Computational real algebraic geometry and applications to robotics

Guillaume Moroz

To cite this version:

Guillaume Moroz. Computational real algebraic geometry and applications to robotics. Doctoral. Luminy, France. 2021. hal-04117321

HAL Id: hal-04117321
 https://hal.science/hal-04117321

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Computational real algebraic geometry and applications to robotics

JNCF lecture, part 1

Guillaume Moroz
Inria Nancy - Grand Est

March $1^{\text {st }}, 2021$

Mechanisms

Modeling

- Joint variables

Parallel $\underline{P R}$ - $\underset{R}{ } R$

- r_{1}, r_{2}
- Pose variables
- x, y
- Passive variables
- θ_{1}, θ_{2}

- Equations

$$
(F)\left\{\begin{array}{l}
x=\cos \left(\frac{2 \pi}{3}\right) r_{1}+\cos \left(\theta_{1}\right) \\
x=1+\cos \left(\frac{\pi}{3}\right) r_{2}+\cos \left(\theta_{2}\right) \\
y=\sin \left(\frac{2 \pi}{3}\right) r_{1}+\sin \left(\theta_{1}\right) \\
y=1+\sin \left(\frac{\pi}{3}\right) r_{2}+\sin \left(\theta_{2}\right)
\end{array}\right.
$$

Workspace, Joint space

- Q : joint space
- W: workspace

Parallel RPR-R

- Total space: $Q \times W$
- solutions of $\mathrm{F}: V(F) \subset W \times Q$

- Canonical projections:
- $\pi_{W}: V(F) \rightarrow W$
- $\pi_{Q}: V(F) \rightarrow W$

Serial robot

- Glossary:
- P: prismatic joint
- R: rotation joint
- U: Cardan joint
- S: spherical joint

Serial 3R

Properties

- Inverse Kinematics (IK) hard
- Forward Kinematics (FK) easy: 1 solutions

Parallel robot

- Glossary:
- P: prismatic joint
- R: rotation joint
- U: Cardan joint
- S: spherical joint

Parallel 3-PPPS

Properties

- Inverse Kinemaics (IK) easy
- Forward Kinematics (FK) hard: several solutions
- 2 solutions can cross
- loose of control
- break

Covering map

Definition

The continuous map $f: S \rightarrow U$ is a covering map if:

$$
f^{-1}(U)=S_{1} \cup \cdots \cup S_{k} \text { where }\left\{\begin{array}{l}
S_{i} \stackrel{f}{\simeq} U \\
S_{i} \text { pairwise disjoint. }
\end{array}\right.
$$

Critical points

- $V \subset \mathbb{R}^{n}$ smooth variety of dimension p
- $\pi: V \rightarrow \mathbb{R}^{p}$ canonical projection

Critical points

Let $T(a)$ be the linear space tangent to V at point a. The critical points a of V for the projection π satisfy:

$$
\operatorname{dim}(\pi(T(a)))<p
$$

Case of the serial robot

Hypothesis: $V(F)$ smooth, bounded, equidimensional.

- FK: always 1 solution $\Rightarrow \pi_{Q}: V(F) \rightarrow Q$ invertible
- IK: partition W in $W_{0}, W_{1}, \ldots, W_{k}$ s.t.:
- W_{0} are the critical values of π_{W}
- W_{1}, \ldots, W_{k} are the connected components of $W \backslash W_{0}$
- Critical points of π_{W} : serial singularities

Theorem (covering map and critical values)

For all $1 \leqslant i \leqslant k$, the restriction of π_{W} to $\pi_{W}^{-1}\left(W_{i}\right)$ is a covering map above W_{i}.

Case of parallel robot

Hypothesis: $V(F)$ smooth, bounded, equidimensional.

- IK: always 1 solution $\Rightarrow \pi_{W}: V(F) \rightarrow W$ invertible
- FK: partition Q in $Q_{0}, Q_{1}, \ldots, Q_{k}$ s.t.:
- Q_{0} are the critical values of π_{Q}
- Q_{1}, \ldots, Q_{k} are the connected components of $Q \backslash Q_{0}$
- Critical points of π_{Q} : parallel singularities

Theorem (covering map and critical values)

For all $1 \leqslant i \leqslant k$, the restriction of π_{Q} to $\pi_{Q}^{-1}\left(Q_{i}\right)$ is a covering map above Q_{i}.

Properties

Case of parallel robots

- FK: $F_{q}(x)=0$, system parametrized by q
- For fixed q, finitely many solutions (0-dimensional)
- π_{Q} is not a covering map near q
\Rightarrow two sheets of solutions cross
$\Rightarrow F_{q}(x)=0$ has singular solutions

- Remark: $V(F)$
- not bounded: take asymptotes into account
- not smooth: take singularities into account

Computation

Hypothesis: $V(F)$ smooth, bounded, equidimensional.

$$
\underbrace{\frac{\partial F}{\partial q}}_{A} d q+\underbrace{\frac{\partial F}{\partial x}}_{B} d x=0
$$

- Serial singularities

$$
\left(S_{s}\right): F=0, \operatorname{det}(A)=0
$$

- W_{0}, critical values of π_{W} : projection on x_{i} of solutions of $\left(S_{s}\right)$
- W_{1}, \ldots, W_{k}, complement of critical values

Computation

Hypothesis: $V(F)$ smooth, bounded, equidimensional.

$$
\underbrace{\frac{\partial F}{\partial q}}_{A} d q+\underbrace{\frac{\partial F}{\partial x}}_{B} d x=0
$$

