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Abstract

Purpose: Many neurosurgical planning tasks rely on identifying points
of interest in volumetric images. Often, these points require significant
expertise to identify correctly as, in some cases, they are not visible but
instead inferred by the clinician. This leads to a high degree of variability
between annotators selecting these points. In particular, errors-of-type
are when the experts fundamentally select different points rather than
the same point with some inaccuracy. This complicates research as their
mean may not reflect any of the experts’ intentions nor the ground truth.
Methods: We present a regularised Bayesian model for measuring
errors-of-type in pointing tasks. This model is reference-free, in that
it doesn’t require a priori knowledge of the ground truth point but
instead works on the basis of the level of consensus between multiple
annotators. We apply this model to simulated data and clinical data
from transcranial magnetic stimulation for chronic pain.

Acknowledgements: The authors would like to thank J.-P. N’Guyen and H. Hodaj
for their assistance in annotating the chronic pain treatment points along with J.-P.
Lefaucheur.
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2 Reference-free Bayesian model for pointing errors-of-type

Results: Our model estimates the probabilities of selecting the correct
point in the range of 82.6-88.6% with uncertainties in the range of
2.8-4.0%. This agrees with the literature where ground truth points
are known. The uncertainty has not previously been explored in the
literature, and gives an indication of the dataset’s strength.
Conclusions: Our reference-free Bayesian framework easily models
errors-of-type in pointing tasks. It allows for clinical studies to be per-
formed with a limited number of annotators where the ground truth is
not immediately known, which can be applied widely for better under-
standing human errors in neurosurgical planning.

Keywords: Error modelling, Surgical planning, Pointing, Localisation,
Transcranial magnetic stimulation, Bayesian statistics

1 Introduction

A critical task common in many neurosurgical planning workflows is pointing
or localisation in which some introduced fiducial, anatomical landmark, or
target location within a medical image is represented as a single point which
is selected by the clinician performing the planning. In the first case, these
locations are specifically chosen to be highly distinguishable in the image,
reducing the uncertainty for the clinician in selecting them to that introduced
by the physical size of the fiducial, the point-spread function of the imaging
modality, and any physical error introduced by the pointing system itself,
leading to well-behaved and well-understood models for representing pointing
errors and their downstream effects in these cases [1, 2]. These models almost
uniformly consider the selected point to come from a uni-modal and largely
symmetric distribution with the correct location as its mode and expected
value, such as a Gaussian distribution [1, 2]. These assumptions are widespread
and violations of them are used to detect outliers and erroneous points [3].
They have even been directly experimentally validated in the context of highly
visible, unambiguous fiducials [4].

However, anatomical landmarks and target locations are not explicitly engi-
neered, meaning that the clinicians must rely on endogenous contrast and
consistent geometry to identify these points which may not be highly visible
nor unambiguous. For example, the anterior and posterior commissures (due to
their consistent geometry and hyper-intensity compared to the adjacent ven-
tricles) can be used as the basis for describing a consistent co-ordinate system
in the deep brain, and selecting these two points has been a frequent task for
stereotaxic neurosurgical planning for over 20 years [5]. Despite lacking the
aforementioned simplifying assumptions of visibility and unambiguity, simple
mean-centred, uni-modal distributions are still used to express the error not
only of the human clinician but also automatic pointing algorithms [6].

These distributions largely reflect what is commonly known as an error-of-
degree. This means that the error associated with a particular annotator for a
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particular point is a question of how finely they can visualise and physically
target a singular point, leading to a real-valued error, i.e. the distance from
their selected point to that point’s true location. This is in contrast to an error-
of-type in which the error is largely a question of selecting between multiple
distinct potential points rather than a singular one. In psychophysics, these
errors in pointing tasks are often investigated through multiple alternatives
forced choice detection experiments in which a finite series of items are
introduced into a complex or noisy image and a human participant is asked
to click on a particular one based on some feature [7–9]. In these experiments,
the distance to the point selected by the user is secondary to its choice.

In the context of neurosurgical planning, these tasks can arise when the
anatomy to be pointed at is not immediately distinguishable from other prox-
imal similar anatomies. This is especially the case in MRI-guided transcranial
magnetic stimulation (TMS) in which a particular gyrus representing a func-
tionally (rather than structurally) defined point is selected as a treatment
location [10, 11]. Because of the high degree of variability in cortical gyrifica-
tion, performing this task is complex and subject to a high degree of error and
variability amongst experts even for well-described point targets [12].

