (Qk,Pk) and YYYk :(Yk,Zk) by the
following procedure.

UUUk+1 = argmin
UUU

Lr(UUU,QQQk,YYYk), (14)

QQQk+1 = argmin
QQQ

Lr(UUUk+1,QQQ,YYYk), (15)

yk+1
ij = yk

ij + r(qk+1
ij − xi + vk+1

j ), (16)

zk+1
ij = zk

ij + r(pk+1
ij − uk+1

ij qk+1
ij ). (17)
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Note that the iterations of the ADMM method (14)-(17) admit exact updates if
1) the function is bi-convex, i.e., convex along UUU forQQQ fixed and reciprocally, and
2) if the constraints are bi-affine, i.e., affine in UUU for QQQ fixed and reciprocally [4].
In (10), IS1(S) is non-convex because of the constraint det(Sj) = 1. To ensure
the convergence of the method, it is sufficient to fix a number ita of repetitions
of the relaxation blocks (14)-(15), recommended ita = 5, before updating the
multipliers [11,16].

Solution of the subproblem (14) in UUU
Assuming the auxiliary variables QQQ and the multipliers YYYk fixed, the problem
(14) of the augmented Lagrangian (13) is decoupled according to each variable
of UUU, to be optimized separately.

Vk+1 = argmin
V

n∑
i=1

c∑
j=1

(yk
ij)

⊤(qk
ij − xi + vj) +

r

2
∥ qk

ij − xi + vj ∥2, (18)

Uk+1 = argmin
U

IU (U) +

n∑
i=1

c∑
j=1

(yk
ij)

⊤(pk
ij − uijq

k
ij)

+
r

2
∥ pk

ij − uijq
k
ij ∥2,

(19)

Sk+1 = argmin
S

n∑
i=1

c∑
j=1

(pk
ij)

⊤Sjp
k
ij + IS1

(S). (20)

The subproblems (18)-(20) are solved by taking the first-order optimality
conditions, as for the AO method. Thus, the formulations obtained are quite
close :

vk+1
j =

1

n

n∑
i=1

(
xi − qk

ij −
1

r
yk
ij

)
, (21)

uk+1
ij =

1

r2αk
i ∥ qk

ij ∥2

[
rαk

i (q
k
ij)

⊤z̃k
ij + 1−

c∑
ℓ=1

(qk
iℓ)

⊤z̃k
iℓ

∥ qk
iℓ ∥2

]
, (22)

Sk+1
j = det(Σk

j )
1/p(Σk

j )
−1, (23)

with,

z̃k
ij = zk

ij + rpk
ij , αk

i =
1

r

c∑
j=1

1

∥ qk
ij ∥2

, Σk
j =

n∑
i=1

pk
ij(p

k
ij)

⊤.

Solution of the subproblem (15) in QQQ
Now assuming the variables UUU and the multipliers YYYk are fixed. The sub-problem
in QQQ : (Q,P) is an unconstrained optimization problem. Since Q 7→ F (QQQ) =
Lr(UUUk+1,QQQ,YYYk) is quadratic, the unique solution is obtained by solving the
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gradient equation∇F (QQQ) = 0. A simple calculation allows to obtain the following
linear system in (qij ,pij).

r(1 + (uk+1
ij )2)qij − ruk+1

ij pij = uk+1
ij zk

ij − yk
ij + r(xi − vk+1

j ) (24)

−ruk+1
ij qij + (2Sk+1

j + rI)pij = −zk
ij (25)

It follows that at each iteration, we solve nc linear systems of size 2p

Ak
ij

[
qij ,

pij

]
= bkij (26)

Ak
ij =

[
r(1 + (uk+1

ij )2)I −ruk+1
ij I

−ruk+1
ij I 2Sk+1

j + rI

]
, bkij =

[
uk+1
ij zk

ij − yk
ij + r(xi − vk+1

j )

−zk
ij

]
.

Algorithm
Algorithm 2 summarises the ADMM method. The stopping criterion is now
the relative error on all primal and dual variables less than a threshold fixed
at 10−3. For t iterations, the complexity of our method is the same O(tnc2p).
We initialize ADMM with random UUU, same then AO, and construct all other
variables QQQ (11)-(12). The Lagrange multipliers are initialized by solving the
first order optimality condition (10)-(12), deriving the Lagrangian according to
the variables Q,P : z0

ij = 2S0
jp

0
ij ,y

0
ij = u0

ijz
0
ij ,∀i, j.

Algorithm 2 ADMM

1: Intput : Number of clusters c, penalty term r
2: err = 1, k = 0,
3: Random initialization or through ADMM(euclidean).
4: while err > 10−3 do
5: k ← k + 1
6: for 1 until 5 do ( ita repetitions of the relaxation blocks)
7: Vk,Sk and Uk respectively according to (21), (23) et (22)
8: Qk,Pk solving the system (26)
9: end for
10: Yk,Zk respectively according to (16) et (17)
11: err ←∥ (UUU,QQQ)k − (UUU,QQQ)k−1 ∥ / ∥ (UUU,QQQ)k ∥
12: end while
13: Output : Uk,Vk,Sk

4 Numerical experiences

In this section, we studied the performance of our ADMM method for the FCM
problem with Mahalanobis distance. We used Matlab (R2021). The penalty term
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r influences the performance of ADMM. In order to fine-tune this parameteriza-
tion, we normalized all the data between [−1, 1]. Thus we take for r default the
product of the dimensions to ensure the coordination of the variables, rd = 4cnp.
To find the optimal value r∗, we test several values and keep the one that con-
verges the fastest in term of iterations.