- Parallel singularities

$$
\left(S_{p}\right): F=0, \operatorname{det}(B)=0
$$

- Q_{0}, critical values of π_{Q} : projection on q_{i} of solutions of $\left(S_{p}\right)$
- Q_{1}, \ldots, Q_{k}, complement of critical values

Example

- 3-PPPS:
- Parallel
- Joint variables: $x_{1}, y_{1}, y_{2}, z_{2}, x_{3}, z_{3}$
- Pose variables: $p_{x}, p_{y}, p_{z}, \varphi, \theta, \sigma$
- Critical values of π_{Q}, and partition of Q

Design challenges

- $E \subset W$ given shape
- Design a parallel robot without singularities in E

$$
\pi_{W}\left(\text { critical points of } \pi_{Q}\right) \cap E=\varnothing
$$

- Maximise the volume of E (lecture P. Lairez)
- \rightarrow design variables

Demo

Demo

Modeling equations

(1) Linkages
(2) Rotations 3D
(3) Singularities

Planar Rigid Linkage: Laman Graph

3-bar

5-bar

11-bar

Constraints

- Fixed length bars: $c_{i j}$
- Free revolute joints
- Zero degree of freedom

- Several assembly modes
- Number depends on $c_{i j}$
- Max number of assembly modes?

Properties of Rigid Linkages

- Construction steps

- 3-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

- 5-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

- 7-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

- 9-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

- 11-bar rigid linkage

Known properties

Theorem
 A linkage is rigid \Leftrightarrow It can be constructed with H_{1} and H_{2}

Corollary

$$
\# \text { Links }=2 \# \text { Joints }-3
$$

Algebraic Modeling I

- $c_{i j}: 10$ parameters
- $x_{i}, y_{i}: 14$ variables

$$
\left\{\begin{array}{l}
x_{1}=0, y_{1}=0 \\
x_{2}=1, y_{2}=0
\end{array}\right.
$$

$$
\left\{\begin{array} { r l }
{ x _ { 3 } ^ { 2 } + y _ { 3 } { } ^ { 2 } } & { = c _ { 1 3 } } \\
{ (x _ { 3 } - 1) ^ { 2 } + y _ { 3 } { } ^ { 2 } } & { = c _ { 2 3 } } \\
{ (x _ { 5 } - 1) ^ { 2 } + y _ { 5 } { } ^ { 2 } } & { = c _ { 2 5 } } \\
{ (x _ { 6 } - x _ { 3 }) ^ { 2 } + (y _ { 6 } - y _ { 3 }) ^ { 2 } } & { = c _ { 3 6 } } \\
{ x _ { 4 } { } ^ { 2 } + y _ { 4 } { } ^ { 2 } } & { = c _ { 1 4 } ^ { 2 } + y _ { 7 } ^ { 2 } }
\end{array} \quad \left\{\begin{array} { r l }
{ x _ { 1 7 } }
\end{array} \quad \left\{\begin{array}{rl}
\left(x_{6}-x_{4}\right)^{2}+\left(y_{6}-y_{4}\right)^{2} & =c_{46} \\
\left(x_{5}-x_{6}\right)^{2}+\left(y_{5}-y_{6}\right)^{2} & =c_{56} \\
\left(x_{7}-x_{5}\right)^{2}+\left(y_{7}-y_{5}\right)^{2} & =c_{57} \\
\left(x_{4}-x_{7}\right)^{2}+\left(y_{4}-y_{7}\right)^{2} & =c_{47}
\end{array}\right.\right.\right.
$$

Number of solutions

- Mixed Volume: n! Volume(Support) (same support)
1 variable

$$
1-X+3 X^{2}-X^{3}+6 X^{4}-5 X^{5}=\left\{\begin{array}{l}
1-X^{4} Y^{2}+7 X^{4} Y^{3}-4 X^{3} Y^{4}=0 \\
0 \\
8+6 X^{4} Y^{2}-5 X^{4} Y^{3}-X^{3} Y^{4}=0
\end{array}\right.
$$

- Our system: 2^{10}

Algebraic Modeling II

- Cayley-Menger matrix or distance matrix
$\begin{array}{lllllll}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}\end{array}$
v_{1}
v_{2}
v_{3}
v_{4}
v_{5}
v_{6}
$v_{7}$$\quad\left[\begin{array}{cccccccc}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & c_{12} & c_{13} & c_{14} & x_{15} & x_{16} & c_{17} \\ 1 & c_{12} & 0 & c_{23} & x_{24} & c_{25} & x_{26} & x_{27} \\ 1 & c_{13} & c_{23} & 0 & x_{34} & x_{35} & c_{36} & x_{37} \\ 1 & c_{14} & x_{24} & x_{34} & 0 & x_{45} & c_{46} & c_{47} \\ 1 & x_{15} & c_{25} & x_{35} & x_{45} & 0 & c_{56} & c_{57} \\ 1 & x_{16} & x_{26} & c_{36} & c_{46} & c_{56} & 0 & x_{67} \\ 1 & c_{17} & x_{27} & x_{37} & c_{47} & c_{57} & x_{67} & 0\end{array}\right]$

Theorem

The distance matrix has rank 4.

Corollary

All the 5×5 minors vanish.