The result of this different type of error is that many of the assumptions
that previous error-of-degee or error-of-type models have been based upon no
longer apply. Unlike in error-of-degree models, using a single annotator will
not always result in an admissible estimate of the true location of a particular
point as that annotator’s point will have compounded uncertainties in terms
of their choice of point but also all the continuous visualisation and physical
pointing uncertainties, compounded errors-of-type with errors-of-degree. This
means that if we had an arbitrarily large number of annotators, the annotations
on a single image would likely look more like a series of clusters, one around
the ground truth and one for each distractor. This is problematic because it
means that the average of the points selected (regardless of the number of
annotators) is not a good estimator of the ground truth location, or in fact
any of the distractors, but instead would fall somewhere in the space between
these hypothetical clusters. This can have large downstream effects on research
into pointing tasks in neurosurgical planning, notably machine-learning based
automated pointing that relies on the expected value of expert annotations
to be correct for purposes of training and evaluating algorithms [13, 14]. This
problem is further exacerbated by the small number of expert annotations
(often only one or two) for each dataset, thus not even allowing for the clusters
to be inferred.

Unlike multiple alternative forced choice models, the number of distractors
is unknown as they are not introduced into the image or are so numerous (i.e.
considering every bend in every gyrus as a possible distractor) that these mod-
els are no longer feasible [8]. Thus, rigorous mathematical models describing
these errors-of-type with an unknown number of distractors are necessary for
further understanding pointing errors in neurosurgical planning.
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Contributions

This paper proposes a framework for modelling errors-of-type in surgical point-
ing tasks. This framework makes use of our previously published base model
[15] as a starting point, interpreting its series of cases as categories for a
Dirichlet distribution, thus allowing for the use of Bayes’ theorem to derive
distributions for model parameters, rather than only best-fit values. In order
to solve the problem of these distributions being improper, we introduce and
validate an additional regularisation parameter. As the base model is reference-
free, the framework as a whole does not require the true point location nor
even precise knowledge of what points have been selected, which makes it fun-
damentally different from multiple-alternatives forced-choice models. Instead,
it relies on the notion of agreement between annotators, using simple infor-
mation about the number of annotators who appear to be selecting the same
point. Our proposed model has also been designed to generalise to any number
of annotators, although it is still best suited for cases in which only a few anno-
tators are available. To the best of our knowledge, this is the first reference-free
Bayesian model applied to the problem as surgical errors-of-type.

2 Theory

2.1 Reference-free Bayesian model

Our base model comes from our previous work [15]. This model includes a
small number of parameters, specifically:

• p, the probability of the annotator choosing the true point; and
• n, the number of distractors, or false points which could be chosen by the
annotator.

However, as we discovered, this model is improper in that it allows for cases
such as n → ∞ to take on non-zero values. This would prevent its use in
Bayesian modelling as it would prevent the posterior from being proper. In
order to address this, we have included a third parameter:

• z > 1, a regularisation parameter to encourage simpler models with lower
values of n, specifically P (n|z) ∝ z−n.

Given these, the probability of a given annotator selecting point q is:

P (q|p, n, z) =
{
p if q is the true point
1−p
n else

(1)

and for a sequence of k annotators independently picking the sequence of points
[q], this formula becomes:

P ([q]|p, n, z) = p#T ([q])

(
1− p

n

)k−#T ([q])

(2)
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where #T ([q]) is the number of times that the true point appears in the list [q].
In theory, we would know where these points are in the image (as well as their
number) or, if we had a large number of annotations, this information could
be extracted through clustering the annotations. However in practice, we are
limited in that we don’t know which of the points is correct vs a distractor or
even the number of distractors themselves as the number of distractors may
even be larger than the number of annotator-selected points. Thus, we need to
consider the agreement between multiple annotators, which can be determined
by grouping those who have chosen roughly the same point, regardless of if
that point is the true location or not. This is used to define a series of mutually
exclusive case (for example, “two annotators chose the same point and the
two other annotators chose two different points”), the probabilities of which
can be calculated as:

P (C|p, n, z) =
∑

∀[q]△C

(
n!

(n−#N([q]))!

