Haetham Al Aswad

Cécile Pierrot

Emmanuel Thomé

Gaudry, Guillevic, Heninger, Thomé, Zimmermann Boudot

Gaudry, Guillevic, Morain Barbulescu

Pierrot Gaudry

Morain Guillevic

Grémy

Morain Guillevic

De Micheli

Hayasaka

Aoki

Kobayashi

Takagi

Discrete Logarithm Factory

Introduction

Context. The discrete logarithm problem in a cyclic group G with a generator g ∈ G is the computational problem of finding an integer x modulo |G| for a given target T ∈ G, such that T = g x . Despite the growing interest in postquantum cryptography, the discrete logarithm problem is still at the basis of many currently-deployed public key protocols. This article deals with the discrete logarithm problem in the group of invertible elements of a finite field, G = F * p n , excluding small characteristic finite fields due to the existence of quasipolynomial time algorithms [START_REF] Barbulescu | A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic[END_REF][START_REF] Granger | On the discrete logarithm problem in finite fields of fixed characteristic[END_REF][START_REF] Kleinjung | Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic[END_REF]. Therefore, our attention is restricted here to medium and large characteristic finite fields. We recall the usual notation 1 L Q (α, c) = exp((c + o(1)) • (log Q) α (log log Q) 1-α) where o(1) tends to 0 as Q = p n tends to infinity. With this notation, a family of finite fields of size Q and characteristic p is said to be of medium characteristic if p = L Q (α) with 1/3 < α < 2/3, and of large characteristic if this statement holds with 2/3 < α. This latter case includes prime fields where n = 1 and p = L Q [START_REF] Adrian | Imperfect forward secrecy: How Diffie-Hellman fails in practice[END_REF].

The Number Field Sieve. Initially proposed as an integer factoring algorithm in the 90's [START_REF] Buhler | Factoring integers with the number field sieve[END_REF][START_REF] Lenstra | The number field sieve[END_REF], the Number Field Sieve (NFS) was later adapted to the discrete logarithm problem in prime fields [START_REF] Gordon | Discrete logarithms in GF(P) using the number field sieve[END_REF], and medium and large characteristic finite fields [START_REF] Joux | The number field sieve in the medium prime case[END_REF]. Currently, the most efficient algorithms to compute discrete logarithm in medium or large characteristic finite fields is still (a variant of) NFS. Numerous variants exist, depending on the sub-case, but they all compute discrete logarithms in finite fields in time L p n (1/3, c) for some constant 0 < c < 2.3 that depends on the precise sub-case. The special variant, SNFS [START_REF] Joux | The special number field sieve in Fpn -application to pairing-friendly constructions[END_REF] applies when the characteristic p is sparse, i.e., is the evaluation of a polynomial of relatively small degree and small coefficients, resulting in a more efficient algorithm than NFS, in both medium and large characteristic finite fields. The multiple variant, MNFS [START_REF] Barbulescu | The multiple number field sieve for medium and high characteristic finite fields[END_REF][START_REF] Matyukhin | On asymptotic complexity of computing discrete logarithms over GF(p)[END_REF][START_REF] Pierrot | The multiple number field sieve with conjugation and generalized Joux-Lercier methods[END_REF][START_REF] Sarkar | New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields[END_REF] has a lower complexity than NFS in medium and large characteristic. The Tower variant, TNFS 2 [START_REF] Kim | Extended tower number field sieve: A new complexity for the medium prime case[END_REF][START_REF] Kim | Extended tower number field sieve with application to finite fields of arbitrary composite extension degree[END_REF][START_REF] Sarkar | A unified polynomial selection method for the (tower) number field sieve algorithm[END_REF] is more efficient than NFS in medium characteristic finite fields when the extension degree is composite. When the characteristic is sparse and of medium size, and when the extension degree is composite, TNFS can be coupled with SNFS resulting in the STNFS algorithm [START_REF] Kim | Extended tower number field sieve: A new complexity for the medium prime case[END_REF][START_REF] Kim | Extended tower number field sieve with application to finite fields of arbitrary composite extension degree[END_REF]. See Table 1 for a summary. In the boundary case between medium and large characteristic, complexities are functions of p and harder to express than with a simple L(1/3, c) expression with constant c. See later Figure 7 and expressions given in §A.1 for this particular parameter range.

The state of the art for the computation of discrete logarithms in finite fields of small extension degree has been regularly updated. In particular, recent work has shown that the TNFS variant is practical. De Micheli, Gaudry and Pierrot [START_REF] De Micheli | Lattice enumeration for tower NFS: A 521-bit discrete logarithm computation[END_REF] reported in 2021 the first implementation of TNFS and performed a record computation on a 521-bit finite field with extension degree n = 6. One year later, Robinson [START_REF] Robinson | An implementation of the extended tower number field sieve using 4d sieving in a box and a record computation in F p 4[END_REF] reported a record computation using TNFS on a 512bit finite field of extension degree n = 4. On the "usual" NFS side, the latest record on a prime field F p was done with NFS in 2019 in a 795-bit finite field [START_REF] Boudot | Comparing the difficulty of factorization and discrete logarithm: A 240digit experiment[END_REF], although that computation was a lot more massive than the one in [START_REF] De Micheli | Lattice enumeration for tower NFS: A 521-bit discrete logarithm computation[END_REF]. Table 2 lists some of these recent computations. SNFS is also very practical as well, and is able to target finite fields of much larger sizes, such as a 1024-bit prime field in [START_REF] Fried | A kilobit hidden SNFS discrete logarithm computation[END_REF].

Attacking one key versus attacking many keys. This article studies how the cryptanalysis cost for several public keys evolves with the number of targeted keys. We identify two distinct situations. When the finite field is fixed, an adversary willing to compute several discrete logarithms at the same time can take advantage of the fact that the first steps of NFS only depend on the field, not on the specific target element whose logarithm is desired. This is how the Logjam attack [START_REF] Adrian | Imperfect forward secrecy: How Diffie-Hellman fails in practice[END_REF] was carried out, by precomputing data depending on the finite field only, and useful afterwards for all the individual logarithm computations.

In this work, we look at the problem from a different angle. A certain finite field bitsize is fixed, for example following a given cryptographic recommendation. Is there a more efficient way to solve the discrete logarithm problem in several finite fields, which have the same extension degree and the same given bitsize, rather than using NFS (or its variants) on each field separately? In particular, is there a configuration where some kind of precomputation would be beneficial? Whether or not the precise set of fields is known in advance, such an attack scenario is referred to as a Factory-like computation, owing to the state-of-the-art algorithms described below. Most of this article assumes that the target finite fields are not known in advance.

Factoring Factory and discrete logarithm Factory. In 1993, Coppersmith presented the Factorization Factory algorithm [START_REF] Coppersmith | Modifications to the number field sieve[END_REF] to factor many numbers in a more efficient way than applying NFS on each of the numbers. The idea is to amortize the cost of a precomputation over many factorizations, by finding smooth elements in a relation collection phase that is only half done but that can be used for each of the different factorizations. With a reduction of the overall factoring effort by more than 50%, Kleinjung, Bos and Lenstra used this idea and managed to factor 17 Mersenne numbers [START_REF] Kleinjung | Mersenne factorization factory[END_REF]. Coppersmith's idea was adapted to the computation of discrete logarithm in several prime finite fields by Barbulescu in his PhD thesis [3, §7.2].

Non-prime finite fields arise in the wild. The relevance of the existing Factorylike methods that we just mentioned is lessened by their applicability to prime fields only. The purpose of this article is to address this issue. Discrete logarithms in cryptography are not restricted to prime fields. Several cryptographic protocols rely on the hardness of the discrete logarithm problem in non-prime fields. For instance, pairing-based protocols entail considering families of finite fields of fixed extension degree. In this context, most often extension degrees are composite (e.g. n = 12). To give but one example, we find non prime fields in the Elliptic Curve Direct Anonymous Attestation protocol that is embedded in the current version of the Trusted Platform Module [START_REF]The Trusted Computing Group: Trusted Platform Module[END_REF]. The emergence of SNARKs [START_REF] Chiesa | Marlin: Preprocessing zkSNARKs with universal and updatable SRS[END_REF][START_REF] Gabizon | PLONK: Permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge[END_REF][START_REF] Groth | On the size of pairing-based non-interactive arguments[END_REF], which also require pairing friendly curves accentuates the interest for these non-prime fields.

Our work. In this article, we generalize the discrete logarithm Factory algorithm to finite fields of any extension degree. Several difficulties arise. The primary challenge lies in the need to adapt the algebraic framework of NFS: the goal is to construct several branches of a diagram landing in several different finite fields, but starting from the same shared branch. The way in which this diagram is created depends very much on the polynomial selection, and thus on the considered variant. We manage to combine the Factory idea with several variants: NFS, TNFS, SNFS and STNFS. The second difficulty appears in the characterization of the primes for which a given Factory algorithm can apply. We show that this can be quantified precisely based on the Chebotarev density theorem.