Algebraic Modeling II

$$
\left\{\begin{array}{l}
D(0,4,5,6,7)\left(c_{46}, c_{47}, c_{56}, c_{57}, x_{45}, x_{67}\right)=0 \\
D(0,1,4,6,7)\left(c_{14}, c_{17}, c_{46}, c_{47}, x_{16}, x_{67}\right)=0 \\
D(0,1,4,5,7)\left(c_{14}, c_{17}, c_{47}, c_{57}, x_{15}, x_{45}\right)=0 \\
D(0,1,2,3,5)\left(c_{12}, c_{13}, c_{25}, c_{23}, x_{15}, x_{35}\right)=0 \\
D(0,1,3,5,6)\left(c_{13}, c_{36}, c_{56}, x_{15}, x_{16}, x_{35}\right)=0
\end{array}\right.
$$

- Upper bound
- Mixed volume: 56
- Lower Bound?

Sampling

Number of assembly modes

Maximal number of assembly modes

bars	3	5	7	9	11	13	15	17
upper	2	4	8	24	56	136	344	880
lower	2	4	8	24	56	136	344	860

- [Bartzosa, Emiris, Legerský, Tsigaridas 2021]
- Started in 2002 with Borcea
- Bartzosa, Borcea, Emiris, Legerský, M., Streinu, Capco, Gallet, Grasegger, Koutschan, Lubbes, Schicho, Tsigaridas, ...

Rotations matrix in 3D

$$
R=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right)
$$

$$
R^{T} R=I
$$

- Action of R is a rotation by θ around an axe u
- Set of rotation has dim 3

Euler matrix

$$
\begin{gathered}
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & \sin (\theta) \\
0 & -\sin (\theta) & \cos (\theta)
\end{array}\right) \\
R_{y}(\varphi)=\left(\begin{array}{ccc}
\cos (\varphi) & 0 & \sin (\varphi) \\
0 & 1 & 0 \\
-\sin (\varphi) & 0 & \cos (\varphi)
\end{array}\right) \\
R_{z}(\psi)=\left(\begin{array}{ccc}
\cos (\psi) & \sin (\psi) & 0 \\
-\sin (\psi) & \cos (\psi) & 0 \\
0 & 0 & 1
\end{array}\right) \\
R=R_{z}(\psi) R_{y}(\varphi) R_{x}(\theta) \text { or } R=R_{z}(\psi) R_{y}(\varphi) R_{z}(\theta)
\end{gathered}
$$

Quaternions matrix

$$
\begin{gathered}
q_{i}^{2}+q_{j}^{2}+q_{k}^{2}+q_{r}^{2}=1 \\
R=\left(\begin{array}{cll}
1-2\left(q_{j}^{2}+q_{k}^{2}\right) & 2\left(q_{i} q_{j}-q_{k} q_{r}\right) & 2\left(q_{i} q_{k}+q_{j} q_{r}\right) \\
2\left(q_{i} q_{j}+q_{k} q_{r}\right) & 1-2\left(q_{i}^{2}+q_{k}^{2}\right) & 2\left(q_{j} q_{k}-q_{i} q_{r}\right) \\
2\left(q_{i} q_{k}-q_{j} q_{r}\right) & 2\left(q_{j} q_{k}+q_{i} q_{r}\right) & 1-2\left(q_{i}^{2}+q_{j}^{2}\right)
\end{array}\right) \\
\text { Rotation of } \\
\text { axe: } \quad\left(q_{i}, q_{j}, q_{k}\right) \\
\text { angle: }
\end{gathered}
$$

Anti-symmetric matrix - Exponential map

In 2D

$$
\theta \Rightarrow\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

In 3D

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
0 & z & -y \\
-z & 0 & x \\
y & -x & 0
\end{array}\right) \\
R=e^{A}
\end{gathered}
$$

Rotation of axe: $\quad(x, y, z)$ angle: $\|(x, y, z)\|_{2}$

Anti-symmetric matrix - Cayley transform

In 2D

$$
t=\tan \left(\frac{\theta}{2}\right) \Rightarrow\left(\begin{array}{ll}
\frac{1-t^{2}}{1+t^{2}} & \frac{-2 t}{1+t^{2}} \\
\frac{2 t}{1+t^{2}} & \frac{1-t^{2}}{1+t^{2}}
\end{array}\right)
$$

In 3D

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
0 & z & -y \\
-z & 0 & x \\
y & -x & 0
\end{array}\right) \\
& R=(I-A)(I+A)^{-1}
\end{aligned}
$$

Rotation of axe: (x, y, z) angle: $\quad 2 \arctan \left(\|(x, y, z)\|_{2}\right)$

Plücker coordinates

How many lines intersect 4 given lines?

Plücker coordinates

$$
P_{1}=\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \quad P_{2}=\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) \quad M=\left(\begin{array}{cc}
x_{1} & x_{2} \\
y_{1} & y_{2} \\
z_{1} & z_{2} \\
1 & 1
\end{array}\right)
$$

Definition

The Plücker coordinates of the line $\left(P_{1} P_{2}\right)$ are the 6 minors of M

$$
\left(d_{x}, d_{y}, d_{z}, m_{x}, m_{y}, m_{z}\right)=\left(P_{2}-P_{1}, O P_{1} \times O P_{2}\right)
$$

- $(d, m) \in \mathbf{P}_{5}$ is on the Klein quadric

$$
d \cdot m=0
$$

- Lines (d, m) and $\left(d^{\prime}, m^{\prime}\right)$ intersect implies

$$
d \cdot m^{\prime}+m \cdot d^{\prime}=0
$$

Plücker coordinates

$0,1,2$ or infinitely many lines cross the 4 given lines

Singularity modeling

$$
\begin{array}{r}
f_{1}(q, x), \ldots, f_{m}(q, x) \\
B=\begin{array}{c}
\frac{\partial}{\partial x_{1}} \cdots \frac{\partial}{\partial x_{m}} \\
\vdots \\
f_{m}
\end{array}\left(\begin{array}{c}
\frac{\partial f_{i}}{\partial x_{j}}
\end{array}\right)
\end{array}
$$