In our study, we have fixed m = 2 and ρj = 1,∀j ∈ [1, c], such as [13]. We
compare the three following algorithms:

– FCM-GK, the original method with alternating optimization on the GK
model.

– ADMMr∗ , ADMM applied to the augmented Lagrangian (13), with the
optimal penalty value r∗.

– ADMMrd , the same algorithm with the default value rd.

In order to evaluate these different methods, we will use an external evaluation
criterion that measures the similarity between two hard partitions : the clustering
result and the ground truth. It is however necessary to transform the fuzzy par-
tition into hard partition by assigning each object to the cluster with the highest
membership. We used the Ajusted Rand Index (ARI) introduced by Hubert et
al[14]. The ARI value is between 0 and 1, 1 corresponding to identical partitions.

We used 11 data sets. The first five corresponds to real data from the UCI
library 1 : IRIS, WINE, SEEDS, WDBC, and DRYBEAN. We also used six
synthetic data sets 2 : A1, A3, DIM32, DIM64, S1, and S3. We have referenced
Table 1 their characteristics, i.e. the number of classes c, objects n and attributes
p, as well as the optimal penalty parameter r∗, and by default rd. For insensitivity
of the results to the initialization for every algoithms, we first ran ADMM with
the Euclidean distance (ADMMeu) with r = 2.5 and set a maximum number
of iterations to 50 starting with random U0.

Table 1: Characteristics of data sets.
IRIS WINE SEEDS WDBC DRYBEAN A1 A3 DIM32 DIM64 S1 S3

c 3 3 3 2 7 20 50 16 16 15 15
n 150 178 210 569 13611 3000 7500 1024 1024 5000 5000
p 4 13 7 30 16 2 2 32 64 2 2
r∗ 13 30 480 710 2.105 2000 1000 300 50 100 800
rd 7200 27768 17640 136560 6.097.728 4, 8.104 3.106 221 222 6.105 6.105

Table 2 shows that the ADMM methods perform better overall than the
FCM-GK method, except for DRYBEAN, where FCM-GK is better. It seems
that the larger number of individuals per class and the ratio between the number
of clusters and the number of individuals explain this behavior.

1 https://archive.ics.uci.edu/ml/datasets.php
2 https://cs.joensuu.fi/sipu/datasets/
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Table 2: ARI score (UCI).
IRIS WINE SEEDS WDBC DRYBEAN

FCM-GK 0.74 0.34 0.72 0.41 0.70
ADMMr∗ 0.78 0.81 0.71 0.74 0.32
ADMMrd 0.72 0.90 0.71 0.74 0.32

Table 3, corresponding to the results for the synthetic data, confirms this
characteristic: the greater the number of clusters (A1, A3) the lower the ARI
score. On the other hand, the greater the number of dimensions (DIM32, DIM64),
the better the score.

Although their complexity is of the same order of magnitude, the ADMM
method is the fastest especially with the default penalty rd. Table 4 lists the
number of iterations for some data, measured for ten different random initial-
izations (ADMMeu).

Table 3: ARI score (Synthetic data).
A1 A3 DIM032 DIM064 S1 S3

FCM-GK 0.90 0.93 0.44 0.18 0.97 0.66
ADMMr∗ 0.23 0.16 0.57 0.68 0.33 0.24
ADMMrd 0.20 0.16 0.57 0.68 0.33 0.26

Table 4: Number of iterations (mean ± standard deviation).
IRIS WINE SEEDS WDBC A1 S1

ADMMeu 30±1 33±3 30 ±4 26 ±1 10 ±2 10 ±0
FCM-GK 67±0 113±0 41±0 35±0 197±75 92 ±37
ADMMr∗ 35±0 41±0 6±0 7±0 4±0 3±0
ADMMrd 2±0 2±0 4±0 3±0 2±0 2±0

.

5 Conclusion

We have proposed an application of the ADMM method for the FCM clustering
model with the Mahalanobis distance. The interest of this method is to divide
the problem into a sequence of simpler sub-problems, easy to solve. Convergence
to the same minimum, assumed to be global, is ensured. The results obtained on
several data sets (real or synthetic) show good performances, in terms of ratios of
well-classified samples, when the number of clusters is not too large or when the
number of dimensions is significantly higher. To simplify the use of our method,
we have proposed a default value for the penalty term (hyperparameter), whose
convergence is assured and close to that of the optimal value. Our methods need
less iterations than FCM-GK to converge and consequently are faster regarding
the execution time.
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The results are very encouraging. To confirm them, we wish to apply our
method to a biology dataset, where many objects to be classified have a large
number of attributes. To facilitate the use of our method, a formulation with
an adaptive penalty is envisaged to replace the study of the optimal r. Finally,
our study opens the possibility to apply the ADMM method to other cluster-
ing methods, having a non-convex objective function particularly those using
alternating optimization.
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