For each variant combined with Factory we provide, based on usual NFS heuristics, an improved asymptotic complexity for the computation of discrete logarithms, with the requirement of a one-time precomputation that is solely dependent on the bitsize of the finite fields. This complexity analysis is clearly another difficult point of our work because of the accumulated technicalities. Let us give the example of TNFS when we target several finite fields of size close to Q. With a one-off precomputation that approximately costs L Q (1/3, 1.94), we lower the complexity of TNFS per field from roughly L Q (1/3, 1.75) to L Q (1/3, 1.37). Our work obtains several results of this kind for various sub-cases: Table 3 recapitulates the asymptotic complexities we obtain in this work.

Besides, we employ an analytic approach in order to assess the crossover point above which our Factory approach for TNFS is likely to be profitable. 3. Approximation of asymptotic complexities of NFS, MNFS, NFS Factory and their variants, expressed as LQ(1/3, c). This table indicates an approximation of c in each case. When the characteristic p is expressed as p = LQ(2/3, cp), it represents the boundary case between medium and large characteristic. At this boundary, the complexities are given as a function of cp. For this reason we give a figure and not a formula. Besides, in medium characteristic finite fields, both the complexities of SNFS and STNFS depend on an integer parameter λ. Tables 8 and9 give the complexities for various values of λ. Moreover, the Multiple variant does not couple with the Special variants SNFS and STNFS.

When applied to the case of 1024-bit finite fields of extension degree n = 6, our estimates suggest that TNFS Factory is computationally more efficient than applying TNFS on each finite field separately when solving discrete logarithms in several tens of such finite fields.

Possible impact. One of the scenarios we have in mind involves the potential risk of compromising the security of standardized key sizes. Recommended key sizes correspond to the sizes of finite fields considered secure against the most efficient algorithms for attacking the discrete logarithm problem, namely NFS and its variants. Each previously recommended or current key size (e.g. 1024 bits, 2048 bits, 4096 bits, etc.) is associated with a specific level of security. As a result, the distribution of finite fields used in practical applications is not uniform across all possible sizes, but rather organized into groups or packages. Consequently, an attacker seeking to compromise multiple keys potentially across different finite fields, can leverage the idea of Factory. By adjusting the parameters and finding the most advantageous trade-off in terms of the number of compromised finite fields and the cost they are willing to invest in precomputation, they can minimize the overall expense. In any case, the aggregation of finite fields within packages resulting from protocol standardization has the potential to weaken a significant proportion of the public keys generated according to these standards.

Outline of the article. We start with a short refresher concerning NFS and its variants in Section 2. Section 3 presents the Factory idea adapted to non prime finite fields and explains how we can predict how many fields can be addressed with a given Factory setup. Section 4 details then the asymptotic complexity results of this algorithm, while in Section 5 we discuss the feasibility and impact of this method on moderate key sizes, for instance to target elements in several 1024-bit finite fields.

Background

Notations. From now on, p always denotes a prime number. When the extension degree n of the finite field F p n is composite, η and κ denote non trivial factors of n such that n = ηκ. Asymptotic estimates use the classical O and o notations, as well as the soft-O notation f = O(g) which means that there exists a constant c such that f (x) = O(g(x) log c (x)), as x tends to infinity. We recall that an integer is x-smooth if we can write it as product of integers that are all smaller than x. Likewise, an ideal is x-smooth if it factors into a product of prime ideals whose (absolute) norm is less than x.

The (Tower) Number Field Sieve

We start with a short refresher on the Tower variant of the Number Field Sieve, of which the "usual" NFS can be considered a special case.

Commutative diagram. We target the finite field F p n . Let η be a divisor of n. The classical TNFS setup considers the intermediate number field

K h = Q(ι)
where ι is a root of h, a polynomial of degree η over Z that remains irreducible modulo p. For a number field K, we let O K be its ring of integers. For simplicity, we assume throughout this article that O K h = Z[ι]/h. This implies in particular that h is monic. (For the usual NFS, we rather let η = 1, K h = Q, and O K h = Z; in particular there is no requirement that n be composite.)

Above K h , define two number fields

K 0 = K h [x]/f 0 (x) and K 1 = K h [x]/f 1 (x)
where f 0 , f 1 are irreducible polynomials over O K h that share an irreducible factor φ of degree κ modulo the unique ideal p over p in K h . In particular, f 0 and f 1 have degree at least κ. Let α i be root of f i in K i for i = 0, 1. Because of the conditions on the polynomials h, f 0 and f 1 , there exist two ring homomorphisms from O K h [x] to the target finite field F p n through the number fields K 0 and K 1 . This allows to build a commutative diagram as in Figure 4. For simplicity, we assume that f 0 and f 1 are defined over Z, although this is only possible when κ and η are coprime.

The polynomial selection refers to the way the diagram of Figure 4 is built. For an appropriate notion of size that is defined in the intermediate number fields, the relation collection step accumulates relations between "small" elements in the number fields. Their virtual logarithms in the target finite field are then recovered by the linear algebra step, and the process is made more general by the individual logarithm step which leverages the acquired information to compute logarithms of arbitrary elements of the target number field.

OK h [x] K0 ⊃ OK h [x] /f0(x) K1 ⊃ OK h [x] /f1(x) OK h /p[x]/φ(x) ∼ = Fpn mod φ,
(x, ι) = a(ι) -b(ι)x ∈ O K h [x]
, and for usual NFS this simplifies to searching for polynomials a -bx with integers coefficients a, b, since O K h = Z in that case.

The ideals that occur in the factorizations in O K0 and O K1 constitute the factor basis F. More precisely, we define it as the disjoint union F = F 0 ⊔ F 1 with, for i = 0, 1:

F i (B i) = {prime ideals of O Ki of norm ≤ B i and inertia degree 1 over K h }.
To test the B i -smoothness on each side, one needs to evaluate the norms N i (a(ι)b(ι)α i) for i = 0, 1. To do so, we can write:

N i (a(ι) -b(ι)α i) * = Res y (Res x (a(y) -b(y)x, f i (x)), h(y)). (1)
where the equality * = holds up to sign and up to powers of the leading coefficients of h and f i . Since resultants are integers, this allows to test the B i -smoothness over integer values. The relation collection stops when we have enough relations to construct a system of linear equations that may be full rank. The unknowns of these equations are the virtual logarithms of the ideals of the factor basis. Linear algebra. A good feature of the linear system created is that the number of non-zero coefficients per line is very small. This allows to use sparse linear algebra algorithms such as Coppersmith's block Wiedemann algorithm [START_REF] Coppersmith | Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm[END_REF], for which parallelization is partly possible. The output of this step is a kernel vector corresponding to the virtual logarithms of the ideals in the factor basis.

Individual discrete logarithm. The final step consists in finding the discrete logarithm of one or several target elements. This step is subdivided into two substeps: a smoothing step and a descent step. The smoothing step is an iterative process where the target element is randomized until the randomized value lifted back to one of the number fields K i is B ′ i -smooth for a smoothness bound B ′ i > B i . The second step consists in decomposing every factor of the lifted value, in our case prime ideals with norms less than a smoothness bound B ′ i , into elements of the factor basis for which we now know the virtual logarithms. This eventually makes it possible to reconstruct the discrete logarithm of the target element.

TNFS differs from NFS in this step as there exist improvements for the smoothing step when the target finite field has proper subfields [START_REF] Al Aswad | Individual discrete logarithm with sublattice reduction[END_REF][START_REF] Guillevic | Faster individual discrete logarithms in finite fields of composite extension degree[END_REF].

Other variants of NFS

Special NFS. When the characteristic is sparse (the meaning of which will be made precise later on), both NFS and TNFS can be adapted so that the polynomials in the sieving step have lower norms, resulting in better asymptotic complexities. This is called the Special variant of NFS and written SNFS or STNFS.

The key idea as explained in [START_REF] Joux | The special number field sieve in Fpn -application to pairing-friendly constructions[END_REF] lies in a dedicated polynomial selection that takes advantage of the sparsity of the characteristic.

Multiple NFS. NFS and TNFS can be coupled with a multiple variant too [START_REF] Barbulescu | The multiple number field sieve for medium and high characteristic finite fields[END_REF][START_REF] Matyukhin | On asymptotic complexity of computing discrete logarithms over GF(p)[END_REF][START_REF] Pierrot | The multiple number field sieve with conjugation and generalized Joux-Lercier methods[END_REF][START_REF] Sarkar | New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields[END_REF], the main idea being to have a lot of different intermediate number fields where a polynomial from the sieving can be smooth. MNFS and MTNFS give the best asymptotic complexities. However we do not detail this variant as we do not see a way to adapt the Factory algorithm to it. Similarly, the special variant and multiple variant cannot work together.

