
HAL Id: hal-04117307
https://hal.science/hal-04117307v1

Submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

BPAT-UNet: Boundary preserving assembled
transformer UNet for ultrasound thyroid nodule

segmentation
Hui Bi, Chengjie Cai, Jiawei Sun, Yibo Jiang, Gang Lu, Huazhong Shu, Xinye

Ni

To cite this version:
Hui Bi, Chengjie Cai, Jiawei Sun, Yibo Jiang, Gang Lu, et al.. BPAT-UNet: Boundary preserving
assembled transformer UNet for ultrasound thyroid nodule segmentation. Computer Methods and
Programs in Biomedicine, 2023, 238, pp.107614. �10.1016/j.cmpb.2023.107614�. �hal-04117307�

https://hal.science/hal-04117307v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Highlights

• Using boundary points supervision module for boundary points and

features enhancement

• Using assembled transformer module to fuse features of different scales

with channel

• Using assembled transformer module to integrate local and global char-

acteristics

• The proposed method with high accuracy compares to other segmen-

tation methods

1

                  



Short Title of the Article

Highlights
• Using boundary points supervision module for boundary points and features enhancement
• Using assembled transformer module to fuse features of different scales with channel
• Using assembled transformer module to integrate local and global characteristics
• The proposed method with high accuracy compares to other segmentation methods

First Author et al.: Preprint submitted to Elsevier Page 1 of 18

                  



Highlights
BPAT-UNet: Boundary Preserving Assembled Transformer UNet for Ultrasound Thyroid Nodule
Segmentation
Hui Bi,Chengjie Cai,Jiawei Sun,Yibo Jiang,Gang Lu,Huazhong Shu,Xinye Ni

• Using the boundary point supervision module for boundary points and feature enhancement
• Using the assembled transformer module to fuse features of different scales with channel
• Using the assembled transformer module to integrate local and global characteristics
• The proposed method with high accuracy compares with other segmentation methods

                  



BPAT-UNet: Boundary Preserving Assembled Transformer UNet for
Ultrasound Thyroid Nodule Segmentation
Hui Bi1,2,3, Chengjie Cai1, Jiawei Sun2,4,5, Yibo Jiang6, Gang Lu7, 8, Huazhong Shu7,8 and
Xinye Ni2,4,5,*

<1>School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, 213164, Jiangsu, China
<2>The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
<3>Key Laboratory of Computer Network and Information Integration, Southeast University, Nanjing, 211096, Jiangsu, China
<4>Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, 213003, Jiangsu, China
<5>Center of Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China
<6>Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, China
<7>Laboratory of Image Science and Technology, Southeast University, Nanjing, 210096, Jiangsu, China
<8>Centre de Recherche en Information Biomédicale Sino-Français, Rennes, F-35000, France

A R T I C L E I N F O
Keywords:
Medical ultrasound image segmentation
Thyroid nodules segmentation
Computer-aided diagnosis and treatment
Transformer-based network
BPAT-UNet

A B S T R A C T
Background and Objective: Accurate and efficient segmentation of thyroid nodules on ultrasound
images is critical for computer-aided nodule diagnosis and treatment. For ultrasound images, Convo-
lutional neural networks (CNNs) and Transformers, which are widely used in natural images, cannot
obtain satisfactory segmentation results, because they either cannot obtain precise boundaries or seg-
ment small objects. Methods: To address these issues, we propose a novel Boundary-preserving
assembly Transformer UNet (BPAT-UNet) for ultrasound thyroid nodule segmentation. In the pro-
posed network, a Boundary point supervision module (BPSM), which adopts two novel self-attention
pooling approaches, is designed to enhance boundary features and generate ideal boundary points
through a novel method. Meanwhile, an Adaptive multi-scale feature fusion module (AMFFM) is
constructed to fuse features and channel information at different scales. Finally, to fully integrate the
characteristics of high-frequency local and low-frequency global, the Assembled transformer mod-
ule (ATM) is placed at the bottleneck of the network. The correlation between deformable features
and features-among computation is characterized by introducing them into the above two modules
of AMFFM and ATM. As the design goal and eventually demonstrated, BPSM and ATM promote
the proposed BPAT-UNet to further constrain boundaries, whereas AMFFM assists to detect small
objects. Results: Compared to other classical segmentation networks, the proposed BPAT-UNet dis-
plays superior segmentation performance in visualization results and evaluation metrics. Significant
improvement of segmentation accuracy was shown on the public thyroid dataset of TN3k with Dice
similarity coefficient (DSC) of 81.64% and 95th percentage of the asymmetric Hausdorff distance
(HD95) of 14.06, whereas those on our private dataset were with DSC of 85.63% and HD95 of
14.53, respectively. Conclusions: This paper presents a method for thyroid ultrasound image seg-
mentation, which achieves high accuracy and meets the clinical requirements. Code is available at
https://github.com/ccjcv/BPAT-UNet.

1. Introduction
Ultrasound imaging has become the preferred technol-

ogy for the diagnosis of thyroid nodules due to its outstand-
ing advantages of no radiation, low cost, and real-time per-
formance [1, 2]. However, ultrasound images have low con-
trast and a large amount of noise, resulting in blurred edges
and unexpectedly varied boundaries of thyroid nodules.

With the rapid development of computer medical tech-
nology, the image segmentation algorithm based on deep
learning has gradually become the mainstream method in the
field of medical image segmentation. Convolutional neural
networks (CNNs) shine brightly with their strong processing
scale invariance and the ability to model the inductive bias
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of images [3]. CNNs with encoder-decoder structure show
excellent segmentation performance, its encoder is used for
feature extraction and is usually accompanied with multi-
scale down-sampling, and the responsibility of the decoder
is to restore the resolution of the image as much as possible
[4, 5].

Fully convolutional network (FCN) is the representative
network of CNNs for image semantic segmentation [6]. Com-
pared with FCN, UNet plays a greater role in the field of
medical image processing where data are relatively scarce
[7]. The key core is the skip connection that can transmit the
low-level features to reserve local information. UNet-based
networks have made significant progress in recent years. How-
ever, Fig.1 shows that UNet architecture still suffers from
two limitations in the task of thyroid ultrasound image seg-
mentation.

(1) Hard to deal with the disseminated boundary. The
first row of Fig.1 shows a typical example of thyroid ultra-
sound image segmentation. UNet segmentation results fail
to maintain accurate boundaries. The reason is that the gray

H.Bi: Preprint submitted to Elsevier Page 1 of 18

                  



BPAT-Unet for Ultrasound Thyroid Nodule Segmentation

Figure 1: Examples of the problems of ultrasound thyroid im-
age segmentation, where the first row of images indicates the
problem of inaccurate boundary, and the second row shows
that small nodules are easily ignored. However, our BPAT-
UNet addresses these two issues.The sample data derive from
the TN3k dataset.

value of the pixels on the edge of thyroid nodules is usu-
ally very close to the surrounding pixels, which can easily
lead to errors in automatic segmentation. There will be a
high probability that the border area will be missing if the
segmentation methods cannot deal with fuzzy boundaries
[8]. To solve the fuzzy boundary issue, researchers devoted
themselves to proposing many methods to pay close atten-
tion to boundary information, such as manually adding pa-
rameters for post-processing [9], and adding boundary con-
straints into the network [10, 11].

(2) Lack of small object sensitivity. The second row
of Fig.1 also shows why UNet segmentation results fail to
recognize the relatively small thyroid nodules. The reason
is that the UNet-based network uses convolution block for
spatial representation that fails to model context dependen-
cies and global information interaction [12]. In addition, tra-
ditional down-sampling structures can easily lead to smaller
features being discarded [13].