)
P ([q]|p, n, z) (3)

where [q] is the same as before except it uses placeholders for the distractors
(e.g. [true, distractor 1, true, distractor 2] for four annotators), #N([q]) is the
number of said placeholders (two in this example), and [q]△C indicates that
[q] is compatible with C, that is, C could be used to describe the sequence
[q]. Note that the number of cases, C, is the number of integer partitions of
k, which increases exponentially, making the model only well-suited to cases
with a small number of annotators (i.e. fewer than 10). The explicit cases and
P (C|p, n, z) formulas for k = 3 and k = 4 annotators can be found in [15],
although the above formula allows for the number k to vary more easily. We
have created a Python library that incorporates for the following:

• The creation of a model for k annotators which automatically generates a
list of all possible values of C along with symbolic formulas for P (C|p, n, z)
and P (p, n|z, [O]);

• The addition of a sequence ofobservations, [O], of said model, i.e. the number
of times each case has been seen in the dataset, which allows for the symbolic
formula for P (p, n|z, [O]) to be updated as described in the next section; and

• The evaluation of P (p, n|z, [O]) as well as its marginals over p and n.

Due to the combinatorial nature of the problem, each distribution can be
expressed as a rational mixture of beta distributions multiplied by a simple
formula taking into account the regularisation:(∑

i

ai
binc

i

Bαi,βi(p)

)(
z−n

f(z)

)
(4)

where Bα,β(p) is the distribution (α+β+1)!
α!β! pα(1− p)β over the range p ∈ [0, 1],

ai, bi, ci, αi, βi are all integers (with bi positive and ci, αi, βi non-negative),
and f(z) is the partition function based solely on z. (Note that some of these
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elements may be removed if a given variable is specified or marginalised over.)
This allows for the formulas to be stored and evaluated symbolically with the
exception of f(z) which has no analytic solution for the portions of the mixture
where ci > 2. (An approximate solution (a 100th-order polynomial over z−1)
is used for those cases.) This library with examples is available open-source
at: https://github.com/JSHBaxter/bayes error of type.

2.2 Interpretation via Dirichlet Processes

A simpler method for interpreting this framework is via a Dirichlet distribution
which dictates the probability of drawing a number of instances from a set of
mutually-exclusive categorical classes. Given that the Bayesian conjugate prior
for the Dirichlet distribution is the multinomial distribution, the probability
for all of the class rates, α1, α2, . . . αK , given the number of instances of each
class, x1, x2 . . . xK , is:

P (α1, α2, . . . αK |[O]) =
(
∑

i xi)!∏
i xi!

∏
i

αxi
i (5)

In a Dirichlet distribution, the different classes must be distinct, such as
the different cases in our framework. This however means that the values of
alphai cannot vary independently of each other, but are linked through p, n,
and z via Equation 3, that is: α1 = P (C1|p, n, z), α2 = P (C2|p, n, z), . . . αK =
P (CK |p, n, z) where K is the number of cases, i.e. the number of integer par-
titions of k. We can then translate from the space of αi to that of p and
n:

P (p, n|z, [O])

=
P (α1 = P (C1, |p, n, z), . . . αK = P (CK , |p, n, z)|z, [O])∑∞

n′=1

∫ 1

0
P (α1 = P (C1, |p′, n′, z), . . . αK = P (CK , |p′, n′, z)|z, [O])dp′

=

(
∑

i xi)!∏
i xi!

∏
i P (Ci, |p, n, z)xi∑∞

n′=1

∫ 1

0

(
∑

i xi)!∏
i xi!

∏
i P (Ci, |p′, n′, z)xidp′

=

∏
i P (Ci, |p, n, z)xi∑∞

n′=1

∫ 1

0

∏
i P (Ci, |p′, n′, z)xidp′

(6)
Note that each instance of P (Ci|p, n, z) is a rational mixture of beta-

distributions (since it is a rationally weighted sum of Equation 2 which is a
rational multiple of a beta distribution), which means that the numerator,
being simply the product of these distributions is also a rational beta mixture
with the denominator acting as the partition function, giving us the Equation
4 again. In practice, our model probabilities are computed via Equation 6 using
Equation 4 to simplify the formulas to make it more computationally feasible
to solve them exactly.
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2.3 Simulation Experiments

In order to verify the model, a series of simulations was performed for the k = 3
to k = 4 cases. In each simulation, p is selected from a uniform distribution over
[0.5, 1], n is selected from a geometric distribution P (n) ∝ z′−n for a given z′ >
1, and the number of tasks is selected from a Poisson distribution with a mean
of 19 and then incremented by 1 to ensure positivity. The observations are
distributed according to Eq. 1. Due to the importance of p in the literature [12],
the focus of the simulation was on evaluating the accuracy of the P (p|z, [O]).