Smoothness probability

As is classical with analysis of NFS-based algorithms, we assume throughout the paper that the probability of a norm being smooth is the same as that of a random integer of the same size. To assess this latter probability, we use the following restatement of results from [START_REF] Canfield | On a problem of Oppenheim concerning "factorisatio numerorum[END_REF]:

Proposition 1. Let (α 1 , α 2 , c 1 , c 2) be four real numbers such that 1 > α 1 > α 2 > 0 and c 1 , c 2 > 0.
As Q tends to infinity, the probability that a random positive integer below L Q (α 1 , c 1) splits into primes less than

L Q (α 2 , c 2) is L Q α 1 -α 2 , (α 1 -α 2) c 1 c -1 2
The norms are given by Equation (1). In the classical (non-Tower) NFS, the definition of the resultant as the determinant of the Sylvester matrix gives a bound that follows from Hadamard's inequality:

| Res(ϕ, f i)| ≤ ∥ϕ∥ deg fi ∞ • ∥f i ∥ deg ϕ ∞ • (deg f i + 1) deg ϕ/2 (deg ϕ + 1) deg fi/2 .
When analyzing Tower variants, the degree of h appears in the resultant. Since we assumed that O K h = Z[ι], we can assume that all coefficients of ϕ(x, y) are integers, all below a bound ∥ϕ∥ ∞ . We obtain

| Res y (Res x (ϕ, f i), h)| ≤ ∥ϕ∥ deg h•deg fi ∞ • ∥f i ∥ deg h•deg x ϕ ∞ • ∥h∥ deg fi•deg y ϕ ∞ • c
where the factor c is a combinatorial contribution that can be uniformly bounded depending on deg f i and deg h, and is negligible compared to the other factors in all cases we consider in this article. Note also that in all cases of interest, we have deg y ϕ < deg h and (unless specified otherwise) deg x ϕ = 1.

Discrete logarithm Factory

Common Setting

Whether it is deployed for integer factorization or for discrete logarithm in medium or large characteristic finite fields, the Factory algorithm revolves around the same idea. The primary objective is to share a portion of the relation collection step in NFS (or a variant). Our common setting is as follows.

Common Setting An order of magnitude Q and an extension degree n are given. Precomputations based on Q and n are allowed. Given a set of finite fields

F p n 1 , F p n 2 , . . . with p n 1 ≈ p n 2 ≈ • • • ≈ Q, the
goal is to successfully compute discrete logarithms in a positive proportion of them. The primes p i are not known at precomputation time.

To achieve this, our Factory approach consists of two steps. Figure 5 illustrates this.

The "one-off " step. Inputs are Q and n. We construct half of the diagram of Figure 4, namely K h and K 0 . Then, a first search aims to find (and store for later use) elements ϕ in the search space that are B 0 -smooth when mapped to K 0 , for a fixed smoothness bound B 0 . All parameters of this step -including B 0 and the number of elements ϕ to test-depend on Q and n.

The "per-field" step. Consider one of the p i 's of the common setting. Complete the diagram of Figure 4 (define a number field K i) so that the target finite field is F p n i . The relation collection step proceeds by determining which of the stored ϕ are B * -smooth when mapped to K i , where B * is another smoothness bound. Because this per-field step works in a similar way for primes of similar size, parameters such as B * are identical for all the fields. The remaining steps of NFS (or the variant) are unchanged.

OK h [X] K3 OK h [X] /(f1(X)) ⊂ K1 K2 OK h [X] /(f0(X)) ⊂ K0 Fp 3 n OK h /p1[X]/(φ1(X)) ∼ = Fp 1 n Fp 2 n mod φ 1 mod p 1 mod φ 1 mod p 1 mod φ 2 mod p 2
The complexities we formulate are functions of Q and n. Just like finite field discrete logarithm distinguishes between small, medium, and large characteristic, we will make distinctions based on how Q and n evolve asymptotically. Likewise, we will define several variants that are adapted to n factoring in a certain way, or the primes p i being of a special form.

A baseline: Factory algorithm for prime fields

The factorization Factory algorithm was introduced by Coppersmith [START_REF] Coppersmith | Modifications to the number field sieve[END_REF] and its adaptation to the discrete logarithm problem in prime finite fields was proposed by Barbulescu [START_REF] Barbulescu | Algorithmes de logarithmes discrets dans les corps finis[END_REF].

We follow the common setting of §3.1 but restrict ourselves to n = 1. The one-off step sets K h = Q (hence η = 1), and starts with the well known basem method. Choose a degree d and an integer m close to Q 1/d . Define K 0 by f 0 (X) = X -m. For the per-field step, write the base-m expansion of p i as

p i = d k=0 a k m k and set f i (X) = d k=0 a k X k . Then, f 0 and f i share a common root modulo p i , which is m. Define K i as Q[X]/f i (the polynomial f i is generically irreducible). This completes Diagram 4.

Factory for non prime finite fields: polynomial selection

The novelty of this article is the generalization of the Factory approach to finite fields of arbitrary extension degree. Since n > 1, both number fields K 0 and K i must be of degree greater than one over Q, hence the base-m polynomial selection cannot be used.

We follow the notations of §2.1. In particular, η = deg h is non trivial only in the tower cases (TNFS, STNFS). In order to simplify the exposition, we assume that η and κ are coprime, which allows us to search for f 0 and f

i in Z[X] rather than in O K h [X]
. Both f 0 and f i must be coprime and irreducible, and share an irreducible factor φ i of degree κ modulo p i . Then F p n i is represented as

(O K h /p i O K h) [X]/(φ i).
In the different polynomial selection methods that we now review, we assume that the polynomial h has been fixed beforehand, and we only detail how the polynomials f 0 , and f i are chosen (in conjunction with p i).

Generalized-Joux-Lercier [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF] Factory. Choose f 0 ∈ Z[X] irreducible, of degree d + 1 > κ for some integer d, and with small integer coefficients.

Let p i be a prime number such that h is irreducible modulo p i , and f 0 admits an irreducible factor modulo p i of degree κ, which we lift to an integer polynomial as

φ i (X) = X κ + κ-1 j=0 φ i,j X j with -p i /2 < φ i,j ≤ p i /2 for 0 ≤ j ≤ κ -1.
Build the lattice of dimension (d + 1) × (d + 1) whose basis matrix is:

M pi =           p i . . . κ rows p i φ i,0 φ i,1 . . . 1 . . . d + 1 -κ rows φ i,0 φ i,1 . . . 1          
The shortest vector output by the LLL algorithm when applied to M pi gives the coefficients of a polynomial f i that is a multiple of φ i modulo p i . We safely assume that f i is irreducible over Z; in the unlikely event that it is not, we replace it with the appropriate irreducible factor that reduces modulo p i to a multiple of φ i . Remark that as the dimension of M pi is d + 1, and its determinant is p κ i , lattice reduction guarantees that the degree of f i is at most d, and its coefficients have sizes in O p i κ/(d+1) .

Conjugation [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF] Factory. Select g 0 and g 1 two polynomials with small integer coefficients with deg g 1 < deg g 0 = κ. Select µ a quadratic irreducible polynomial over Z with small coefficients. Define the polynomial f 0 as Res Y (µ(Y), g 0 + Y g 1).

The degree of f 0 is 2κ with coefficients in O(1). Let p i be a prime number such that h is irreducible modulo p i , and µ has a root λ i in F pi such that φ i := g 0 + λ i g 1 is irreducible modulo p i . Define f i = vg 0 + ug 1 , where (u, v) is a rational reconstruction of λ i . Then f 0 = 0 mod φ i mod p i and f i = vφ i mod p i . Thus both polynomials share φ i as an irreducible factor modulo p i , and

f 0 is irreducible over Q. Moreover, f i is of degree κ with coefficient sizes in O(√ p i).
Joux-Pierrot [START_REF] Joux | The special number field sieve in Fpn -application to pairing-friendly constructions[END_REF] Factory, first approach: starting from a fixed integer u. The original SNFS algorithm proposes only one polynomial selection, that is used for sparse characteristic in both medium and large characteristic finite fields.

However, if we want to combine SNFS with Factory, two different approaches are possible.

For the first approach we choose two integers λ > 1 and u ≈ Q 1/(λn) , as well as a polynomial R of degree at most κ -1 with coefficients 0, 1, or -1, until f 0 (X) := X κ + R(X) -u is irreducible over Q.

Let P i be a polynomial of degree d i close to λ and with small coefficients. Assume that p i := P i (u) is prime and h and f 0 are irreducible modulo p i . Define

f i (X) = P i (X κ + R(X)). Then f 0 divides f i modulo p i since X κ + R(X) = u mod f 0 and P i (u) = p i .
Thus f 0 and f i share f 0 mod p i as an irreducible factor of degree κ modulo p i . As above, we may assume that f 0 is irreducible over Z. Moreover, as explained in [START_REF] Joux | The special number field sieve in Fpn -application to pairing-friendly constructions[END_REF], R can be chosen of degree O(log(κ)), resulting in f i of degree d i κ and coefficient sizes in O(log(κ) di).