To detect small targets better, multi-scale representation
and contextual information have become the two pillars of
mainstream use [14]. Multi-scale representation combines
high- and low-level features to help demonstrate the small
object in multiple resolutions [15, 16]. Dilated convolution
is proposed to enlarge the receptive field, however, the large
dilated rates may ignore small objects [17]. Recently, the
self-attention mechanism considering long-range dependen-
cies was established [18, 19].
1.1. Medical Image Segmentation based on CNN

In the early days of medical image segmentation, tra-
ditional medical image segmentation methods were based
on thresholding, region, edge detection, clustering, and de-
formable models [21].

With the development of deep learning techniques, FCN
is the mainstream approach for image segmentation [6]. UNet
contains two concatenated paths of contracting and expand-
ing. The contracting path is used to extract image features,
capture contexts, and compress images into feature maps
composed of features. The expanding path is adopted for

precise localization, features detection, and prediction. In
addition, the skip connections transmit low-frequency infor-
mation from the lower-level layers to the higher-level lay-
ers [7]. As a result of the excellent performance of UNet
for medical image segmentation, the corresponding variants
continue to emerge. Res-UNet builds the powerful Resnet
into a U-shaped network [22, 23]. UNet++ chooses dense
skip connections to capture fine details in the foreground
[24].

To detect the small objects, Dense-UNet fuses small-
scale features within and between slices in a densely con-
nected manner to enhance context [25]. FactSeg improves
the accuracy of small object segmentation by multi-scale fu-
sion of two branches [26]. To obtain the boundaries of the
tissues more precisely, some studies add shape constraints
to the network. Lee explicitly introduces the boundary point
detection module in CNNs, which uses multi-scale atrous
convolution to generate boundary point prediction maps [11].
SAUNet also constructs a shaped flow and passes gradients
to capture rich shape-related information [27].
1.2. Medical Image Segmentation based on CNNs

Combining Self-attention
Although CNNs have achieved great success in the field

of medical segmentation due to their strong local represen-
tation ability, they suffer from a lack of attention to global
information based on feature maps.

Self-attention is better at capturing the internal correla-
tion of features by calculating the interaction between image
patches which solves the problem of long-distance depen-
dence [28]. U-net transformer improves UNet by introduc-
ing self-attention and cross-attention [29]. AttnUNet pro-
poses a novel Attention gate (AG) model for medical imag-
ing that automatically learns to focus on target structures of
varying shapes and sizes [18]. TransAttUNet introduces an
adaptive weighted sum of self-attention and global spatial at-
tention at the bottleneck of the U-shaped network [30]. UT-
Net introduces self-attention in UNet in the form of resid-
ual connections, which are beneficial to induce bias learning
[31].
1.3. Medical Image Segmentation based on

Transformers
The transformer structure is first proposed for natural

language processing [32]. In vision tasks, Vision transformer
(ViT) is proposed for image classification [33]. Although
replacing CNNs with Transformers for medical image seg-
mentation requires further study, the transformer-based net-
works show impressive performance and accuracy in medi-
cal image processing [34], [35]. As a serial scheme, Pyra-
mid vision transformer v2 (PVT.v2) replaces block embed-
dings with overlapping convolutions as block embeddings
[36]. This serial kind of combination cannot handle both
high-frequency and low-frequency information at each layer
simultaneously.

To solve this issue, global and local image transformer
mixes convolutional and transformer features in a parallel
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manner [37]. To fully fuse the local and global features, the
subsequent HiLo attention and inception mixer are proposed
to fuse the information of the two frequencies to a certain
extent [49], [39].

For medical images, transformer-based methods com-
bine long-range dependencies that helps multiple objects anal-
ysis and local information that help small objects. The MedT
proposes a gated axial-attention model to extend the Local-
Global strategy [40]. In particular, for ultrasound images,
the nodules’ shape is always irregular. Feature extraction
based on local window attention that is similar to Swin trans-
former, and the convolution block leads to the neglect of lo-
cal fine details [41].

In this paper, considering the unsolved problems and chal-
lenges of the above ultrasound image segmentation methods,
we introduce more efficient feature mining based on Trans-
former, deformable convolution, and multi-pooling methods
to handle irregular and relatively small thyroid nodes. In
addition, shape constraints are considered to handle thyroid
nodules with large shape variations. Although several im-
proved methods already exist, developing an effective algo-
rithm for thyroid clinical diagnosis and treatment remains
a major challenge. To settle the aforementioned two issues
in thyroid ultrasound segmentation simultaneously, we pro-
pose the Boundary preserving assembled transformer UNet
(BPAT-UNet) in this paper. This design mainly focus on the
blurring of thyroid image edges and the enhancement of lo-
calization of nodular regions according to global background
features.

The main contributions of our work are as follows.
(1) The proposed Boundary point supervision module

(BPSM), which preserves the thyroid boundary information,
involves not only two kinds of local features, but also the re-
lations between them.

(2) The adaptive multi-scale features fusion module (AMFFM)
is adopted to enhance local features. The deformable convo-
lutional and deformable attention blocks are alternately used
can better capture the characteristics of the nodules.

(3) The Assembled transformer module (ATM) performs
two self-attention routes to process global and local informa-
tion for small nodules detection. The Extern attention (EA)
block can learn the underlying correlations sample-among
of the dataset.

(4) According to the quantitative results on the thyroid
public dataset TN3k [20] and our private dataset, the pro-
posed approach displays significant accuracy advantages com-
pared with other state-of-the-art techniques.

The rest of the paper is organized as follows. In Sec-
tion II, we describe the architecture of the proposed BPAT-
UNet and its modules in detail for thyroid nodule segmenta-
tion. Section III presents our experimental results and com-
pares the proposed method with other advanced segmenta-
tion methods. The effects of the key elements involved in our
method are analyzed by a series of ablation studies. Conclu-
sions and perspectives are drawn in Section IV.

2. Methods
In this section, Fig.2 shows the overall architecture of

our proposed BPAT-UNet, and we describe the three im-
portant modules of BPAT-UNet in the following subsection.
(1) The purpose of the Boundary point supervision module
(BPSM) is to maintain the bounding global receptive field
of objects. (2) The Adaptive multi-scale feature fusion mod-
ule (AMFFM) is designed to express attention to objects of
smaller sizes and objects with large differences in shape. (3)
The Assembled transformer module (ATM) is designed to
fully integrate global and local information.
2.1. Overall Structure Design

The UNet framework mainly consists of an encoder, bot-
tleneck, decoder, and skip connections, where both encoder
and decoder are based on Double convolution blocks (DCB).
The traditional UNet consists of multi-scale layers, where n
indicates the n-th layer of the network, 𝑛 = 1, 2, 3, 4, 5.

To effectively maintain the shape of the irregular nod-
ule’s boundary and small object features, we augment three
important modules into the UNet framework. The BSPM is
inserted into the 3𝑟𝑑, 4𝑡ℎ and 5𝑡ℎ layers for boundary point
feature supervision. The AMFFM is inserted into the 3𝑟𝑑
and 4𝑡ℎ layers for feature aggregation. The ATM is inserted
into the bottleneck for samples-among adaptation.