Due to the nature of the model as a mixture, it is possible for the final prob-
abilities to be bi- or even multi-modal. Thus, we also created a mode-seeking
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(c) k = 5, z = z′ = 1.25
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(f) k = 5, z = 2, z′ = 1.25
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(g) k = 3, z = 1.25, z′ = 2
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(h) k = 4, z = 1.25, z′ = 2
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Fig. 1 Results of 500 simulations for k = 3 (left column), k = 4 (middle column), and
k = 5 (right column) annotators in terms of the distribution P (p|z, [O]). The first row (a,
b, & c) shows simulations in which the regularisation exactly fits the distribution of n, that
is, P (n|z) ∝ z−n and z = z′ = 1.25. The second (d, e, & f) and third (g, h, & i) rows
show results when there is a mismatch between the prior and the distribution of n in terms
of over- and under-estimating the regularisation, respectively. The simulation code and raw
simulation results are available at https://github.com/JSHBaxter/bayes error of type.
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algorithm for finding each of these modes and representing them as a Gaus-
sian in order to facilitate their interpretation. Figure 1 shows a summary of
500 simulated trials in terms of P (p|z, [O]). Each bar shows the mean plus or
minus one standard deviation for the Gaussian representing that mode and the
darkness of the line refers to the amount of the distribution it captures. That
is, darker bars indicate that more of the distribution belongs to that singu-
lar mode. Lighter ones represent modes that capture little of the distribution.
For high values of p (above 70%), there is always a clear mode correctly esti-
mating p (i.e. where the standard deviation overlaps with the 0% error line)
that captures well over 50% of the distribution with potentially another mode
centred at approximately 1 − p. The existence of this second string of modes
corresponds to the cases in which there are (at most) two clusters (i.e. the
annotators are split into two groups selecting two different points). In this sce-
nario, the model thinks there is a possibility that n = 1 and, for that value, it
cannot distinguish the group that chose the one correct point from the group
that chose the one incorrect point, hence generating an estimate at p and
another at 1 − p. The proportion of cases in which this can happen increases
linearly with k, but the total number of cases increases exponentially, meaning
that these secondary modes become less likely as the number of annotators
increases. This is qualitatively supported by Figure 1 in which the salience of
the light band at 1 − p decreases as the number of annotators increases. At
lower values of p, additional bands can be seen which represent other types of
modes which become markedly less likely to occur as p or k increases.

The simulations show that the model is most utile when p is greater than
75% as, in that case, the potential erroneous second peak is easily separated
from the primary peak. In practice, the value of p for expert users tends to
exceed 80% [12, 15] This observation also appears to be robust in terms of over-
and under-estimation of the regularisation parameter, z. The other observation
one can make from the simulation is that small mismatches in the z parameter
do not seem to have a noticeable effect on the accuracy of the primary mode (in
terms of increased error or uncertainty) but do have an effect on the frequency
and weight of the secondary erroneous modes.

3 Experiment

3.1 Patient Images and Annotations

44 patient T1-weighted MR images (1mm isotropic resolution) were collected.
As the patient base comes from multiple hospital centres, there is heterogeneity
in terms of the MRI manufacturer (database includes Phillips Acheiva, Siemens
Verio, and GE Signa HDxt) and protocol (T1 3D N NAV, MPRAGE, and
CRANE STANDARD/20).

The images were annotated by a set of three expert neurologists / neuro-
surgeons in order to determine six points in the primary motor cortex that are
often used for treating chronic pain. The agreement results determined by a
fourth expert neurologist can be found in Table 1. This last neurologist was
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only asked to identify which points referred to the same area as opposed to
different areas. As there are three annotators, the three possible cases are:

• C1: All annotators agree on a single point,
• C2: Two of the three annotators agree on a single point,
• C3: Each annotator has picked a different point.

Note that the presence of cases C2 and C3 demonstrate the existence of errors-
of-type in this particular neurosurgical pointing task.