Joux-Pierrot [START_REF] Joux | The special number field sieve in Fpn -application to pairing-friendly constructions[END_REF] Factory, second approach: starting from a fixed P . Choose an integer λ > 1 and a polynomial P of degree λ with small coefficients, as well as a polynomial R of degree at most κ -1 with coefficients 0, 1, or -1, until f 0 (X) := P (X κ + R(X)) is irreducible over Q. As explained in [START_REF] Joux | The special number field sieve in Fpn -application to pairing-friendly constructions[END_REF], R can be chosen of degree O(log(κ)), resulting in f 0 of degree λκ and coefficient sizes in O(log(κ) λ).

Let u i be an integer such that u i ≈ Q 1/(λn) and p i := P (u i) is prime and both h and X κ +R(X)-u i are irreducible modulo p i . Define f i (X) = X κ +R(X)-u i . Then f i is an irreducible factor of f 0 modulo p i , and is irreducible over Q.

Table 6 summarizes the degrees and sizes of the coefficients of the polynomials output by the methods that we just mentioned. To fix terminology, in the remainder of the paper we will sometimes refer to NFS Factory when η = 1 and TNFS Factory if both η and κ are greater than one. As is the case with non-Factory variants, the Generalized-Joux-Lercier method is well suited to the large characteristic case, while the Conjugation method is intended for the medium characteristic case. The boundary case is not a clear cut. As regards "special" primes, whenever either of the Joux-Pierrot constructions can be used we use the terms SNFS Factory (when η = 1) or STNFS Factory (in the tower case).

Fantastic primes and how many are there?

Each of the polynomial selection methods in §3.3 lays out requirements on the primes p i . How many of the primes p i work with a given setup of the one-off step depends on properties of the number field tower that is used to define K 0 . This is actually controlled by the Chebotarev density theorem.

Chebotarev density Theorem in towers of number fields. Consider the tower Q ⊂ K h ⊂ K 0 . The field K 0 need not be a normal field, so let us also define its normal closure L and let G = Gal(L/Q). By Galois correspondence, this tower is connected to the chain of subgroups {1} < G K0 < G K h < G, where G X denotes the subgroup of G that fixes the subfield X ⊂ L. The group G acts on the cosets G/G K h , which are partitioned in a set of smaller cosets G/G K0 . The Frobenius symbol L/Q p (defined up to conjugation) and the Chebotarev density Theorem [START_REF] Milne | Algebraic number theory[END_REF]Chapter 8] tell us two things. Here, we consider only primes that are coprime to disc(L/Q) and to all leading coefficients of the defining polynomials.

GJL d + 1 > κ d O(1) O p n/(d+1) Conjugation 2κ κ O(1) O √ p Joux-Pierrot, 1st approach κ λd, d ≈ λ O Q 1/(λn) O log(κ) d Joux-Pierrot, 2nd approach λκ κ O log(κ) λ O p 1/λ
-The decomposition of a prime number p ∈ Q as a product of prime ideals in K h and K 0 (and, eventually, in L) can be read off directly from the orbits of the action of the cyclic subgroup generated by L/Q p on the cosets G/G K h , G/G K0 , and so on. For example its orbits on G/G K h have sizes n 1 , . . . , n k if and only if p factors into prime ideals of degrees n 1 , . . . , n k in K h . If we take a closer look at how L/Q p acts on the smaller cosets G/G K0 , then these orbits split into orbits of sizes (n i,j) 1≤i≤k,1≤j≤ki (with j n i,j = n i) if and only if the i-th prime ideal above p in K h splits into factors of degrees n i,1 , . . . , n i,ki in K 0 . This extends to towers of arbitrary height. -For S a subset of the set of prime numbers, define the density of S as

lim X→∞ #{x < X | x ∈ S} #{x < X | x is prime} .
Chebotarev's theorem says that the density of primes whose decomposition patterns along the tower matches the orbit sizes of the action of a conjugacy class C ⊂ G is exactly the ratio |C|/|G|.

Computationally accessible data. In theory, the above results are strong enough to predict the density of primes that work with the setup of any given oneoff step. Alas, the computation of the Galois group of (the normal closure of) K 0 may be out of reach. In some specific cases, it is possible to compute the densities based on data related to smaller fields. We will discuss a few such cases below. Supplementary material of this work includes a short Magma program that computes these densities, given a tower of number fields.

Intervals and explicit bounds. It will be of some use in this paper to discuss the density of primes that we can use in intervals rather than over all primes. This is a well studied problem, which happens to be easy in the instances we will be looking at (and very challenging otherwise). Namely, we will be interested in intervals of the form [x, x A] for A > 1, and in such cases the error bounds given by [START_REF] Lagarias | Effective versions of the Chebotarev density theorem[END_REF] suffice to prove that we have the expected density. We will not discuss this point further.

Some specific cases.

Here we allow some simplifying assumptions. A baseline is given in the case where K 0 and K h are defined over Q (we already made this assumption in §2.1), and that their normal closures have no isomorphic subfields.

Then the decompositions of h and f 0 modulo prime numbers are independent. In this case, the probability that h is irreducible modulo p i , and f 0 has an irreducible factor of degree κ modulo p i is given by

Gal(h) η • # Gal(f 0) κ # Gal(h) • # Gal(f 0) .
In this expression, Gal(f) k is the set of elements of Gal(f) which have a cycle of length k in their action on the roots of f . The formula above applies to both the Generalized-Joux-Lercier Factory approach, and the Joux-Pierrot Factory, first approach. Note, of course, that in the non-tower cases, we have η = 1 and thus

Gal(h) = # Gal(h) η = 1.
Conjugation Factory. In the Conjugation setup given in §3.3, the condition is more specific. Let α be a root of f 0 in K 0 . Then θ = -g 0 (α)/g 1 (α) is a root of µ, and M = K h (θ) is a subfield of K 0 , of degree 2 above K h . The number field tower that is of interest to us is Q ⊂ K h ⊂ M ⊂ K 0 . The primes p i that work in the Conjugation setup are those for which there exists a prime ideal

p ⊂ O K0 such that [p ∩ O K h : pZ] = η, [p ∩ O M : p ∩ O K h] = 1, and [p ∩ O K0 : p ∩ O M] = κ.
If the Galois group of K 0 and its subfields can be computed, we can determine how many Frobenius symbols reveal that at least one such prime ideal exists above p. By Chebotarev's theorem, this also gives the density of such primes.

Joux-Pierrot Factory, second approach. This case seems to be outside the scope of investigation by the methods that we just mentioned. As described in §3.3, an integer u i varies, and the cases of interest are when p i = P (u i) is prime and the polynomial X κ + R(X) -u i is irreducible mod p i . Contrary to the cases above, this polynomial varies together with p i . Short of a better solution, we hypothesize the following.

Assumption 1 In the context of the Joux-Pierrot construction (second approach), in a large interval (a, b), the number of integers u satisfying the conditions that p = P (u) is prime and X κ + R(X) -u is irreducible modulo p is about 1/κ times the number of integers a < u < b for which P (u) is prime.

In addition to the above, the Joux-Pierrot setup, when instantiated in the tower case, also requires that h is irreducible modulo p i . We will assume that this latter condition is independent of the irreducibility of X κ + R(X) -u.

It is straightforward to test Assumption 1 over arbitrary examples. We did so for various choices of η, κ, and λ = deg P , and found good accordance of experimental data with Assumption 1.

Limitations of the Galois point of view.

There are two main caveats to estimates given by the Galois theory approach. First, explicitly computing Galois groups is not always easy, and while these computations are extremely easy in the examples we considered, we cannot rule out that it becomes out or reach in certain cases. Second, even if we can mathematically write what the proportion is, it can actually be that this formula predicts a density of zero, which is not very useful. We can, for example, fabricate examples in the Conjugation method with κ = ℓ 2 for a prime ℓ and for which Gal(f 0) = Z/(2ℓ)Z × Z/ℓZ. In such a case, no prime ideal of degree ℓ 2 exists, and obviously such setups would be of no use for computing discrete logarithms! This being said, the high-level view tells us that the factorization patterns modulo primes definitely follow predictable patterns. Empirical observations are a quick and easy way to get an idea of the correct ratios (in fact, these same empirical observations can be leveraged to get insights about what the Galois groups are). For a Factory approach to apply to as many primes as possible, it certainly makes sense to assess what happens modulo a moderate collection of primes.

Two constructions for 500 and 600-bit target finite fields

As an illustration, we show two different constructions, together with an evaluation of the proportion of primes (i.e. characteristics) that can be reached. The ratios of primes that we mention can be computed with the Magma script that is provided as supplementary material with this work.