For a given thyroid image 𝑋 ∈ 𝑅𝐻×𝑊 ×3, the encoder
performs multi-scale feature processing to obtain depth fea-
tures. The output of the DCB on each layer is calculated by
Eq.(1),

𝐹𝐷𝐶𝐵
𝑛 ∈ 𝑅(𝐻∕2𝑛−1)×(𝐻∕2𝑛−1)×(2𝑛−1)𝐶 (1)

where 𝐶 = 64, which is halved by maximizing the pool-
ing layer. Instead of down-sampling 𝐹𝐷𝐶𝐵

𝑛 directly, the con-
volution features 𝐹𝐷𝐶𝐵

𝑛 are fed to BPSM to generate the
boundary-enhanced features𝐹𝐵𝑃𝑆𝑀

𝑛 , where 𝑛 = 3, 4, 5. Sub-
sequently, 𝐹𝐵𝑃𝑆𝑀

𝑛 and 𝐹𝐵𝑃𝑆𝑀
𝑛+1 are fed into AMFFM to fuse

the multi-scale features 𝐹𝐴𝑀𝐹𝐹𝑀
𝑛 , where 𝑛 = 3, 4. Besides,

we augment a boundary points prediction based on 𝐹𝐵𝑃𝑆𝑀
𝑛 ,

where 𝑛 = 3, 4, 5. The deepest boundary-enhanced features
𝐹𝐵𝑃𝑆𝑀
𝑛 are transferred into ATM to obtain a full mixture of

global features and local features 𝐹𝐴𝑇𝑀
𝑛 , where 𝑛 = 5.

2.2. Boundary Points Supervision Module (BPSM)
The BSPM is proposed to supervise boundary point fea-

tures with key points of the ground truth. Fig.2 shows the
location of BPSM in our entire model and Fig.3 shows the
structure of BPSM in detail.

It takes features𝐹𝐷𝐶𝐵
𝑛 as input, where𝐹𝐷𝐶𝐵

𝑛 ∈ 𝑅𝑤𝑛×ℎ𝑛×𝑐𝑛

(𝑛 = 3, 4, 5), where 𝑤𝑛, ℎ𝑛 and 𝑐𝑛 represents the length,
width and channel number of BPSM input feature in the n-th
layer, respectively. 𝐹𝐵𝑃𝑆𝑀

𝑛 (𝑛 = 3, 4, 5) is used to enhance
features and generate boundary constrain features.

To extract more effective features for representing thy-
roid boundaries, we propose Stripe pooling self-attention (SPSA),
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Figure 2: Overall architecture of our proposed BPAT-UNet.

Figure 3: Structure of the proposed Boundary Points Supervision Module in detail.

including stripe pooling and self-attention calculation [42]
[36].

Notably, we redesign SPSA that adds stripe pooling be-
fore the calculation of key (𝐾), value (𝑉 ), and query (𝑄).
The SPSA can be calculated by Eq. (2) and Eq. (3),

𝑆𝑃𝑆𝐴(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑0,⋯ , ℎ𝑒𝑎𝑑𝑁 )𝑊 𝑂 (2)

ℎ𝑒𝑎𝑑𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑗 , 𝑆𝑃 (𝐾)𝑊 𝐾

𝑗 , 𝑆𝑃 (𝑉 )𝑊 𝑉
𝑗 ) (3)

where𝑊 𝑂 ∈ 𝑅𝐶×𝐶 , 𝑊 𝑄
𝑗 ∈ 𝑅𝐶×𝑑ℎ𝑒𝑎𝑑 , 𝑊 𝐾

𝑗 ∈ 𝑅𝐶×𝑑ℎ𝑒𝑎𝑑 ,
and 𝑊 𝑉

𝑗 ∈ 𝑅𝐶×𝑑ℎ𝑒𝑎𝑑 are the parameters of linear projection,

respectively. 𝑁 is the number of heads. is the operation of
stripe pooling, which can be expressed by Eq. (4):

𝑆𝑃 (x) = 𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑐𝑎𝑡(𝑟𝑒𝑠ℎ𝑎𝑝𝑒1(x)�̇� 𝑠, 𝑟𝑒𝑠ℎ𝑎𝑝𝑒2(x)�̇� 𝑠))
(4)

Among them, given input feature x ∈ 𝑅𝐻×𝑊 ×𝐶 , pooling
x in horizontally way to achieve, where xℎ = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒1(x,
where xℎ ∈ 𝑅𝑊 ×1×𝐶 and in vertically way to achieve 𝑥𝑣 =
𝑟𝑒𝑠ℎ𝑎𝑝𝑒1(x), where x𝑣 ∈ 𝑅𝐻×1×𝐶 . 𝑊 𝑠 is the parameter
of linear projection. 𝐶𝑜𝑛𝑐𝑎𝑡 means concatenating features
channel-wise.
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The redesigned SPSA is calculated by Eq. (5)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥( 𝑄𝐾𝑇
√
𝑑ℎ𝑒𝑎𝑑

)�̇� (5)

In addition, the Pyramid pooling self-attention (PPSA) is
introduced by considering variable receptive fields. Follow-
ing a 1 × 1 convolution, the boundary key point feature can
be generated [43]. PPSA is similar to the proposed SPSA.
Instead of the reshape operation, PPSA pooling deals with
the features in multiple scales directly.

Subsequently, SPSA and PPSA features are used for mul-
tiplication, and addition with the residual connection. With
such two pooling self-attention used simultaneously, we can
capture the long-distance relationship and multi-scale fea-
tures of isolated regions. The overall process can be formu-
lated by Eq. (6):

𝐹𝐵𝑃𝑆𝑀
𝑛 = 𝐹 ⊕ (𝐹𝑆𝑃 ⊗ (𝑐𝑜𝑛𝑣1×1)(𝐹𝑃𝑃 )) (6)

where ⊕ means feature addition, ⊗ means matrix multi-
plication, and 𝑐𝑜𝑛𝑣1×1 stands for convolution. 𝐹 , 𝐹𝑆𝑃 , and
𝐹𝑃𝑃 represent the original input feature, SPSA feature, and
PPSA feature, respectively.

To better introduce boundary prior and improve the seg-
mentation performance, we propose a boundary point super-
vision to accurately represent the thyroid contour’s shape.
The details of the boundary key points selection algorithm
are described in as Table 1 shown. We design a bound-
ary point generator to generate relatively ideal boundary key
points. We remove the redundant points of the boundary
contour to reduce the amount of computation for subsequent
processing.

First, we choose the traditional edge detection Canny op-
erator to generate the set of boundary points. Second, we use
the DP approximation algorithm to extract the boundary key
points considering that, concave parts are prone to appear
in the boundary area, leading to the large difference in the
thyroid nodules shape. By using the DP approximation algo-
rithm, we achieve an accurate sampling of the edge points of
the labeled images. However, some key points generated by
the DP approximation algorithm still almost overlap, which
may cause the model to focus too much on the relevant parts
and ignore other parts. To solve this issue, we remove points
that are too close to each other by setting a distance thresh-
old, removing one of the pairs of points whose Euclidean
distance (ED) is less than 5.

Third, we draw circles for the selected key points and
set the circle radius of the edge points to 10. Fig. 3 shows
the point ground truth results. It can be observed that the
distance between the boundary joint points is suitable.

Furthermore, considering the amount of computation,
the boundary point supervision module is only placed in the
3𝑟𝑑, 4𝑡ℎ and 5𝑡ℎ layers of the encoder.