- $\operatorname{det}(B)$ multi-linear in its columns/rows
- $\operatorname{det}(B)$ of deg 1 in x_{j} leads to a parametrization of the singularities
- Simplifies the analysis of the singularities, as in the 3-RPR [Coste 2012]

Plan parallel robot 3-RPR

- 3 degrees of freedom
- $d_{1}, d_{2}, d_{3}, A_{1}, A_{2}, A_{3}$ fixed
- Joint variables: r_{1}, r_{2}, r_{3}
- Pose variables: $\alpha, B_{1 x}, B_{1 y}$

Demo

Demo

Singularity of parallel manipulator with Plücker vectors

Remark

If the leg-platorm joints are spherical, the rows of the inverse kinematic Jacobian matrix $A^{-1} B$ will involve the Plücker coordinates of lines associated to the legs.
\Rightarrow singularities can be interpreted geometrically

Cuspidal configuration

- Cuspidal point: point of order $\geqslant 3$
- Characterization: A cuspidal robot has at least one cuspidal point

Demo

Demo

Further reading

À suivre

Solving systems

(1) With initial point

- Newton
(2) Without initial point
- Symbolic approaches
- Numerical approaches

Computational real algebraic geometry and applications to robotics

JNCF lecture, part 2

Guillaume Moroz
Inria Nancy - Grand Est

March $4^{\text {th }}, 2021$

Solving systems

(1) With initial point

- Newton
(2) Without initial point
- Symbolic approaches
- Numerical approaches

Newton

$$
f(x)=0
$$

$$
\begin{aligned}
x_{0} & =\text { initial point } \\
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

Good for path tracking

Newton

$$
f(x)=0
$$

$$
\begin{aligned}
x_{0} & =\text { initial point } \\
x_{n+1} & =x_{n}-\operatorname{Df}\left(x_{n}\right)^{-1} f\left(x_{n}\right)
\end{aligned}
$$

Good for path tracking

Reliable Newton with Kantorovich

$$
\begin{aligned}
& K\left(f, x_{0}\right)=\sup _{x}\left\|D f\left(x_{0}\right)^{-1} D^{2} f(x)\right\| \\
& \beta\left(f, x_{0}\right)=\left\|D f\left(x_{0}\right)^{-1} f\left(x_{0}\right)\right\|
\end{aligned}
$$

Theorem (Kantorovich)

$$
\text { If } \beta\left(f, x_{0}\right) K\left(f, x_{0}\right) \leqslant 1 / 2
$$

then f has a unique solution in $B\left(x_{0}, 2 \beta\left(f, x_{0}\right)\right)$.

Reliable Newton with Smale

$$
\begin{aligned}
& \gamma\left(f, x_{0}\right)=\sup _{k \geqslant 2}\left\|D f\left(x_{0}\right)^{-1} \frac{D^{k} f\left(x_{0}\right)}{k!}\right\|^{\frac{1}{k-1}} \\
& \beta\left(f, x_{0}\right)=\left\|D f\left(x_{0}\right)^{-1} f\left(x_{0}\right)\right\|
\end{aligned}
$$

Theorem (Smale)

$$
\begin{gathered}
\text { If } \beta\left(f, x_{0}\right) \gamma\left(f, x_{0}\right) \leqslant 3-2 \sqrt{2} \\
\text { then } f \text { has a unique solution in } B\left(x_{0}, \frac{1-\sqrt{2} / 2}{\gamma\left(f, x_{0}\right)}\right) .
\end{gathered}
$$

Reliable interval Newton

B a box interval containing p

1 variable

$$
N(x)=p-\left(\frac{f(x)-f(p)}{x-p}\right)^{-1} f(p)
$$

$N(B) \subset B \Rightarrow N$ has a fix point in B $\Rightarrow f$ has a solution in B

2 variables or more

$$
N(B)=p-\square J(B)^{-1}\binom{f(p)}{g(p)}
$$

$N(B) \subset B \Rightarrow f=g=0$ has a solution in B
Interval operations

$$
\begin{aligned}
& {[a, b] \oplus[c, d]=[a+c, b+d]} \\
& {[a, b] \otimes[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]}
\end{aligned}
$$

Further reading

Ramon E. Moore R. Baker Kearfott

Michael J. Cloud

Grunclehrea der mathematischea Wissenschatten 349 Gunolehies der matematischea Wissenscortt

Peter Bürgisser
Felipe Cucker

Condition

The Geometry of Numerical Algorithms

NUMERICAL

 RECIPESThe Art of Scientific Emmputing THIRD EDITIUN

Willorn H. Press
Saut A. Teuknisky
Williom T. Vetterling
Brtan P. Flannery

Further computing

Computer Algebra Systems

- Maple
- Mathematica
- Mathemagix (mmx)
- Matlab
- SageMath
- Xcas
- ...
- Boost (C++)
- MPSolve (C) [Bini, Fiorentino, Robol]
- GNU Scientific Library (C)
- Roots, Optim, NLsolve (Julia)
- Scipy (Python)