NFS Factory with Conjugation. The authors of [START_REF] Guillevic | Solving discrete logarithms on a 170bit MNT curve by pairing reduction[END_REF] report a discrete logarithm computation on F p 3 with NFS (that is, no tower is at play: we have η = 1) for the 593-bit prime p = 908761003790427908077548955758380356675829026531247. The Conjugation method was used, and it produced:

f 0 = Res Y (X 3 -3X -1 -Y (X 2 + X), 28Y 2 + 16Y -109) = 28X 6 + 16X 5 -261X 4 -322X 3 + 79X 2 + 152X + 28 f 1 = 24757815186639197370442122X 3 + 40806897040253680471775183X 2 -33466548519663911639551183X -24757815186639197370442122
The absolute Galois group Gal(f 0) comprises eighteen permutations. Eight of them act on the cosets of the Galois tower in a way that is consistent with p splitting in M and being inert in K 0 . This predicts that a fraction of 4/9 of the primes work. This is what we observe experimentally. For instance, let p 2 = 925345433540865564015707127491171005390356157011113, modulo which f 0 factors into an irreducible polynomial of degree 3 and three linear polynomials. If we apply the method given in §3.3, we find another polynomial f 2 , written below, that allows to complete Diagram 5. Furthermore, the largest coefficient in absolute value of f 2 is less than 1.45 × √ p 2 .

f 2 = 17678995119854355812622458X 3 + 43866070922692969501665811X 2 -9170914436870097936201563X -17678995119854355812622458
TNFS Factory with Conjugation. In [START_REF] De Micheli | Lattice enumeration for tower NFS: A 521-bit discrete logarithm computation[END_REF], a 521-bit discrete logarithm computation was carried out on F p 6 1 with p 1 = 135066410865995223349603927 using TNFS where polynomials were chosen with the Conjugation method as:

h = X 3 -X + 1, f 0 = X 4 + 1 = Res Y (X 2 + 1 + XY, Y 2 -2), f 1 = 11672244015875X 2 + 1532885840586X + 11672244015875
In this case, the tower

K 0 ⊃ M ⊃ K h ⊃ Q corresponds to the chain of Galois groups Z/2Z < (Z/2Z) 2 < (Z/2Z) 3 < (Z/2Z) 3 ⋉ (Z/3Z
). We can also write this chain as ⟨α⟩ < ⟨α, β⟩ < ⟨α, β, γ⟩ < ⟨α, β, γ, σ⟩, with α 2 = β 2 = γ 2 = σ 3 = 1 and the only non-abelian relation being ασ = σ 2 α. The G K0 -cosets can be written as G K0 β {0,1} γ {0,1} σ {0,1,2} , the G M -cosets can be written as G M γ {0,1} σ {0,1,2} , the G K h -cosets can be written as G K h σ {0,1,2} . The multiplication by τ = βσ on the right has a single orbit of size 3 on the G K h -cosets, which splits into two orbits, still of size 3, on the G M -cosets. These become two orbits of size 6 on the G K0cosets. The only elements of G with this pattern are τ and τ -1 , which makes for 1 12 of the possible Frobenius elements. This correctly predicts the fraction of primes p i for which this number field tower works in a Factory setting.

For example, we can consider p 2 = p 1 + 456, modulo which the polynomial h is irreducible, Y 2 -2 has a root, and f 0 factors into two irreducible polynomials of degree 2. The Conjugation method yields f 2 := 11622094549025X 2 -115506194478X + 11622094549025, which completes Diagram 5. Its largest coefficient in absolute value is less than 1.01 × √ p 2 .

Asymptotic analysis

This section provides the complexities of the one-off step and the per-field step in each of the NFS variants that we combine with Factory. In Table 3 we compare our results to the analyses found in the literature for the non-Factory NFS variants [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF][START_REF] Joux | The special number field sieve in Fpn -application to pairing-friendly constructions[END_REF][START_REF] Kim | Extended tower number field sieve: A new complexity for the medium prime case[END_REF][START_REF] Pierrot | The multiple number field sieve with conjugation and generalized Joux-Lercier methods[END_REF][START_REF] Sarkar | A general polynomial selection method and new asymptotic complexities for the tower number field sieve algorithm[END_REF]. Recall that our common setting is as in §3.1, and that as far as analysis goes, we will assume the classical NFS heuristics of §2.3.

Notations. For Q a finite field size, we let c A , c 0 , c * be constants such that A = L Q (1/3, c A) denotes the relation search space, i.e., the number of elements ϕ tested for smoothness in K 0 . The smoothness bounds are denoted

B 0 = L Q (1/3, c 0) for K 0 and B * = L Q (1/3, c *)
for all the K i with i > 0. We let N 0 (resp. N *) denote bounds on the norms of the sieve elements norms once mapped to K 0 (resp. to K i for i > 0). In all variants, parameters are such that N 0 = L Q (2/3, c N0) (likewise for N *) where c N0 and c N * depend on c A and other parameters. By Proposition 1, an element in K 0 of norm N 0 is B 0 -smooth with probability

P 0 = L Q (1/3, c N0 /(3c 0)) -1 .
Likewise, for other fields K i we define P * and we have

P * = L Q (1/3, c N * /(3c *)) -1 .
Methodology. The one-off step is performed by a sieve algorithm that detects elements that are B 0 -smooth once mapped to K 0 . The asymptotic complexity of this step is A 1+o (1) . The number of elements stored for later use is the number of sieve elements that are B 0 -smooth once mapped to K 0 , that is

AP 0 = L Q (1/3, c A -c N0 /(3c 0)).
The per-field step starts by detecting which of the stored elements are B *smooth once mapped to K i . We can perform this detection with either a batch technique, or by smoothness tests on each element using the ECM algorithm. The batch technique has quasi-linear complexity in the stored table size, and the complexity of the ECM algorithm to test an element for B-smoothness with

B = L Q (1/3) is L Q (1/6).
Regardless of the technique used, the complexity of detecting which of the stored elements are B * -smooth is (AP 0)

1+o (1) , which is similar to the complexity in memory of the algorithm.

The per-field step proceeds with a sparse linear algebra phase that costs (B 0 + B *) 2+o (1) , and an individual logarithm computation of negligible complexity compared to the two previous steps. The complexity of the per-field step is

(AP 0 + (B 0 + B *) 2)
1+o (1) .

We want to minimize the complexity of the per-field step (Equation (2) below). Some necessary conditions apply: we need enough equations for the linear algebra step (Equation (3) below), and we want to balance the costs of smoothness detection and linear algebra, as is done in many asymptotic analyses of NFS (Equation (4) below). This rewrites as:

minimize: max(c 0 , c *) (2)
under conditions

c A -c N0 /(3c 0) -c N * /(3c *) ≥ max(c 0 , c *) (3)
and

2 max(c 0 , c *) = c A -c N0 /(3c 0) (4)
where c N0 and c N * are polynomials of degree at most one in c A , and do not depend on c 0 and c * . If the system above has a solution, then it has a solution with c 0 = c * . Indeed, if c 0 > c * , then replacing c * by c * = c 0 satisfies Conditions (3) and (4), and provides the same minimum value given by (2). On the other hand, if c 0 < c * , then replace c 0 by c0 = c * and replace c A by cA < c A so that the right-hand side of Equation (4) does not change. This can be done because c A -c N0 /(3c 0) increases as a function of c A . Then Condition (3) still holds and the minimum value in (2) is unchanged.

Therefore we may take B 0 = B * = L Q (1/3, c) and slightly rearrange the system into the following equivalent form. minimize: c

under conditions

3c 2 ≥ c N * (6)
and

6c 2 -3c A c + c N0 = 0 (7)

NFS Factory and TNFS Factory

Theorem 1 presents the complexities of NFS Factory and TNFS Factory in the large characteristic, boundary, and medium characteristic cases.

Theorem 1 (Complexities of NFS Factory and TNFS Factory). Let α ∈ (1/3, 1) and c p > 0 be two constants. In the common setting of §3.1, we study the regime where inputs Q and n are such that Q 1/n = L Q (α, c p). Let f 0 (and h for the tower variants) be polynomials constructed for the one-off step by one of the methods in 3.3. For a proportion σ of the prime numbers p i such that 1) , the Factory algorithm succeeds. The proportion σ can be computed along the lines of §3.4 (either with Galois theory or empirically). The one-off step costs L Q (1/3, c A), the storage cost is L Q (1/3, 2c), and the per-field cost is L Q (1/3, 2c). The values of c A and c depend on the characteristic size and the algorithm employed:

Q ≤ p n i ≤ Q • Q o(
1. Large characteristic: 2/3 < α < 1.

(a) NFS Factory. f 0 is constructed by the GJL method. The optimal values are 2c = 2((2 + √ 6)/6) 2/3 ≈ 1.64, and c A = c √ 6 ≈ 2.01.

Boundary

: α = 2/3 (hence Q 1/n = L Q (2/3, c p)).
(a) NFS Factory with GJL. Under the condition c p ≥ γ, the situation is identical to the case above, the threshold value γ being √ 6c 2 ≈ 1.11. (b) NFS Factory with Conjugation. Let t be a fixed integer that denotes the sieve dimension (i.e., deg x ϕ = t -1). f 0 is constructed by the Conjugation method. The optimal value for c is the smallest real solution of Equation (8), resulting in c A = 6c p tc 2 /(3c p tc -2). The degree of h is denoted η and is a non trivial factor of n. Denote κ = n/η. In the optimal case where κ = 1/c κ (log(Q)/ log log(Q))) 1/3+o (1) with c κ = √ 2((2 + 2 √ 2)/3) 1/3 ≈ 1.66, the optimal values are 2c = ((2 + 2 √ 2)/3) 2/3 ≈ 1.37, and c A = 2c √ 2 ≈ 1.94.