Table 1
Boundary key point selection algorithm

Algorithm1: Boundary key point selection algorithm
Input: Ground truth segmentation map
Output:Boundary key points
𝑀 : boundary points by Canny
𝑃𝐷
𝑚 ← (𝑥𝐷

1 , 𝑦
𝐷
1 ), (𝑥

𝐷
2 , 𝑦

𝐷
2 ),⋯ , (𝑥𝐷

𝑀 , 𝑦𝐷𝑀 )
𝑁 : boundary key points by DP approximation algorithm from
𝑃𝐷
𝑛 ← (𝑥𝐷

1 , 𝑦
𝐷
1 ), (𝑥

𝐷
2 , 𝑦

𝐷
2 ),⋯ , (𝑥𝐷

𝑁 , 𝑦
𝐷
𝑁 )

for 𝑖 = 1, 2, 3, ..., 𝑁 − 1 do
if 𝐸𝐷(𝑃𝐷

𝑖+1, 𝑃
𝐷
𝑖 ) < 5 then

delete 𝑃𝐷
𝑖

end
end
Return 𝑃

2.3. Adaptive Multi-scale Feature Fusion Module
(AMFFM)

AMFFM is proposed to capture smaller features placed
at the 3𝑟𝑑 and 4𝑡ℎ top-to-bottom skip connections [24]. Fig.
2 shows the location of AMFFM in our entire model and Fig.
4 shows the structure of AMFFM.

AMFFM takes features from two adjacent layers in the
encoder for fusion to excavate the relationship between chan-
nel dimensions [44]. Fig. 4(a) shows that deformable con-
volution and deformable attention are used to process the
lower-scale features, whhereas the improved channel atten-
tion is used to process the features of the shallower layer. By
introducing deformable convolution and deformable atten-
tion in different layers, it is suitable to objects with different
shapes [45], [46]. Fig. 4(b) and Fig. 4(c) show the struc-
tures of deformable convolution and deformable attention,
respectively.

To prevent excessive computation and strengthen the long-
range dependencies between deep semantic information, the
deformable convolution is used in the shallow 3𝑟𝑑 layer. Given
the flexibility position of the deformable convolution, more
accurate features of the thyroid are achieved. The deformable
attention is located at the deep 4𝑡ℎ layer. We can obtain
the long-term dependencies features with low computational
costs.

Considering the offset in deformable attention, an ideal
value is often difficult to obtain by setting a constant prede-
fined factor to prevent large offsets. Therefore, we propose
the use of learnable parameters to control the offset value,
which can achieve a more suitable and stable effect than the
predefined offset method.

To highlight relatively important channels in features, we
use three different types of pooling, namely, average pooling,
max pooling, and soft pooling to enhance channel dependen-
cies and build channel attention [47].

This channel attention process is represented by Eq. (7),

𝐹 𝑝𝑜𝑜𝑙𝐶𝑜𝑚𝑏𝑖𝑛𝑒
𝑛 = 𝑠𝑖𝑔[𝑅𝑒𝑙𝑢(𝐹𝐶(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹 𝑃𝑜𝑖𝑛𝑡𝑠

𝑛 )))
+ 𝑅𝑒𝑙𝑢(𝐹𝐶(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 𝑃𝑜𝑖𝑛𝑡𝑠

𝑛 )))
+ 𝑅𝑒𝑙𝑢(𝐹𝐶(𝑆𝑜𝑓𝑡𝑃 𝑜𝑜𝑙(𝐹 𝑃𝑜𝑖𝑛𝑡𝑠

𝑛 )))]
(7)
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(a)

(b)

(c)

Figure 4: Adaptive Multi-scale Feature Fusion Module. (a)
The overall structure of the Adapted Multi-scale Feature Fu-
sion Module. (b) Details of Deformable Convolutions. (c)
Details of Our Deformable Attention.

where 𝑛 = 3, 4. The 𝐹𝐶 represents a fully connected
layer, 𝑠𝑖𝑔 means sigmoid function,𝐴𝑣𝑔𝑃𝑜𝑜𝑙,𝑀𝑎𝑥𝑃𝑜𝑜𝑙, and
𝑆𝑜𝑓𝑡𝑃 𝑜𝑜𝑙 represent average pooling, max pooling, and soft
pooling, respectively. Average pooling preserves the back-
ground information, max pooling preserves texture charac-
teristics, and soft pooling maintains expressive features and
is differentiable. Finally, we embed channel features into lo-
cal/global variables to obtain refined features through mul-
tiplication and add original features in the form of residual
connections.

In addition, considering that the information contained
in different scale features is inconsistent, we adopt the Adap-
tive spatial feature fusion (ASFF), which adaptively fuses
deep deformable features and shallow features. The multi-
scale adaptive fusion method uses features of different scales
as fusion weights, which effectively solves the problem that
deep and shallow features that only contain rich semantic or
location information are difficult to effectively fuse.

This process can be denoted by Eq. (8),

𝐹𝐴𝑀𝐹𝐹𝑀
𝑛 =𝐹 𝑃𝑜𝑖𝑛𝑡𝑠

𝑛 ⊕ (𝑃 𝑝𝑜𝑜𝑙𝐶𝑜𝑚𝑏𝑖𝑛𝑒
𝑛 ⊙𝐷𝑛−1)

⊕̂𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐷𝑛−1))

𝐷𝑛−1 =

{
𝐷𝑐𝑜𝑛𝑣

𝑛−1 𝑛 = 4
𝐷𝑎𝑡𝑡

𝑛−1 𝑛 = 5

(8)

where ⊙ stands for element-level multiplication, ⊕̂ rep-
resents ASFF.
2.4. Assembled Transformer Module (ATM)

ATM is proposed for local and global feature fusion and
it captures potential relationships between different samples.
Fig.2 shows the location of the ATM in our entire model and
Fig. 5 shows the structure of the ATM.

The core purpose of two-path attention is to focus on
both global and local information [48, 49]. The module con-
sists of two parts, namely, two routes self-attention and ex-
ternal attention. We pay more attention to the full fusion of
global and local information while maintaining global de-
pendency attention, including not only high-frequency infor-
mation but also local details and low-frequency information.

For ultrasound thyroid segmentation, the two paths are
redesigned to process global and local features in parallel.
Features are fused according to channel partitioning are trans-
ferred to high-frequency and low-frequency attention mod-
ules. Local features are obtained by windowed attention and
convolution, whereas global features are obtained by stan-
dard self-attention. This behavior effectively learns compre-
hensive features that contain high-frequency and low-frequency
information in visual data.

Furthermore, we replace the Multi-layer perception (MLP)
in transformer with External Attention, which can explore
the interrelationships between different data samples. By
replacing the original transformer, better performance and
lower computational complexity can be achieved.

Two Routes Self-attention: Given the input feature map
𝐹𝐷𝐶𝐵
𝑛 ∈ 𝑅𝑁×𝐶5

2 , 𝑛 = 5, it splits into two parts with half
channel as 𝐹 𝑙𝑜𝑐𝑎𝑙

𝑛 ∈ 𝑅𝑁×𝐶5
2 , 𝐹 𝑔𝑙𝑜𝑏𝑎𝑙

𝑛 ∈ 𝑅𝑁×𝐶5
2 , respectively.

They are calculated in two different ways. First, we pro-
pose a parallel architecture that mixes the deformable convo-
lution and the windowed deformable attention to learn high-
frequency and local components in detail. The purpose of
introducing deformable feature calculation is to reduce the
recognition problem of objects with large differences in shape.

Windowed deformable attention computes deformable
attention by dividing the features into four equal-sized win-
dows, each of which is 𝑤𝑖 ∈ 𝑅

𝑁
4 ×𝐶5

2 , 𝑖 = 1, 2, 3, 4, and
finally stitches the four features back together.