Interval and ball arithmetic Libraries

- Arb (C, Python) [Johansson]
- GAOL (C++) [Goualard]
- Intlab (Octave/Matlab) [Rump]
- mpfi (C) [Revol]
- numerix (mmx, $\mathrm{C}++$) [van der Hoeven]
- IntervalArithmetic (Julia) [Benet,Sanders]

Univariate Representation

Reduce problem to univariate polynomial

$$
\begin{aligned}
p(x) & =0 \\
y & =q(x)
\end{aligned}
$$

Resultant definition

Given two polynomials in $\mathbb{C}[y]$:

- $P=p_{0} y^{d}+\cdots+p_{d}$ with roots $\sigma_{1}, \ldots, \sigma_{d}$
- $Q=q_{0} y^{d}+\cdots+q_{d}$ with roots $\tau_{1}, \ldots, \tau_{d}$

Definition: Resultant

$$
\begin{aligned}
\operatorname{Res}(P, Q) & =p_{0}^{d} q_{0}^{d} \prod_{i, j}\left(\sigma_{i}-\tau_{j}\right) \\
& =p_{0}^{d} \frac{Q}{} \quad\left(\sigma_{1}\right) \cdots \square\left(\sigma_{d}\right) \\
& \left.=(-1)^{d^{2}} q_{0}^{d} \frac{P}{} \frac{P}{}\left(\tau_{1}\right) \cdots \square\right)
\end{aligned}
$$

Resultant definition

Bezout

$$
\begin{array}{cccl}
\varphi: \mathbb{C}[y]_{d-1} & \times & \mathbb{C}[y]_{d-1} & \rightarrow \mathbb{C}[y]_{2 d-1} \\
U & , & \mapsto U P+V Q \\
\varphi(U, V)=1 & \Leftrightarrow \operatorname{gcd}(P, Q)=1 \\
& \Leftrightarrow \varphi \text { invertible }
\end{array}
$$

- Resultant r is the determinant of the Sylvester Matrix
- $r \in\langle P, Q\rangle=I$

Definition: Sylvester matrix

$$
\begin{array}{cccccccccc}
1 & 2 & \cdots & & & d+1 & d+2 & d+3 & \cdots & \\
\left(\begin{array}{cccccccc}
p_{0} & & & & & q_{0} & & \\
p_{1} & p_{0} & & & & q_{1} & q_{0} & \\
p_{2} & p_{1} & p_{0} & & & q_{2} & q_{1} & q_{0} \\
p_{3} & p_{2} & p_{1} & p_{0} & & q_{3} & q_{2} & q_{1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & q_{0} & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
\end{array}
$$

Bivariate case

Given two polynomials in $\mathbb{C}[x, y]$ of degree d in x and y :

- $P=p_{0}(x) y^{d}+\cdots+p_{d}(x)$
- $Q=q_{0}(x) y^{d}+\cdots+q_{d}(x)$
- $\operatorname{Res}(P, Q)$ is a polynomial in x
- $O\left(n^{3-1 / \omega+\varepsilon}\right)$ arithmetic operations
[Villard 2018]
- $O\left(n^{2+\varepsilon}\right)$ randomized in a finite field [van der Hoeven, Lecerf 2019]

$$
\operatorname{Res}_{d}(P(x, y), Q(x, y))(\alpha)=\operatorname{Res}_{d}(P(\alpha, y), Q(\alpha, y))
$$

First subresultant definition

Given two polynomials in $\mathbb{C}[y]$:

- $P=p_{0} y^{d}+\cdots+p_{d}$ with roots $\sigma_{1}, \ldots, \sigma_{d}$
- $Q=q_{0} y^{d}+\cdots+q_{d}$ with roots $\tau_{1}, \ldots, \tau_{d}$

Properties

- Sres $_{1}=s_{1} y+s_{0}$ has degree at most 1
- Sres $_{1} \in\langle P, Q\rangle=I$

Definition: first subresultant

$$
\begin{aligned}
\operatorname{Sres}_{1}(P, Q)=p_{0}^{d-1} \quad & \left(y-\sigma_{1}\right) \prod_{j \neq 1} \xlongequal[\sigma_{j}-\sigma_{1}]{ }\left(\sigma_{j}\right) \\
& +\cdots+ \\
& \left(y-\sigma_{d}\right) \prod_{j \neq d} \frac{Q}{\sigma_{j}-\sigma_{d}}\left(\sigma_{j}\right) \\
&
\end{aligned}
$$

First subresultant definition

$$
\begin{array}{rlrl}
\varphi: \mathbb{C}[y]_{d-2} & \times \mathbb{C}[y]_{d-2} & \rightarrow \mathbb{C}[y]_{2 d-2} \\
U & V, \quad \mapsto & \mapsto P+V Q
\end{array}
$$

The s_{0} and s_{1} are the determinants of minors of the Sylvester Matrix
Sylvester matrix

$$
\begin{aligned}
& 12 \cdots \quad d+1 \quad d+2 \quad d+3 \quad \cdots \\
& \left(\begin{array}{ccccc}
p_{0} & & & & \\
p_{1} & p_{0} & & & \\
p_{2} & p_{1} & p_{0} & & \\
p_{3} & p_{2} & p_{1} & p_{0} & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right.
\end{aligned}
$$