18c p tX 3 -24X 2 -3c 2 p t(t -1)X + 2c p (t -1) = 0 (8)
Table 3 recapitulates the complexities announced in Theorem 1 together with the previous state-of-the-art complexities of NFS and its variants.

Remark 1. It is worth noting that if the large characteristic regime of Theorem 1 is pushed towards α = 1, the asymptotic complexities of the one-off step and the per-field step for large characteristic finite fields are the same as in NFS Factory for prime fields. However, the parameter values that allow to reach the minimal complexity for the per-field step are not. Specifically, our parameter γ in the proof of Theorem 1 and the corresponding parameter 1/δ in [3, page 98] are different.

Proof. We prove the complexity announced for NFS Factory for large characteristic finite fields in Theorem 1. The rest of the proof is in in Appendix A, since it follows the same patterns.

We study the case where

Q 1/n = L Q (α) with 2/3 < α < 1.
The case of finite fields with α = 1, i.e., prime finite fields, is detailed in [3, §7.2]. The Generalized-Joux-Lercier method is detailed in §3.3 and the degrees and coefficient sizes of the polynomials it outputs are given by Table 6. The sieve for the one-off step is performed in dimension 2, because deg ϕ = 1 turns out to be the best choice for large characteristic finite fields. It follows that ∥ϕ∥ ∞ ≤ √ A. Furthermore, we set a constant γ such that d = 1/γ (log(Q)/ log(log(Q)))

1/3 . Following the bound given in §2.3, the upper bounds on the norms can be expressed as

N 0 = O A (d+1)/2 = L Q (2/3, c A /(2γ)) and N * = O A d/2 Q 1/(d+1) = L Q (2/3, c A /(2γ) + γ)
, from which we obtain the expressions of c N0 and c N * .

We detail the resolution of the system that minimizes Constraint (5), while verifying Conditions [START_REF] Barbulescu | The multiple number field sieve for medium and high characteristic finite fields[END_REF], and [START_REF] Bernstein | Batch NFS[END_REF] in this variant. Thanks to Equation (7), we get c A = (12c 2 γ)/(6cγ -1). Substituting c A in Condition (6) we get (-6cγ 2 +(18c 3 + 1)γ -9c 2)/(6cγ -1) ≥ 0. The discriminant of the numerator is 324c 6 -180c 3 + 1, which has one negative real root and one positive real root, namely ρ = ((2 + √ 6)/6) 2/3 . If 0 < c < ρ, then the numerator of Condition (6) is negative for all γ, which implies that the denominator must be negative, contradicting the fact that c A > 0. Therefore, c ≥ ρ. In fact, c = ρ is a valid solution. The solution to the system is given by

c = 2 + √ 6 6 2 3 ≈ 0.82, γ = √ 6c 2 ≈ 1.11, c A = c √ 6 ≈ 2.01.
The complexity of the one-off step is

L Q (1/3, c A) ≈ L Q (1/3, 2.01)
, and the complexity of the per-field step is

L Q (1/3, 2c) ≈ L Q (1/3, 1.64).
Still in the context of the common setting given in §3.1, we want to know how much leeway we have in the choice of p i . The size of p i only affects N * . As long as p n i ≤ Q 1+o (1) , it is easy to see that the asymptotic results above are unchanged.

⊓ ⊔ Remark 2 (Comparisons at the boundary). Multiple algorithms compete in the boundary case. In addition to the complexities given by Theorem 1, other state of the art results are usual (non-Factory) NFS, as well as the MNFS variant. Both can use either the GJL or Conjugation constructions [START_REF] Barbulescu | Improving NFS for the discrete logarithm problem in non-prime finite fields[END_REF][START_REF] Pierrot | The multiple number field sieve with conjugation and generalized Joux-Lercier methods[END_REF]. Their costs are:

-NFS with GJL:

L Q 1/3, (64/9) 1/3 ≈ L Q (1/3, 1.92) if c p ≥ (8/3) 1/3 ≈ 1.39 -MNFS with GJL: L Q (1/3, (2(46 + 13 √ 13)/27) 1/3) ≈ L Q (1/3, 1.90) if c p ≥ ((7 + 2 √ 13)/6) 1/3 ≈ 1.33. -NFS with Conjugation: L Q 1/3, 2/(c p t) + 2 1/(c p t) 2 + c p (t -1)/6 .
-MNFS with Conjugation: L Q 1/3, 2/(c p t) + 2 5/(9(c p t) 2) + c p (t -1)/6 .

SNFS Factory and STNFS Factory

SNFS is designed for finite fields where the characteristic p is a sparse prime, where the adjective "sparse" is taken here with the ad hoc meaning that we can write p = P (u), where P is a polynomial of small degree and coefficients (subject to specific size constraints), and u is an integer. Theorem 2 presents the complexities of SNFS in large and medium characteristic finite fields and of STNFS Factory.

Theorem 2 (Complexities of SNFS Factory and STNFS Factory). Let α ∈ (1/3, 1) be a constant. In the common setting of §3.1, we study the regime where inputs Q and n are such that Q 1/n = L Q (α). Let f 0 (and h for the tower variant) be polynomials constructed for the one-off step by one of the methods of §3.3. For a proportion σ of a set P of sparse prime numbers p i , the Factory algorithm succeeds. The one-off step costs L Q (1/3, c A), the storage cost is L Q (1/3, 2c), and the per-field cost is L Q (1/3, 2c). The values of c A and c depend on the characteristic size and the algorithm employed:

1. Large characteristic: 2/3 < α < 1:

(a) SNFS Factory. Let λ = 1/(c λ n) • (log(Q)/ log log(Q)) 1/3 with c λ = (8/9) 1/3 ≈ 0.96, and u an integer close to Q 1/(nλ) . The polynomial f 0 is constructed with the Joux-Pierrot first approach method. The prime p i is chosen from the set P = {P (u)

| P ∈ Z[x], P (u) is prime, deg(P) = λ + o(1), and ∥P ∥ ∞ = O(1)}. A proportion σ = # Gal(f0)n # Gal(f0)
of these primes work. The optimal values are 2c = (8/3) 1/3 ≈ 1.39 and c A = 2(8/9) 2/3 ≈ 1.85. 2. Medium characteristic: 1/3 < α < 2/3. Let λ > 1 an integer and P a polynomial of degree λ and with coefficients in O(1). In both cases below, the prime p i is chosen from the set P = {P (u

) | P (u) is prime, Q ≤ P (u) n ≤ Q • Q o(1) }.
(a) SNFS Factory. The polynomial f 0 of degree λn is constructed with the Joux-Pierrot second approach method. Based on Assumption 1, a proportion σ = 1 n of the primes in P work. The optimal values are c ≥ c = ((λ + 4 + 2 √ 2λ + 4)/(9λ)) 1/3 and c A = 2c(1 + 2λ/(X -2λ)), with X = (9c 3 + 1)λ -2λ + (-72c 3 λ + (81c 6 -18c 3 + 1)λ 2) 1/2 . When λ ≥ 4, we must have c > c. See Appendix A for more details. (b) STNFS Factory. The polynomials h and f 0 are constructed with the the Joux-Pierrot second approach method. The degree of h is denoted η and is a non trivial factor of n. Denote κ = n/η. Based on Assumption 1, a proportion σ

= 1 κ • # Gal(h)η
Gal(h) of the primes in P work. The optimal values are obtained when κ = 1/c κ (log(Q)/ log log(Q)) 1/3+o(1) (c κ is given in Appendix A), and are as follows.

c ≥ c = ((λ + 4 + 2 √ 2λ + 4)/(18λ)) 1/3 , c A = 2c(1 + 2λ/(X -2λ)), with X = (18c 3 + 1)l + (-144c 3 l + (324c 6 -36c 3 + 1)l 2) 1/2 . When λ ≥ 3, we must have c > c.
See Appendix A for more details.

Proof. We give the proof of Theorem 2 in Appendix A.

⊓ ⊔ Table 3 recapitulates the complexities announced in Theorem 2 together with the previous state-of-the-art complexities of SNFS and its variants. Moreover, Tables 8 and9 present the complexities of SNFS and STNFS in the medium characteristic case for various values of λ.

Remark 3 (Comparisons at the boundary). Our study indicates that coupling Factory with SNFS in the boundary case Q 1/n = L Q (2/3, c p) does not always yield better complexities. While reducing the complexity of the main phase (sieving and linear algebra in each fields), it leads to an increase in the complexity of the individual logarithm step. Consequently, for certain ranges of c p , the resulting complexity becomes significantly large. We omit the analysis for this case. 9. Asymptotic complexities (in LQ(1/3, •)) of STNFS (without Factory) and the two steps of STNFS Factory (case 2b of Theorem 2) in medium characteristic finite fields of composite extension degree and appropriately sized factors. When λ ≥ 3, we adjust the parameters to keep the individual logarithm step negligible. c is given in §A.4.