This process can be formulated by Eq. 9,
𝐹 𝑙𝑜𝑐𝑎𝑙′
𝑛 = 𝐷𝑐𝑛(𝐹 𝑙𝑜𝑐𝑎𝑙

𝑛 )⊕𝑊𝐷𝑎𝑡𝑡(𝐹 𝑙𝑜𝑐𝑎𝑙
𝑛 ) (9)

where 𝑛 = 5, 𝐷𝑐𝑛 means deformable convolution and
𝑊𝐷𝑎𝑡𝑡 refers to window deformable attention.
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Figure 5: Details of Assembled Transformer Module.

In addition, for the learning of low-frequency compo-
nents, K/V is calculated by feature pooling based on linear
spatial-reduction attention [36].

For thyroid segmentation, we change the pooling method
to soft-pool to achieve 𝐾

𝑣 for greater strength of feature acti-
vation. Finally, local and global features are fused channel-
wise.

Two Routes Self-attention can be formulated by Eq. 10,

𝑅 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹 𝑙𝑜𝑐𝑎𝑙′
𝑛 , 𝐿𝑆𝑅𝐴(𝐹 𝑔𝑙𝑜𝑏𝑎𝑙

𝑛 )) (𝑛 = 5) (10)
External Attention: Considering that External Atten-

tion can solve the problem of self-attention by ignoring po-
tential correlations between samples, the second half of the
module adds External Attention similar to the MLP struc-
ture.
2.5. Loss Function

The Soft Dice loss is used to train our BPAT-UNet, which
minimizes not only the difference between segmentation pre-
diction (𝑆𝑝𝑟𝑒𝑑) and label image (𝑆𝐺𝑇 ), but also boundary
key points prediction (𝑆𝑝𝑟𝑒𝑑_𝑝𝑜𝑖𝑛𝑡) and boundary point labels
(𝑆𝐺𝑇 ).

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑒𝑔 + 𝐿𝑝𝑜𝑖𝑛𝑡 (11)

𝐿𝑠𝑒𝑔 = 𝜑𝑑𝑖𝑐𝑒(𝑆𝑝𝑟𝑒𝑑 , 𝑆𝐺𝑇 ) (12)

𝐿𝑝𝑜𝑖𝑛𝑡 = 𝜑𝑑𝑖𝑐𝑒(𝑆𝑝𝑟𝑒𝑑_𝑝𝑜𝑖𝑛𝑡, 𝑆𝐺𝑇 ) (13)
where 𝜑𝑑𝑖𝑐𝑒 represents the dice loss function.

3. Results
3.1. Datasets

To evaluate our model, we use two data sets: the public
TN3k dataset and our own private thyroid dataset.

(1) TN3k dataset: The TN3k dataset contains 3493 ul-
trasound images collected from 2421 patients, all of which
are grayscale. We chose 2303 images as the training set,
leaving 576 images as the validation set, and an additional
614 images for testing the best model. They are resized to
256×256 and we performed data expansion such as normal-
ization and random inversion.

(2) Our own thyroid dataset: Our own thyroid dataset
consists of 328 ultrasound images collected at The Affili-
ated Changzhou No. 2 People’s Hospital of Nanjing Med-
ical University (No.2020_KY146-01). They were acquired
by three commercial scanners from Philips Healthcare/ Best/
Netherlands, Siemens Healthineers/ Erlangen/ Germany, GE
Healthcare/ Chicago/ USA.

We divide the datasets in a ratio of 8:1:1 for training,
validation and testing. The delineation of the nodules was
performed by three physicians with extensive clinical expe-
rience in the ultrasound department. We convert contours
to contours and binary masks as ground truths. To remove
patient privacy and other irrelevant information, we crop the
images and labels to 512 × 512. They are also adjusted to
256 × 256 for normalization and random inversion.
3.2. Implementation Details

The network BPAT-UNet was built with PyTorch 1.7.0,
using the Adam optimizer with a weight decay of 1𝑒 − 4.
The initial learning rate is set to 1𝑒−4, and the learning rate
is decayed by a warm-up cosine annealing algorithm. All
experiments are performed on Tesla V100 32G with batch
size set to 16 and a maximum of 150 epochs. We use the
weights of the TN3k dataset for transfer learning by consid-
ering the small number of private thyroid datasets to avoid
over-fitting.
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Figure 6: Segmentation results of different existing ways and our method on the TN3k
dataset. (a) UNet. (b) FCN (c) Deeplabv3-Resnet50. (d) AttnUNet. (e) SmaAt-UNet.
(f) UT-Net. (g) UNet Transformer. (h)TransUNet (i). BPAT-UNet.

3.3. Qualitative Evaluation
First, we evaluated the proposed method from the

perspective of visual quality. We compared the visual
quality between the proposed BPAT-UNet and EIGHT other
advanced methods in the image semantic segmentation
field, namely, UNet [7], FCN[6], Deeplabv3+Resnet50[50],
AttnUNet[18], SmaAt-UNet[51], UT-Net[31], UNet
Transformer[29], and TransUNet[12]. UNet, FCN, and
Deeplabv3+Resnet50 methods are based on traditional
CNNs structure. Both AttnUNet and SmaAt-UNet are a
combination of convolution and attention mechanisms.
UT-Net, UNet Transformer, and TransUNet are based on
the Transformer structure. For these networks, different
pre-training parameters are adopted. FCN uses the Imagenet
pre-trained VGG backbone, deeplabv3+ uses the pre-trained
Resnet50 backbone, and the rest of the network is trained
from scratch without using any pre-trained weights.
3.3.1. Results on the TN3k Dataset

Firstly, we evaluated these methods on the public TN3k
dataset. Fig. 6 presents the segmentation results on five ex-
ample images of the testing dataset obtained by the proposed
BPAT-UNet and the EIGHT other methods aforementioned.
The segmentation results provided by these methods are dis-
played on the third to the tenth columns, respectively. The
first to sixth lines in Fig. 6 present the segmentation results
of six patients. Obviously, the proposed BPAT-UNet is the
most effective to detect thyroid nodules from ultrasound im-

ages visually. Our BPAT-UNet has a superior perception
ability for small thyroid nodule objects compared with other
models, from the segmentation effect of small objects in the
first three rows of Fig. 6. Thus that our AMFFM compen-
sates for the smaller features that are easily lost in downsam-
pling. Alternatively, the proposed network can obtain this
information by paying extra attention to shape differences
through deformable computation, which can compare the
differences between different models from the second and
third rows in Fig. 6. For large thyroid objects(rows 4, 5, and
6 in Fig. 6), BPAT UNet also performs well, which is at-
tributed to our BPSM maintaining the boundary area of the
object through a point approach. It should be emphasized
that for the diagnosis and treatment of thyroid nodules, the
boundary area must be grasped, and BPAT UNet has rich
experience in this area.
3.3.2. Results on the Private Dataset

Second, we evaluated these methods on our own private
thyroid dataset. Fig. 7 presents the segmentation results on
three sample images of the testing dataset obtained by the
proposed BPAT-UNet and the EIGHT methods aforemen-
tioned. The segmentation results provided by these methods
are displayed on the third to the tenth columns, respectively.
The first to fifth rows of Fig. 7 present the segmentation re-
sults of five patients. Also, the proposed BPAT-UNet is the
most effective in detecting thyroid nodules from ultrasound
images visually.
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Figure 7: Segmentation results of different existing ways and our method on our own
dataset. (a) UNet. (b) FCN (c) Deeplabv3-Resnet50. (d) AttnUNet. (e) SmaAt-UNet.
(f) UT-Net. (g) UNet Transformer. (h) TransUNet. (i) BPAT-UNet.