3.2 Model

For the model, the regularisation parameter z = 1.1 was chosen in order to
cohere with our previous simulation experiments. A separate model was cre-
ated for each of the six cortical points. Due to the possibility of a secondary
mode, we calculated our descriptive statistics for p and n using only the parts of
the distribution where p > 0.5, thus avoiding averaging together two disparate
modes. However, for visualisation purposes, the entire probability distribution
was calculated and sampled at 0.5% intervals for p and for all n from 1 to 30.

4 Results

The distributions and resulting descriptive statistics for each of the six primary
motor cortex points are shown in Figure 2. (Projections of the 3D distribu-
tion are given to visualise the marginal distributions.) The data appears to fall
into two groups based on the number of points in C3 (i.e. all three annotators
picking distinct points). For the right upper and lower limb areas (RULMC
and RLLMC), this particular case did not occur (likely due to randomness
rather than a distinct left-right difference) leading to the bimodal distribution
described in Section 2.3 whereas the remaining cortical targets avoided this.
However, it is worth noting that the lack of cases with full disagreement also
allowed the model to greatly reduce the potential spread in terms of the num-
ber of distractors even for the correct mode which is confirmed by the reduced
standard deviation in the descriptive statistics for n. The model’s results are
very coherent with that of the TMS literature where the identity of the ground
truth point is known and thus p can be more directly measured [12] and the
uncertainty measurements are also within a reasonable range if one considers
each of the six problems to be equally difficult, largely being within a single

Acronym Region C1# C2# C3#

LFMC Facial region of the left PMC 32 10 2
RFMC Facial region of the right PMC 31 11 2
LLLMC Lower limb region of the left PMC 30 12 2
RLLMC Lower limb region of the right PMC 28 16 0
LULMC Upper limb region of the left PMC 30 11 3
RULMC Upper limb region of the right PMC 25 19 0

Table 1 Chronic pain treatment stimulation points in the primary motor cortex (PMC)
used in the TMS dataset, reproduced from [15].
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n
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Bayesian Model Results - LFACEMC

(a) LFMC (p = 86.2 ± 3.0%, n = 11.0 ± 7.1)
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(b) RFMC (p = 87.8 ± 2.9%, n = 10.8 ± 7.0)
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Bayesian Model Results - LLLIMBMC

(c) LLLMC (p = 87.0 ± 3.0%, n = 10.6 ± 7.0))

n

5 10 15 20 25 30

p

0.0
0.2

0.4
0.6

0.8
1.0

Bayesian Model Results - RLLIMBMC

(d) RLLMC (p = 86.1 ± 3.3%, n = 3.7 ± 5.4)
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Bayesian Model Results - LULIMBMC

(e) LULMC (p = 86.2 ± 3.0%, n = 11.5 ± 7.1)
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(f) RULMC (p = 82.6 ± 4.0%, n = 2.3 ± 3.8)

Fig. 2 Full parameter distribution P (p, n|z,O) for six primary motor cortex points includ-
ing the left facial region (a), right facial region (b), left lower limb region (c), right lower
limb region (d), left upper limb region (e), and right upper limb region (f). For each figure,
the marginal distributions P (p|z, [O]) and P (n|z, [O]) are given on the left and right walls
of the graph respectively. The full distribution is colour-mapped to the floor of the graph.
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standard deviation of each other. Lastly, the use of regularisation and uncer-
tainty has removed the bias of n towards extreme values previous seen with
our previous non-Bayesian approach [15].

5 Discussion

Despite the introduction of regularisation, the model remains sufficiently sim-
ple that it can even be symbolically stored and evaluated. In addition, the
two primary model parameters, p and n, are both immediately interpretable
in terms of human error (p) and a standard element of psychophysics and per-
ceptual evaluation (i.e. number of distractors, n). This allows it to be readily
extended to include another p-like parameter for a particular identified anno-
tator and thus evaluate their performance for surgical training or evaluation
purposes on real data without the need for ground truth annotations. (This
would be conceptually similar to the STAPLE algorithm in segmentation [16]
in that it could individually assess how close each annotator is to the consen-
sus determined from all annotators as a whole.) Such an approach could allow
for a large increase in the number and diversity of images used in such surgical
training environments.