Conclusion of the asymptotic analysis

In Appendix B, we prove that the individual logarithm step is negligible compared to the per field step in all the variants discussed in this section. Therefore, the complexities presented here represent the overall asymptotic complexities for Factory in each case. Table 3 provides a summary of the complexities for NFS, all relevant variants included. We see that the Factory approach reduces the complexity of computing discrete logarithms for a wide range of finite fields, at the expense of a one-off computation. In our analysis, we choose to minimize the complexity of the per-field step at the expense of a larger one-off step, but other trade-offs are possible.

Covering an arbitrary high density of prime numbers with several one-off steps.

In each NFS Factory variant, a given one-off step allows to target a constant proportion of finite fields of a given extension degree and size (see §3.4). If several one-off steps are carried out, the number of "missed" primes decreases exponentially, and thus nearly all prime numbers can be covered without affecting the asymptotic complexity. For example assume that the ratio of successful primes is consistently at least 1 2n and we do 2 log Q different one-off steps (which is well within the tolerance of the subexponential complexities). The density of missed primes (as Q tends to infinity) is then bounded by (1 -1/(2n)) 2 log Q ≤ Q -1/n , which means that only very few primes around Q 1/n are missed.

Possible optimizations if the target fields are known in advance

We assume here that we slightly depart from the common setting of §3.1 in that the target finite fields are known before the one-off computation begins. Following the reasoning above, it is possible to adaptively choose polynomials so that only a few one-off steps are needed to cover all primes. Additionally, the one-off and per-field steps can conceivably be merged in a single computation, which removes the need to store the output of the first sieve. The techniques of [START_REF] Bernstein | Batch NFS[END_REF] would apply in this situation.

Logjam-Factory attack: multiple targets in each finite field. It is possible to combine a Logjam attack as in [START_REF] Adrian | Imperfect forward secrecy: How Diffie-Hellman fails in practice[END_REF] with Factory in order to target not one, but several targets in several finite fields. After performing the one-off and per-field steps on a finite field, we learn the logarithms of the factor base elements related to some target field. Subsequently, an individual logarithm step recovers the logarithm of any target in this field with a negligible cost compared to the perfield step. Specifically, we can recover the logarithms of L Q (1/3, c 1 -c 2) targets without increasing the per-field step's asymptotic complexity, where L Q (1/3, c 1) and L Q (1/3, c 2) are the respective complexities of the per-field step and the individual logarithm steps.

Estimation of practical cost

The purpose of this section is to compare computational cost estimates of TNFS and TNFS Factory on 1024-bit finite fields with extension degree equal to 6.

Setup. The factors of n = 6 are taken equal to η = 2 and κ = 3 since this setting is optimal both for TNFS (compared to other non-Factory approaches) and TNFS Factory (compared to other Factory approaches). To see this, denote A the sieve space, and Q the finite field size. Intuitively, relying on the norm bounds of §2.3, if κ = 2, then the product of the norms of a sieve element in both number fields has order of magnitude N 2 := A 3 Q 1/2 . On the other hand, if κ = 3, we obtain

N 3 := A 9/2 Q 1/6 . Hence N 2 /N 3 = A -3/2 Q 1/3 . For Q ≈ 2 1024 , the sieve space A is certainly smaller than 2 100 , hence, N 2 /N 3 ≥ 2 190 ≫ 1 Therefore (η = 2, κ = 3) is better.
Let p be a prime number such that p 6 has roughly 1024 bits.

Polynomial selection. Previous records such as [START_REF] De Micheli | Lattice enumeration for tower NFS: A 521-bit discrete logarithm computation[END_REF][START_REF] Robinson | An implementation of the extended tower number field sieve using 4d sieving in a box and a record computation in F p 4[END_REF] suggest that the Conjugation method (§3.3) performs best in practice. Our analysis supports this and indicates that it should be the best method in practice for TNFS Factory as well. Let h ∈ Z[X] a degree 2 irreducible polynomial with small coefficients, and f 0 and f 1 in Z[X] of respective degrees 6 and 3, output by the Conjugation method. Following Table 6, we assume that ∥h∥ ∞ = 1, ∥f 0 ∥ ∞ = 1, and

∥f 1 ∥ ∞ = √ p.
(This is supported by reported experiments: in [START_REF] De Micheli | Lattice enumeration for tower NFS: A 521-bit discrete logarithm computation[END_REF], these values were respectively equal to 1, 1, and approximately 1.0043 × √ p.) The number fields of Diagram 4 are defined as

K h := Q(ι), K 0 := Q(ι, α 0) and K 1 := Q(ι, α 1)
, where ι, α 0 and α 1 are the respective roots of h, f 0 and f 1 ,

One-off step for TNFS Factory and relation collection for TNFS: The special-q technique [START_REF] Pollard | The lattice sieve[END_REF]. The aim of the one-off step in TNFS Factory is to find elements ϕ(x, ι) = a(ι) -b(ι)x such that ϕ(α 0 , ι) is B-smooth, where B is a smoothness bound, and a and b are polynomials of degree at most η -1. The aim of the relation collection in TNFS is to find similar ϕ such that both ϕ(α 0 , ι) and ϕ(α 1 , ι) are B-smooth. In both cases, a special-q technique should be used to divide the search space into groups of elements that share a common prime ideal q in their factorization in one of the number fields. For TNFS Factory, given an ideal q ⊂ O K0 , a sieve algorithm is applied to detect which of the elements ϕ(α 0 , ι) ∈ q are B-smooth (not counting the ideal q in the factorization). Furthermore, the sieve algorithm only considers vectors (a, b) which, as a 2η-dimensional vector, is within a Euclidean ball of some radius R. If the Euclidean norm of (a, b) is written r, we have ∥ϕ∥ ∞ ≤ r, and by §2.3 we estimate the norm of ϕ(α i , ι) by N i (r) := r η deg(fi) ∥f i ∥ η ∞ , for i = 0, 1 (here we assume ∥h∥ ∞ = 1, and ignore the extra combinatorial factor). Moreover, let V 2η (r) be the volume of the 2η-dimensional ball of radius r, and ρ be the Dickman-de Bruijn function. We estimate the number of B-smooth elements among all elements that are divisible by q as: R r=0 ρ log(N 0 (r)) -log(q) log(B) dV 2η (r).

In turn, the total number of B-smooth elements (i.e., the output size of the one-off step) is the product of the above estimate by the number of special-q considered. Furthermore, we estimate the computational cost of the one-off step by the number of special-q considered times the cost of the sieve algorithm per special-q, which we approximate as V 2η (R) log log(B).

For TNFS, a sieve is performed in both number fields to detect elements that are B-smooth in both number fields. Alternatively, it is also possible to combine a sieve algorithm on the special-q side with a batch smoothness detection algorithm on the other side. The number of expected relations for q (assuming it is on the

K 1 side) is: R r=0 ρ log(N 0 (r)) log(B) ρ log(N 1 (r)) -log(q) log(B) dV 2η (r).
Again, this must be multiplied by the number of special-q considered to get the total number of expected relations, and the cost of the relation collection step is the number of special-q times 2V 2η (R) log log(B) if a sieve is performed on both sides. If a sieve is performed on one side and batch smoothness detection on the other side, then this estimate drops to the number of special-q times V 2η (R) log log(B), plus a quasi-linear cost in the number of smooth elements output by the sieve.

Computation per field for TNFS Factory and linear algebra for TNFS. The perfield step of TNFS Factory starts by detecting which of elements stored after the one-off step are B-smooth in K i . This can be done with batch smoothness detection with a quasi-linear cost in the number of the stored elements. The total number of relations produced is estimated as:

R r=0 ρ log(N 0 (r)) -log(q) log(B) ρ log(N 1 (r)) log(B) dV 2η (r).
Then a sparse linear algebra phase computes the discrete logarithms of the factor basis for a cost that we estimate as (2 Li(B)) 2 , where Li is the logarithmic integral function. Similarly, the linear algebra cost for TNFS is (2 Li(B)) 2 . We neglect the cost of the individual logarithm step in both cases. Anyway this cost is not only small, but also of roughly identical cost with both algorithms. Appendix B supports this statement.

Best parameters. For TNFS Factory, we searched for parameters that minimize the cost of the per-field step, under the condition of having enough relations, i.e., more than 2 Li(B). We denote [q min , q max] the special-q range. The best parameters we found are R = 196, q min ≈ 2 35.8 , q max ≈ 2 38.3 , B = 2 33 . As a consequence, our calculations show that the estimated cost of the one-off step is 2 67.8 , and the estimated cost of the per-field step is 2 60. 8 .