Compare with other methods, it is found that the pro-
posed BPAT-UNet can identify non-nodule regions from the
thyroid ultrasound images. Similar to the segmentation per-
formance of TN3k dataset, the segmentation prediction re-
sults show that for dense and small-scale objects, our BPAT-
UNet performs significantly better than other models for thy-
roid ultrasound image segmentation. In addition, BPAT-
UNet achieves the best performance in maintaining the shape
of segmented objects compared to other methods, making
more accurate judgments on the boundaries of thyroid nod-
ule regions.
3.4. Quantitative Evaluation

Furthermore, we evaluated the proposed method quan-
titatively. Dice Similarity Coefficient (DSC), Intersection
Over Union (IoU), 95th percentage of the asymmetric Haus-
dorff distance (HD95), F1-Score, Accuracy, AUC, Recall,
and Precision are used for evaluation. AUC stands for Area
Under the ROC Curve. We also compare the proposed BPAT-
UNet and EIGHT aforementioned methods.

They can be calculated as follows:
𝐷𝑆𝐶 = 2 ⋅ 𝑇𝑃

𝐹𝑃 + 2 ⋅ 𝑇𝑃 + 𝐹𝑁
(14)

𝐼𝑜𝑈 = 𝑇𝑃
𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁

(15)

𝐻𝐷95 = max
𝑘95%

[𝑑(𝑋, 𝑌 ), 𝑑(𝑌 ,𝑋)] (16)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

(17)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(18)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(19)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(20)
where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 mean true positive, false pos-
itive, true negative, and false negative, respectively. 𝑑 repre-
sents the calculation of one-way Hausdorff distance of two
sets.𝑋 and 𝑌 stand for prediction and ground truth, respec-
tively.
3.4.1. Results on TN3k Dataset

Table 2 and Fig. 8 present the experimental results in
two different forms on the TN3K dataset. Quantitative re-
sults show that our proposed BPAT-UNet achieves superior
segmentation performance on evaluation metrics compared
with other schemes, scoring 71.87% in IoU, 83.64% in DSC,
14.06 in HD95, 84.23% in F1-Score, 97.22% in Accuracy,
92.03% in AUC, 85.57% in Recall and 82.94% in Precision.
Compared to baseline method UNet, BPAT-UNet yields 4.1%,
2.85%, 7.45, 2.61%, 0.6%, 0.44%, 0.5%, and 4.5% improve-
ment in IoU, DSC, HD95, F1-Score, Accuracy, AUC, Recall
and Precision.

As a result of the numerous indicators, we mainly com-
pare multiple methods for representative indicators such as
DSC and HD95. For DSC, the proposed BPAT-UNet reaches
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Table 2
Performance summury on the public TN3k dataset.

Model F1(%) Accuracy(%) IoU(%) DSC(%) HD95 AUC(%) Recall(%) Precision(%)
Deeplab-Resnet50[50] 72.78 95.36 55.76 71.60 27.58 84.21 70.33 75.40
UNet[7] 81.62 96.62 67.77 80.79 21.51 91.59 85.07 78.44
FCN[6] 81.95 96.86 68.27 81.14 18.58 90.78 83.20 80.74
AttnUNet [18] 81.96 96.81 68.42 81.25 19.05 89.84 81.11 82.83
UNet Transformer [29] 81.26 96.63 67.79 80.80 19.30 90.35 82.42 80.14
UT-Net [31] 82.13 96.67 68.84 81.54 16.83 91.01 83.79 80.55
TransUNet [12] 81.34 96.59 68.04 80.98 18.81 90.26 82.35 80.35
SmaAt-UNet [51] 84.03 97.20 71.46 83.36 15.58 91.53 84.42 83.65
BPAT-UNet (ours)∗ 84.23 97.22 71.87 83.64 14.06 92.03 85.57 82.94
* The best results are highlighted in bold.

Table 3
Performance summary on the private thyroid ultrasound dataset.

Model F1(%) Accuracy(%) IoU(%) DSC(%) HD95 AUC(%) Recall(%) Precision(%)
Deeplab-Resnet50[50] 76.20 96.22 61.30 76.00 24.74 88.92 80.57 72.28
UNet[7] 80.96 96.85 67.68 80.72 27.34 89.78 80.91 81.02
FCN[6] 81.80 97.52 70.30 82.56 18.28 88.58 77.90 86.11
AttnUNet [18] 82.24 97.06 70.92 82.99 18.32 89.82 80.74 83.79
UNet Transformer [29] 82.44 97.67 71.51 83.39 16.78 90.14 81.48 83.42
UT-Net [31] 83.97 97.00 71.91 83.66 15.35 91.57 85.00 82.96
TransUNet [12] 81.27 96.54 67.55 80.64 19.90 90.19 82.61 79.98
SmaAt-UNet [51] 82.61 97.14 70.67 82,81 19.14 89.83 81.06 84.23
BPAT-UNet (ours)∗ 85.81 97.80 74.87 85.63 14.53 92.19 85.33 86.30
* The best results are highlighted in bold.

the score of 83.64% which is an improvement of 2.85% com-
pared with the score obtained by UNet (80.79%), which is an
improvement of 12.04% compared with Deeplabv3-Resnet50
(71.60%), which is an improvement of 2.5% compared with
FCN (81.14%), which is an improvement of 2.39% com-
pared with AttnUnet (81.25%), which is an improvement of
2.84% compared with UNet Transformer (80.80%), which is
an improvement of 2.1% compared with UT-Net (81.54%),
which is an improvement of 2.66% compared with Tran-
sUnet (80.98%), which is an improvement of 0.28% com-
pared with SmaAt-UNet(83.36%).

For HD95, the proposed BPAT-UNet reaches the score
of 83.64% which is an improvement of 7.45 compared with
the score obtained by UNet (21.51), which is an improve-
ment of 13.52 compared with Deeplabv3-Resnet50 (27.58),
which is an improvement of 4.52 compared with FCN (18.58),
which is an improvement of 4.99 compared with AttnUnet
(19.05), which is an improvement of 5.24 compared with
UNet Transformer (19.30), which is an improvement of 2.77
compared with UT-Net (16.83), which is an improvement of
4.75 compared with TransUnet (18.81), which is an improve-
ment of 1.52 compared with SmaAt-UNet (15.58).

From the DCS and HD95 results, we find that UNet achieves
the ideal segmentation effect on the TN3k dataset as it in-
tegrates the features from the underlying space through a
multi-scale structure and skip connection. FCN slightly out-
performs UNet based on the pre-training weights. Although
DeepLab V3+ has a well-designed atrous spatial pyramid
pooling and decoder structure, it is not ideal for the thyroid

TN3k dataset. In the scheme of adding the attention mech-
anism to convolution, AttnUNet achieves a high DSC score.
By adding channel attention to convolution, SmaAt-UNet
achieves the second-highest DSC score.