For problems with an a priori unknown number of options (e.g. distrac-
tors), Dirichlet processes are often used as models as they extend Dirichlet
distributions, allowing for an infinite number of classes. These processes can be
used to model many different problems in clustering [17] and few-shot learning
[18] in which the number of classes are not known in advance. One of the pow-
erful aspects of Dirichlet processes is that they can provide a prior for these
types of problems similar to our regression parameter z. However, due to the
nature of our model not being able to distinguish the ground truth point from
the distractors and the possibility for more distractors than annotators, signif-
icant theoretical work will need to be performed to fit this particular problem
into the framework of Dirichlet processes.

5.1 Future Work

There are a few immediate avenues for future development. The biggest and
likely most difficult would be to replace the remaining expert-dependant task
of determining which annotators selected the same cluster, especially when
given a small number of annotators, which would prevent the use of clustering
algorithms. This is a difficult task as it not only has to take into account the
geometric and imaging elements of the anatomy, but also the distribution of a
small and highly variable point set. Having a machine intelligence capable of
determining this clustering would be ideal for the extension of these models
towards there use in training neurosurgeons as mentioned above, but also for
training other machine learning models.

Tailoring this model towards use in evaluating machine learning algorithms
in the presence of annotation errors could have a large effect on machine-
learning based neurosurgical pointing models for particularly challenging tasks
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[13]. This however places an interesting requirement on the cluster determina-
tion task as it would require the result to be meaningfully differentiable in order
to be used in current gradient-descent–based machine learning frameworks.
An alternative and easier approach would be to determine mathematically the
probability of each annotation as being reflective of the ground truth or not,
using that as weights in the loss function. The naive probability estimate (that
is, one that doesn’t use any information about the other points) would be p,
although one can easily imagine this probability increasing for points selected
by multiple annotators (for example, if all k annotators agree, then the prob-

ability of the consensus point being the true location rises to nkpk

nkpk+n(1−p)k

which is greater than p under the very mild assumption that p > 1
n+1 , i.e. the

correct point is more likely than any given distractor) and decreasing if the
point is not part of an agreed-upon cluster. This may still experience issues
with the expected minima of weighted loss functions still not corresponding
with the ground truth point, although more research would be needed to verify
or falsify this.

From the simulation experiments, we can surmise that the model does have
a significant dependence on the regularisation parameter in terms of the weight
and existence of secondary modes. However, more investigation is needed to
characterise precisely how it would effect the accuracy of the primary mode
as it is possible that it could introduce some slight bias into the model results
with respect to p. In addition, there could be other meaningful regularisation
schemes other than exponential decay that could assist in mitigating secondary
erroneous modes.

Lastly, it should be noted that the model is not completely scaleable for
large number of observations or a large number of annotators. In the case of the
latter, easy simplifying assumptions can be made for estimating p, specifically
by considering the true point to be the one with the majority vote, which is the
most probable explanation in the model for a high number of annotators under
mild assumptions. In the case of large numbers of observations, some additional
work can be done in merging together large numbers of beta distributions
given the identity:

(α+ β + 2)Bα,β(p) =(β + 1)Bα,β+1(p)

+ (α+ 1)Bα+1,β(p)
(7)

or its extension:

(α+ β + n+ 1)!

(α+ β + 1)!
Bα,β(p) =

n∑
c=0

(α+ n− c)!(β + c)!n!

α!β!c!(n− c)!

×Bα+n−c,β+c(p)

(8)
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This identity may allow for a more compact representation of the distribution,
possibly with negative terms rendering it no longer a proper mixture. At the
moment, the model’s memory consumption appears to grow linearly with the
number of images, which is considerably higher than the constant memory
required by most other approaches that estimate a final number of parameters
and thus a potential issue for machine learning on large datasets. Some degree
of trade-off will need to be found to balance the exactness of the model with
its computational demands.

6 Conclusions

This paper presents a simple reference-free model for understanding errors-of-
type in tasks where the number of distractors nor the identity of the correct
point is known in advance. This framework uses Bayesian statistics to find the
model parameters which include the probability of selecting the correct point,
which is of high interest in the literature. Our simulation experiments show
that the model is usable in cases where p is known to be relatively high (i.e.
greater than 75% for 3 or 4 annotators) which is largely the case for neurosur-
gical pointing tasks. Due to the relative novelty of quantification methods for
errors-of-type, it is unknown to what degree these models are applicable more
generally in surgical planning. The model produces results that are highly
coherent with similar literature in human errors in TMS cortical point target-
ing, although this is the first model that provides uncertainty measurements
for said results.
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