Parametrization of y

$$
\begin{array}{r}
s_{1}(x) y+s_{0}(x)=0 \\
r(x)=0
\end{array}
$$

Three variables and more

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \cdots, x_{n}\right)=0
$$

Problem

$$
\text { Find } p\left(x_{1}\right)=q_{1} f_{1}+\cdots+q_{n} f_{n}
$$

Matrix of $1, x_{1}, \ldots, x_{1}^{D}$ modulo $\left\langle f_{1}, \ldots, f_{n}\right\rangle$

$$
\begin{aligned}
& 1 \quad \cdots \quad x_{1}^{D} \\
& M=\begin{array}{c}
m_{1} \\
\vdots \\
m_{k}
\end{array}(\square) \\
& \Rightarrow \quad v \in \operatorname{Ker}(M) \text { iff } v_{0}+\cdots+v_{D} X^{D} \in\left\langle f_{1}, \ldots, f_{n}\right\rangle
\end{aligned}
$$

Three variables and more

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \cdots, x_{n}\right)=0
$$

Problem

$$
\text { Find } p\left(x_{1}\right)=q_{1} f_{1}+\cdots+q_{n} f_{n}
$$

Matrix of multiplication by x_{1} modulo $\left\langle f_{1}, \ldots, f_{n}\right\rangle$

$$
\begin{aligned}
M= & \begin{array}{ccc}
m_{1} \\
\vdots \\
m_{k}
\end{array}\left(\begin{array}{lll}
x_{1} m_{1} & \cdots & x_{1} m_{k} \\
& & \\
& \Rightarrow & \\
& \\
& \\
& \\
& \\
\left.x_{1}\right) \in\left\langle f_{1}, \ldots, f_{n}\right\rangle
\end{array}\right.
\end{aligned}
$$

Three variables and more

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \cdots, x_{n}\right)=0
$$

Problem

Find $p\left(x_{1}\right)=q_{1} f_{1}+\cdots+q_{n} f_{n}$

Matrix of multiplication by x_{1} modulo $f_{1}\left(x_{1}\right)$

$$
\begin{aligned}
M & =\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -c_{0} \\
1 & 0 & \ldots & 0 & -c_{1} \\
0 & 1 & \ldots & 0 & -c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -c_{d-1}
\end{array}\right) \\
& \Rightarrow \chi_{M}\left(x_{1}\right)=f_{1}\left(x_{1}\right) \in\left\langle f_{1}\right\rangle
\end{aligned}
$$

Normal form and univariate representation

Normal form

$$
x_{1} m_{i} \bmod \left\langle f_{1}, \ldots, f_{n}\right\rangle
$$

- Euclidean division by Gröbner basis

Groebner Bases computation

- $n>2$ in $\widetilde{O}\left((n d)^{(\omega+1) n}\right)$ operations
[Bardet, Faugère, Salvy 2015]
- $n=2$ in $\widetilde{O}\left(d^{2}\right)$ with terse representation [van der Hoeven, Larrieu 2018]

Univariate Representation

- Multivariate subresultant
- Rational Univariate Representation [Kronecker 1882, Rouillier 1999]
- u-resultant and its derivatives at point $\left(t, a_{1}, \ldots, a_{n}\right)$

$$
\text { u-resultant }=C \prod_{\zeta \mid F(\zeta)=0}\left(u_{0}+u_{1} \zeta_{n}+\cdots+u_{n} \zeta_{n}\right)
$$

- Lexicographical Gröbner bases
- Polynomial parametrization generically, bigger size [Dahan, Schost 2004]

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\cdots=f_{3}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

- RUR of $f_{1}\left(x_{1}, x_{2}, 0\right)$ and $f_{2}\left(x_{1}, x_{2}, 0\right)$

$$
p_{1}\left(x_{1}\right)=0 \quad x_{2}=q_{12}\left(x_{1}\right)
$$

- Lift x_{3} in $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=f_{2}\left(x_{1}, x_{2}, x_{3}\right)=0$

$$
\widetilde{p}_{1}\left(x_{1}, x_{3}\right)=0 \quad x_{2}=\widetilde{q}_{12}\left(x_{1}, x_{3}\right)
$$

- RUR of $\tilde{p}_{11}\left(x_{1}, x_{3}\right)$ and

$$
f_{3}\left(x_{1}, \tilde{q}_{12}\left(x_{1}, x_{3}\right), x_{3}\right)
$$

$$
p_{2}\left(x_{1}\right)=0 \quad x_{2}=q_{22}\left(x_{1}\right) \quad x_{3}=q_{23}\left(x_{1}\right)
$$

$\widetilde{O}\left(d^{3 n}\right)$ operations [Giusti, Lecerf, Salvy 2001]

Further reading

David Cox
John Little
Donal O'Shea
Using
Algebraic
Geometry

Thomas Becker Volker Weispfenning
in Cooperation with Heinaz Krodel
Gröbner Bases
A Computational Approach to
Commutative Algebra

[^0]

Algorithmes Efficaces en Calcul Formel

Alin Bostan
Frédéric Chyzaz Marc GiustI
Romain Lebreto Grégoire Lecerf Bruno Saivy

Further computing

Computer Algebra systems

- Giac/xcas
- Maple
- Magma
- Mathemagix
- Mathematica
- Mcaulay2
- MuPAD
- SageMath
- Singular
- ...

Special purpose libraries/software

- FGb (C)
[Faugère]
- Flint (C) [Hart]
- msolve [Berthomieux, Eder, Safey El Din]
- RS/RS3 (C) [Rouillier]
- borderbasix (mmx, C++) [Trebuchet, Mourrain]
- algebramix (mmx, C++) [van der Hoeven, Lecerf]
- geomsolvex (mmx, C++)
- larrix (mmx, C++)
- ...
[Lecerf]
[Larrieu]

Path continuation

Is it possible to arrange 7 infinite cylinders of unit radius such that they are mutually touching?