With the help of the introduction of the Transformer into
the CNN, the problem that the convolutional receptive field
has limited effect and is difficult to capture the long-range
context is solved. UT-Net introduces residual self-attention
to form a residual Transformer that slightly improves the
DSC score. UNet Transformer adds self-attention and cross-
attention to bottleneck and skip connection, respectively, in-
creasing the global receptive field, and has achieved minimal
performance improvement. TransUNet combines the con-
volutional layer and the Transformer layer in turn achieves
good results. Similarly, our BPAT-UNet inherits Transformer’s
excellent global modeling capabilities and has excellent DSC
metric results on the TN3k dataset. It is noted that our BPAT-
UNet does not simply insert Transformers or self-attention
like the Transformer network mentioned above. We focus
on both global and local feature information, which may be
the fundamental reason for obtaining superior DSC metrics.
Considering the correlation between HD95 indicators and
the shape and boundary of thyroid nodules, we compare them
through HD95, which is the focus of this article. Compared
with the existing segmentation methods, the proposed BPAT-
UNet performs more prominently on HD95. This is due
to the boundary point monitoring module we designed and
the introduction of deformable computing operations. These
features assist the model to remain comfortable in the face
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Figure 8: Visualization of evaluation metrics of the compared methods and the proposed
BPAT-UNet on the public TN3k dataset.

of thyroid with large shape differences and fuzzy boundaries,
which is what other models lack.
3.4.2. Results on the Private Dataset

We also conduct experiments on a private thyroid dataset
to further illustrate the effectiveness of our proposed method.

Given the small number of private datasets, overfitting
may occur when training the network, so we use the pre-
trained weights of the TN3k dataset for transfer learning.

Table 3 and Fig. 9 show that our proposed BPAT-UNet
achieves the best segmentation performance on DSC com-
pared with other schemes. Similar to the TN3k dataset, we
also focus on analyzing DSC and HD95. For DSC aspect,
the proposed BPAT-UNet reaches the score of 85.63%which
is an improvement of 4.91% compared with the score ob-
tained by UNet (80.72%), which is an improvement of 3.07%
compared with FCN (82.56%), which is an improvement of

9.63% compared with Deeplabv3+Resnet50 (76.00%), which
is an improvement of 2.64% compared with AttnUNet (82.99%),
which is an improvement of 2.82% compared with SmaAt-
UNet (82.81%), which is an improvement of 1.97% com-
pared with UT-Net (83.66%), which is an improvement of
2.24% compared with UNet Transformer (83.39%), which is
an improvement of 4.99% compared with TransUNet (80.64%).

For HD95, The proposed BPAT-UNet reaches the score
of 14.53, which is an improvement of 12.81 compared with
the score obtained by UNet (27.34), which is an improve-
ment of 3.75 compared with FCN (18.28), which is an im-
provement of 10.21 compared with Deeplabv3+Resnet50 (24.74),
which is an improvement of 3.79 compared with AttnUNet
(18.32), which is an improvement of 4.61 compared with
SmaAt-UNet (19.14), which is an improvement of 0.82 com-
pared with UT-Net (15.35), which is an improvement of 2.25
compared with UNet Transformer (16.78), which is an im-
provement of 5.37 compared with TransUNet (19.90).
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Figure 9: Visualization of evaluation metrics of the compared methods and the proposed
BPAT-UNet on the private thyroid ultrasound dataset.

Our proposed BPAT-UNet ranks first in both DSC and
HD95 metrics among various segmentation methods. By
observing the segmentation performance of the aforemen-
tioned models on the two datasets, we find that the results
are basically consistent, that is, models that perform well on
TN3k also have ideal effects on our own thyroid datasets,
and vice versa. The reason is that the image distribution of
the two datasets is nearly similar so the segmentation results
will not differ. As with the previous results based on pub-
lic datasets, models with attention mechanisms on private
datasets and models with a mixture of Transformer and CNN
outperform convolutional models in metrics.

Notably, we also find that the experimental results on our
thyroid dataset were generally better than those on the TN3k
dataset because transfer learning can help the model con-
verge better, and the quality of our dataset is relatively high.
The proposed BPAT-UNet shows its ability for small region

features description. Meanwhile, our BPAT-UNet also shows
significantly better ability in shape boundary preservation
compared with other models. These two important perfor-
mance improvements can be reflected in DSC and HD95.
3.5. Ablation Study

To validate the role of each module in the proposed net-
work, we use UNet as the baseline network and perform
ablation studies on the TN3k dataset and our own thyroid
dataset.

Table 4 and Table 5 show the different network structures
by adding the proposed BPSM, AMFFM, and ATM to UNet,
respectively. The segmentation performance on the TN3k
dataset is significantly improved, such that DSC increases by
1.87%, 1.02%, and 0.82%, whereas HD95 decreases by 6.06,
5.25, and 4.96. Compare with UNet, our strategy improves
DSC with 2.85% and HD95 with 7.45. The segmentation
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Table 4
Ablation experiment of the proposed modules on the public TN3k dataset.

Model F1(%) Accuracy(%) IoU(%) DSC(%) HD95 AUC(%) Recall(%) Precision(%)
UNet 81.62 96.62 67.77 80.79 21.51 91.59 85.07 78.44
UNet + BPSM (Point) 83.14 96.97 70.44 82.66 15.45 93.50 85.87 80.58
UNet + AMFFM 82.47 96.91 69.22 81.81 16.26 90.85 83.17 81.79
UNet + ATM 83.10 96.98 70.68 82.82 16.55 91.56 84.79 81.48
UNet + BPSM (Point) +
AMFFM + ATM(ours)∗

84.23 97.22 71.87 83.64 14.06 92.03 85.57 82.94

* The best results are highlighted in bold.

Table 5
Ablation experiment of the proposed modules on the private thyroid dataset.

Model F1(%) Accuracy(%) IoU(%) DSC(%) HD95 AUC(%) Recall(%) Precision(%)
UNet 80.96 96.85 67.68 80.72 27.34 89.78 80.91 81.02
UNet + BPSM (Point) 83.30 97.40 70.47 82.68 18.99 90.70 82.74 83.87
UNet + AMFFM 82.84 97.45 70.29 82.56 18.61 90.24 81.69 84.03
UNet + ATM 82.40 97.60 71.15 83.15 18.64 89.74 80.48 84.41
UNet + BPSM (Point) +
AMFFM + ATM(ours)∗

85.81 97.80 74.87 85.63 14.53 92.19 85.33 86.30

* The best results are highlighted in bold.

Table 6
Performance on different BPSM locations and point types on
the public TN3k dataset.

Model F1(%) IoU(%) DSC(%) HD95
UNet 81.62 67.77 80.79 21.51
UNet+BPSM
(2)1 (Point)

81.79 68.31 81.17 17.89

UNet+BPSM
(5) (Point)

82.42 68.95 81.62 17.65

UNet+BPSM
(3+4+5)
(Only Canny)

82.41 69.31 81.87 17.92

UNet+BPSM
(3+4+5)
(Point)(ours)∗

83.14 70.44 82.66 15.45

1 The numbers in parentheses represent the number of layers
corresponding to the encoder.

* The best results are highlighted in bold.

performance on our private dataset also improves such that
DSC increases by 1.96%, 1.84%, and 2.43%, whereas HD95
decreases by 8.35, 8.73, and 8.7. Compare with UNet, our
strategy improves DSC with 4.91% and HD95 with 12.81.
The above improvements are sufficient to demonstrate the
effectiveness of the modules we insert on the ultrasound thy-
roid dataset, and each module will be described in detail
later.
3.5.1. Effect of Boundary Points Supervision Module

To validate the role of BPSM, we place BPSM in differ-
ent layers for the ablation experiment. Table .6 and Fig. 10
show the various results on the TN3k dataset. We used three
strategies for comparison. We place the BPSM module in
the 2nd layer, 5th layer of the network, and key points selec-

Figure 10: Radar chart of different placement of our Boundary
Points Supervision Module.

tion without the DP algorithm. The performance is signifi-
cantly improved, such that DSC increases by 0.38%, 0.83%,
and 1.08%, whereas HD95 decreases by 3.62, 3.86, and 3.59.
Our strategy improves DSC by 1.87% and HD95 by 6.06.

From the results, we investigate the effect of the location
and number of BPSMs on the TN3k dataset. When we place
BPSM in the 2nd layer of the encoder stage, the improve-
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Figure 11: Comparison between the results of our Boundary
Points Supervision Module and the original model.

ment effect is minimal, but the calculation amount increases
considerably because the low-level features are difficult to
accurately predict key points. The performance is signifi-
cantly improved when boundary point features are merged
at multiple scales. Therefore, BPSMs are finally placed at
3𝑟𝑑, 4𝑡ℎ, and 5𝑡ℎ layers.

When introducing BPSM supervised by edge key points
in UNet, the segmentation accuracy is improved. Compared
with the supervision introduction without boundary point
map selection, the segmentation results are improved by 0.79%
and 2.47 on DSC and HD95, respectively, which indicates
that the boundary key point selection algorithm proves to be
effective and effective boundary preservation is difficult to
achieve solely through the canny operator.

In addition to evaluating the model by segmentation met-
rics, visual evaluation of the segmentation results is essen-
tial.We also evaluate the visual segmentation results for the
analytical discussion of the proposed method. Fig. 11 visu-
ally shows the experimental results before and after adding
BPSM. It is obvious that UNet often fails to preserve the
shape of the boundaries. The proposed BPSM has the ability
for ultrasound image segmentation when applied at multiple
scales, it can handle the border pixel values almost the same
between the boundary and the background.
3.5.2. Effect of Adapted Multi-scale Feature Fusion

Module

Table 4 and Table 5 also show that, on the TN3k dataset,
when AMFFM is introduced, DSC and HD95 improve by
1.02% and 5.25, respectively. On the private thyroid dataset,

Figure 12: Comparison between the results of our Adapted
Multi-scale Feature Fusion Module and the original mode.

the experimental results also show significant improvement,
which DSC and HD95 improved by 1.84% and 8.73, respec-
tively. Fig. 11 shows the experimental results of these mod-
els.

The first row of Fig. 12 shows that small objects are
discarded using UNet directly. The third row shows that
the proposed BPAT-UNet overcomes this issue and can seg-
ment relatively small nodules, which can confirm that our
AMFFM can compensate for the problem of smalle feature
loss, which can bring about serious problems such as missing
targets and treatment difficulty during the medical diagno-
sis. Furthermore, the third row of Fig. 12 shows that objects
with extremely irregular shapes can be segmented relatively
accurately, which confirms the functionality of deformable
computing.
3.5.3. Effect of Assembled Transformer Module

Furthermore, we conducted experiments to compare dif-
ferent structures of ATM. Table 4 and Table 5 illustrate that
DSC and HD95 improve by 2.03% and 4.96 on the TN3k
dataset after introducing ATM into UNet. On the private
dataset, segmentation results are improved by 4.91% and 12.81
on DSC and HD95, respectively. In addition, we also con-
ducted experiments to compare different structures of ATM.

We separated ATM into three blocks the local features
extraction block including WDatt and Dcn, the global feature
extraction block, and EA block. Then, we combine these
blocks for experiments. The segmentation results are listed
in Table 7 and Fig. 13.

Compared with the UNet baseline, the results display
significant improvement in both inserting local branches and
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Table 7
Performance on different ATM styles on the public TN3k
dataset.

Model F1(%) IoU(%) DSC(%) HD95
UNet 81.62 67.77 80.79 21.51
UNet+ATM
(WDatt+Dcn+EA)1

82.97 69.96 82.33 17.45

UNet+ATM
(GSA+EA)

83.07 69.89 82.28 17.30

UNet+ATM
(GSA+Dcn+EA)

82.87 69.88 82.27 17.18

UNet+ATM
(GSA+WDatt+EA)

83.15 70.41 82.64 17.01

UNet+ATM
(GSA+WDatt+Dcn)

82.97 70.12 82.43 17.10

UNet+ATM
(GSA+WDatt+Dcn+EA)(ours)∗

83.10 70.68 82.82 16.55

1 ATM with the modules listed in the mentioned in parenthe-
ses.

* The best results are highlighted in bold.

Figure 13: Radar chart of our different ATM styles on the
public TN3k dataset.

global branches. Among them, UNet+ATM(WDatt+Dcn+EA)
represents the only local branch and UNet+AMT(GSA+EA)
means the only global branch. The improved DSC and HD95
reveal the ability of deformable computing and global atten-
tion. It can also be seen that after parallel fusion of global
and local branches, all indicators have significantly improved.
Thus, a complementary feature relationship exists between
the two branches. That is to say, the feature information

Figure 14: Comparison between the results of our Adapted
Multi-scale Feature Fusion Module and the original mode.

that global branches pay attention to is missing from local
branches, and vice versa. The visual segmentation results
are displayed in Fig. 14. The examples in the first three lines
mark the role of locally deformable computation, which helps
the model identify thyroid objects with variable shapes. In
addition, the examples in the following two lines imply the
ability of global attention to model nodules using informa-
tion around them. In addition, We further dismember the lo-
cal branch. Although using Dcn as local information alone
may lose some performance compared with WDatt, the fu-
sion of the two helps the model obtain higher performance,
validating the necessity and effectiveness of introducing them.
Posterior most, we conduct ablation experiments on EA, los-
ing consideration of the relationship between samples in-
evitably results in a certain performance loss. This result
indicates that attention to the relationship between different
feature maps is crucial in downstream tasks of ultrasound
thyroid imaging.

4. Discussion
This work builds a novel boundary-preserving assem-

bly Transformer UNet (BPAT-UNet) for thyroid ultrasound
image segmentation. BPAT-UNet focuses on handling the
segmentation of the nodules with irregular shapes and with
small-size.

For irregular shape issues, the proposed BPAT-UNet us-
ing BPSM module improves thyroid nodules boundary seg-
mentation. In addition, the DP algorithm is used to select
edge points that adversely affect segmentation and can han-
dle segmenting thyroid nodules with large shape variance.
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For small nodules, the proposed BPAT-UNet pays more
attention to small features, using AMFFM with channel at-
tention to enhance small-scale thyroid nodules features and
using ATM to integrate high-frequency local and low-frequency
global feature information. Both AMFFM and ATM help
improve the detection of objects with large shape differences
as they can characterize the correlation between features and
deformable feature calculation.

Furthermore, the proposed BPAT-UNet adaptively fuses
downsampled multi-scale features and combines deformable
local features for small-sized and irregular nodules.

5. Conclusion
BPAT-UNet is proposed for thyroid ultrasound segmen-

tation that introduces BPSM, AMFFM, and ASTM to extract
more richer features that obtain accurate thyroid nodules.
The experimental results show that the proposed method can
achieve better segment thyroid nodules compare with the
SOTA methods. The limitation of the proposed work is that
we only conduct experiments on ultrasound thyroid images
and have not yet verified the effectiveness of the model on
other organ ultrasound images (such as breast and prostate)
or other kind of medical images (CT, PETs or MRI images).
In the future, we will use more medical images to validate
BPAT-UNet and compare it with the latest segmentation al-
gorithms like the Diffusion model on more challenging med-
ical images.
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