Path continuation

> - $f(x)=0$
> - $\operatorname{deg} d$

- We know the solutions of $x^{d}-1=0$

$$
(1-t)\left(x^{d}-1\right)+t f(x)=0
$$

- Multivariate case: compute the mixed volume first
- Find 1 solution by following only one path

Polynomial time in $\binom{n+d}{d}$ average [Beltran, Pardo 2009], [Lairez 2017]

- Roots distribution of random polynomials [Edelman, Kostlan 1995]

Path continuation

- We know the solutions of $x^{d}-1=0$

$$
(1-t)\left(x^{d}-1\right)+t f(x)=0
$$

- Multivariate case: compute the mixed volume first
- Find 1 solution by following only one path

Polynomial time in $\binom{n+d}{d}$ average [Beltran, Pardo 2009], [Lairez 2017]

- Roots distribution of random polynomials [Edelman, Kostlan 1995]

Path continuation

2 arrangements of 7 cylinders mutually touching [Bozóki et al. 2015]

- Modeled with 20 equations in 20 variables
- Mixed volume 121098993664
- First real solution after 80000000 paths
- Solution certified with Smale theorem

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Further reading

[^1]Peter Bürgisser
Felipe Cucker

Condition

The Geometry of Numerical Algorithms

Further computing

Path continuation

- Bertini (C++, Python)
- Hom4PS (C++)
- PHCpack (Ada)
- analyziz (mmx, $\mathrm{C}++$)
[Bates, Amethyst, Hauenstein, Sommese, Wampler] [Tien-Yien Li, Tianran Chen, Tsung-Lin Lee] [Verschelde] [van der Hoeven]

Subdivision multivariate

- ibex $(\mathrm{C}++)$
[Chabert]
Subdivision univariate
- Realpaver (C)
[Granvilliers]
- ANewDsc (C) [Kobel,Rouillier,Sagraloff]
- realroot (mmx, $\mathrm{C}++$)
[Mourrain]
- subdivision_solver ($\mathrm{C}++$, Python)
[Imbach]
[M.]
- voxelize $(\mathrm{C}++)$
- Clenshaw (C, Python)
[M.]
- ...
- Ccluster (C, Julia) [Imbach,Pan, Yap]
- real_roots (sage)
[Witty]
- RS (C)
[Rouillier]
- SLV (C)
[Tsigaridas]

Drawing reliably the projection of the solution

(1) Isotopy
(2) Projection
(3) Drawing reliably

Drawing hypersurfaces

Definition (isotopy)

A triangulation T is isotope to $V \subset \mathbb{R}^{n}$ if there exists $\varphi:[0,1] \times T \rightarrow \mathbb{R}^{n}$ such that:

- φ is continuous
- $\varphi(0, T)=T$ and $\varphi(1, T)=V$
- $\varphi_{t_{0}}: T \rightarrow \varphi\left(t_{0}, T\right)$ is an homeomorphism

Size of the triangulation [Kerber and Sagraloff 2011]

$$
f\left(x_{1}, \ldots, x_{n}\right) \text { of degree } d
$$

2 variables

Theorem

In the worst case $\Omega\left(d^{2}\right)$ vertices and $O\left(d^{2}\right)$ segments

3 variables

Theorem

In the worst case $\Omega\left(d^{3}\right)$ vertices and $O\left(d^{5}\right)$ triangles
n variables

Theorem

In the worst case $\Omega\left(d^{n}\right)$ vertices and $O\left(d^{3 / 4 \cdot 2^{n}-1}\right)$ simplices

Size of the triangulation [Kerber and Sagraloff 2011]

f of degree d and vertices on the surface

2 variables
Theorem
In the worst case $\Omega\left(d^{\not \chi^{2} 3}\right)$ vertices and $O\left(d^{\not \mathfrak{Z}^{3}}\right)$ segments

3 variables

Theorem

In the worst case $\Omega\left(d^{\not \beta^{4}}\right)$ vertices and $O\left(d^{57}\right)$ triangles
n variables

Theorem

In the worst case $\Omega\left(d^{n+1}\right)$ vertices and $O\left(d^{3 / 42^{n}-1}\right)$ simplices

In Robotic

V solutions of $f_{1}=\cdots=f_{k}=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)=0$ in $\mathbb{R}^{n} \times \mathbb{R}^{k}$
Goal: draw the projection of V in Q

Projection

Definition (Semi-algebraic)

A semi-algebraic set is a set solution of a system of equalities and inequalities.

Theorem (Tarski-Seidenberg)

The projection of a semi-algebraic set is semi-algebraic.

Zariski closure

Definition (Zariski closure)

The Zariski closure of E is the minimal set \bar{E} containing E that is solution of a system of equalities.

Theorem (elimination)

- V solution of $p_{1}(q, x)=\cdots=p_{k+1}(q, x)=0$
- G Gröbner basis of F with respect to the lexdeg ordering with $x>q$
- G_{q} the polynomials in $G \cap \mathbb{Q}[q]$

$$
\Rightarrow \overline{\pi_{Q}(V)}=\text { solutions of } G_{q}
$$

Projective elimination

Theorem

If V_{p} is the projective closure of V in $\mathbb{C}^{n} \times \mathbf{P}_{k}$, then

$$
\overline{\pi_{Q}(V)}=\pi_{Q}\left(V_{p}\right)
$$

Geometry of the elimination

$$
x, y \in \mathbb{R}, z=a+i b \in \mathbb{C}
$$

$$
\left\{\begin{aligned}
0=f_{1}(x, y, a+i b)= & f_{1}(x, y, a)-\frac{b^{2}}{2} f_{1}^{\prime \prime}(x, y, a)+\cdots \\
& +i b\left(f_{1}^{\prime}(x, y, a)-\frac{b^{2}}{6} f_{1}^{\prime \prime \prime}(x, y, a)+\cdots\right) \\
0=f_{2}(x, y, a+i b)= & f_{2}(x, y, a)-\frac{b^{2}}{2} f_{2}^{\prime \prime}(x, y, a)+\cdots \\
& +i b\left(f_{2}^{\prime}(x, y, a)-\frac{b^{2}}{6} f_{2}^{\prime \prime \prime}(x, y, a)+\cdots\right)
\end{aligned}\right.
$$

Case $b=0: 2$ equation in x, y, a
Case $b \neq 0$: 4 equation in x, y, a, b
\Rightarrow possibly isolated points with $x, y \in \mathbb{R}$ and $z \in \mathbb{C} \backslash \mathbb{R}$
In general: $\overline{\pi_{Q}(V)}$ can have stable real components of $\operatorname{dim} n-2$

Geometry of the projection

Figure 1: Local singularities of images of generic maps of surfaces into 3-space
[Guryonov 1997]

There exists a hypersurface $\Delta \subset C^{\infty}\left(M, \mathbb{R}^{3}\right)$ s.t. if $f \in C^{\infty}\left(M, \mathbb{R}^{3}\right) \backslash \Delta$, then the neighborhood of any point of $f(M)$ is one of the 4 above.

- Classification of generic singularities started with Whitney
- Thom introduced the transversality theorem
- Arnold and others provided numerous classifications

Geometry of the projection

For the projection of critical points, we also have swallowtail singularities

Further reading

Further computing

Quantifier elimination

- Redlog (Reduce)
- RegularChains (Maple)
- Resolve (Mathematica)
- QEPCAD (C)
- Tarski (C++)
- ...

Satisfiability of formula

- RAGLib (Maple)
- RealCertify (Maple)
- RSolver (OCaml)
- TSSOS (Julia)
[Dolzmann, Sturm]
[Moreno Maza et al] [Strzebonski]
[Brown]
[Brown]
- ...
[Safey el Din] [Magron, Safey el Din] [Ratschan] [Lassere, Magron, Wang]

Drawing with symbolic approach

- Topology of curves in $\widetilde{O}\left(d^{6}+\tau d^{5}\right)$ operations [Kobel, Sagraloff, 2015], [Niang Diatta, Diatta, Rouillier, Roy, Sagraloff, submitted 2018]
- Topology of surfaces with $O\left(d^{5}\right)$ simplices
[Berberich, Kerber, Sagraloff 2009]

Marching cubes [Lorensen and Cline 1987]

(1) Evaluate $f(x, y, z)$ of deg d on a grid of size $N=n \times n \times n$
(2) For each cube, compute a triangle of the surface to plot

Complexity: Cost of evaluating f on 1 point with Hörner: $O\left(d^{3}\right)$ Total naive: $O\left(d^{3} n^{3}\right)$
Reuse computation by coordinates: $O\left(d n^{3}\right)$

Subdivision pruning

Interval arithmetic to remove boxes [Snyder 1992, Plantinga-Vegter 2006]

Jacobian

$$
\begin{gathered}
0 \notin \square \operatorname{det}\left(J_{x}(B)\right)=\square \operatorname{det}\left(\begin{array}{c}
\frac{\partial f_{i}}{\partial x_{j}}(B)
\end{array}\right) \\
\Rightarrow \mathrm{V} \text { is globally parametrized by } q \text { in } B
\end{gathered}
$$

Surface tracking

Regular case

- First marching segments
[Dobkin et al. 1990]
- First marching triangles
[Hilton et al. 1996]
- Recent result on marching simplices, topology guaranteed
[Boissonnat, Kachanovich, Wintraecken, 2020]
Singular surfaces
- Use isosingular deflation near singularities
[Bates, Brake, Hauenstein, Sommese, Wampler, 2014]

Further reading

Further computing

Drawing with symbolic approach

- algcurve (Maple)
- isotop (C, Maple)
- EXACUS (C++)

Drawing with subdivision

- axl (C++, mmx)
- ibex (C++)
- Realpaver (C)
- voxelize (C++)
- ...

Drawing with marching cube

- JuliaGeometry (Julia)
- scikit-image (C, python)
- MathMod (C++)
- ...
[Christoflorou, Mantzaflaris, Mourrain, Wintz]
[Chabert]

Drawing with continuation
[Kelly]
[Lewiner]
[Taha]

- bertini_real
- CGAL (C++)
- GUDHI (C ++)
- ...
[Brake et al]
[Rineau, Yvinec]
[Kachanovich]
[Deconink, Patterson, van Hoeij] [Peñeranda, Pouget, Lazard, Rouillier] [Melhorn et al]

Merci!

Open problems

- Complexity of gröbner bases in dimension 3 with terse representation?
- What are the actual bounds on the number of simplices in drawings in 3D, in nD?
- What if we use polynomial pieces of degree k instead of linear pieces?
- Reliable drawing of singular surfaces with prescribed singularities?

[^0]: (6) Springer

[^1]: Gundelehrea der mathematischea Wissenschatten 349
 1 Selles of Comperhessire Suctics is Matiencmatics