For TNFS without Factory, we searched for parameters that minimize the sum of the costs of the relation collection and the linear algebra steps, under the condition of having enough relations. Sieving on both sides gave the better estimated cost. The best parameters we found are R = 138, q min ≈ 2 33.7 , q max ≈ 2 36.3 , B = 2 35 . We computed that this implies an estimated cost of TNFS around 2 64. 4 .

What is the value of these estimates? Estimating the practical cost of NFS and its variants is a difficult problem and we do not claim to get precise results in this section, far from it.

It would be possible to be more accurate. Actual computations in the 1000bit range are out of reach at this point, but a middle ground could be to make the simulation more accurate by basing it on sample runs that closely follow the expected form of the input of the different stages of the algorithm. Unfortunately, quite a few questions are unanswered at this point about how to correctly model the inputs, and about the accuracy of the simulation. Further research on this topic is needed.

Nevertheless, our approach (which follows, for example, what is done in [START_REF] Guillevic | On the alpha value of polynomials in the Tower Number Field Sieve algorithm[END_REF]) tells more than if we content ourselves with the L(1/3, c) estimates only, as is too often encountered. Furthermore, we believe that the qualitative comparison of TNFS versus TNFS Factory is likely to be modeled correctly by our approach. In that sense, since 2 67.8 /(2 64.4 -2 60.8) ≈ 11, our estimation suggests that when considering some tens of finite fields F p 6 of size 1024 bits, TNFS Factory is more advantageous than applying TNFS on each of the target finite fields.

Conclusion

The Factory variant for NFS brings a shift in the attacker's approach by targeting a specific size, such as 1024 bits, rather than a particular finite field. Through a costly one-time computation, the attacker gains the ability to efficiently target finite fields of the same size. Our practical estimates suggest that in the kilobit range, this Factory approach is more efficient than the non-Factory approach if several tens of finite fields are considered.

A given one-off step is only able to target a constant proportion of the finite field characteristics, but we show how this proportion can be computed. By combining a few one-off steps, it is possible to reach almost all primes without affecting the asymptotic complexity significantly.

Furthermore, the flexibility provided by the potential trade-off between the costs of the one-off and the per-field steps enables accommodation of the available computation power and memory. This allows for better optimization based on the specific resources at hand. This technique can be leveraged to accelerate discrete logarithm computations for desired finite field sizes, perhaps even in software like SageMath or Magma.

A drawback of Factory in practical use is its subexponential memory complexity. The required table for storage grows subexponentially in size. However, if the attacker has prior knowledge of the specific finite fields being targeted (not just their size), it is possible to alleviate this in the manner of the Factoring Factory algorithm, as explored in [START_REF] Bernstein | Batch NFS[END_REF]. The memory requirements then become equivalent to those for NFS and its variants.

Remark 4. Unlike the Conjugation case that benefits from increasing the sieve dimension t, analysis shows that such a strategy does not pay off with GJL.

The boundary case with Conjugation (case 2b). The polynomials output by the Conjugation method have degrees 2n and n, and coefficient sizes as in Table 6. Let t ∈ Z be the sieve dimension. The norms of the sieve elements are

N 0 = O A (2n)/t = L Q (2/3, 2c A /(c p t)) and N * = O A n/t Q (t-1)/(2n) = L Q (2/3, c A /(c p t) + (t -1)c p /2
). The solution of the system that minimizes Constraint (5) while verifying Conditions (6) and (7) as function of c p and t is c the largest real solution of equation:

18c p tX 3 -24X 2 -3c 2 p t(t -1)X + 2c p (t -1) = 0 (9)
and c A = 6c p tc 2 /(3c p tc -2). The asymptotic complexity of the one-off (resp. per-field

) step is L Q (1/3, c A) (resp. L Q (1/3, 2c)).
We want to know how much leeway we have in the choice of p i . The size of p i only affects N * . If we change the asymptotic expression of p i to 1) . Since, p o (1) is negligible compared to any function in L Q (2/3), the asymptotic results above are unchanged. (A similar observation applies to the other cases as well.)

p n i ≤ Q 1+o(1) (instead of p n i ≈ Q), then N * merely increases to O A n/t Q (t-1)/(2n) p o(
A.2 The medium characteristic case 1/3 < α < 2/3 in Theorem 1 NFS Factory (case 3a). Let t = δn (log(Q)/ log(log(Q)))

-1/3+o(1) be the sieve dimension, for a positive constant δ. As Q tends to infinity, t also tends to infinity, so that the constraint that t ∈ Z is absorbed by the o(1) in the exponent. The coefficients of the sieve elements are bounded by A 1/t . Their norms can be expressed as N 0 = O A (2n)/t = L Q (2/3, 2c A /δ) and N * = O A n/t Q (t-1)/(2n) = L Q (2/3, c A /δ + δ/2). If we inject these expressions of c N0 and c N * in system given by Constraint [START_REF] Barbulescu | A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic[END_REF] and Conditions [START_REF] Barbulescu | The multiple number field sieve for medium and high characteristic finite fields[END_REF], and [START_REF] Bernstein | Batch NFS[END_REF], we obtain

c = 1 + √ 2 3 2/3 ≈ 0.87, δ = 2 √ 2 c ≈ 2.63, c A = 2c √ 2 ≈ 2.45,
from which the claimed results follow.

TNFS Factory (case 3b). We only consider the case where η and κ are coprime. The general case is similar. Let κ = 1/c κ (log(Q)/ log log(Q))) 1/3+o (1) with c κ a constant. As Q tends to infinity, κ also tends to infinity, so that the constraint that κ is an integer divisor of n can be absorbed by the o(1) in the exponent, provided of course that the input is such that n has such a factor. The sieve is done over elements of the form a(ι)X-b(ι

) ∈ O K h [X]
η deg(fi) ∞ ∥f i ∥ η ∞ ∥h∥ (η-1) deg(fi) ∞
) for all i ≥ 0. More precisely, since ∥ϕ∥ ∞ ≤ A 1/(2η) , we get

N 0 = O(A κ) = L Q (2/3, c A /c κ) and N * = O(A κ/2 Q 1/(2κ)) = L Q (2/3, c A /(2c κ) + c κ /2
). These expressions of c N0 and c N * yield the following optimum:

c = 1 2 2 + 2 √ 2 9 2 3 ≈ 0.69, c κ = 2 √ c ≈ 1.66, c A = 2c √ 2 ≈ 1.94.
A. [START_REF] Barbulescu | Algorithmes de logarithmes discrets dans les corps finis[END_REF] The large characteristic case in Theorem 2 (case 1a)

We consider the polynomials given by the first approach of Joux-Pierrot, as in §3.3. Hence N 0 = O(A n/t Q (t-1)/(nλ)) and

N * = O(A λn/t log(n) λ(t-1)). Let λ = 1/(c λ n)(log(Q)/ log log(Q)) 1/3 with c λ a constant. The norm of the sieve elements are N 0 = L Q (2/3, c λ) and N * = L Q (2/3, c A /(2c λ)), since log(n) λ is negligible compared to L Q (α p -2/3
), and α p -2/3 ≤ 1/3 < 2/3. From Condition (7) we get c A = 2c + c λ /(3c). Substituting c A in Condition (6), we get c λ ≥ 6c 2 /(18c 3 -1). For a given value c, it is best to choose the smallest possible value of c λ in order to minimize c A , hence c λ is set to c λ = 6c 2 /(18c 3 -1). Moreover, c can be chosen close to zero. In return, c A grows to infinity as c tends to zero. We choose c to minimize c A , and get

c = 1 3 1/3 ≈ 0.69, c λ = 8 9 1/3 ≈ 0.96, c A = 2 8 9 2/3 ≈ 1.85.
A.4 The medium characteristic case 1/3 < α < 2/3 in Theorem 2 SNFS Factory (case 2a). The polynomials are chosen with the second approach of the Joux-Pierrot method of §3.3. Hence N 0 = O(A λn/t log(n) λ(t-1)) and N * = O(A n/t Q (t-1)/(nλ)). We set t = δn(log(Q)/ log log(Q)) -1/3+o (1) . The norm of the sieve elements are

N 0 = L Q (2/3, λc A /δ), since log(n) λ(t-1) is neg- ligible compared to L Q (2/3), and N * = L Q (2/3, c A /δ + δ/λ). A solution of the system is: c ≥ c = λ+4+2 √ 2λ+4 9λ 1/3 , c A = 6c 2 δ 3cδ-λ , δ = λ(9c 3 +1)+ √ -27λc 3 +λ 2 (81c 6 -18c 3 +1) 6c
.

When λ ∈ {2, 3}, we set c = c. However, when λ ∈ {4, 5}, only the relation collection and linear algebra steps of the per-field step can reach complexity L Q (1/3, c). As we show in Appendix B, the individual logarithm step is unfortunately more expensive, and we need to take c somewhat larger than c in order to keep the individual logarithm step negligible. Table 8 shows the values taken for c for various values of λ. The complexity of the one-off step is L Q (1/3, c A), and the complexity of the per-field step is L Q (1/3, 2c).

B.2 Descent step

paragraph is inspired from [START_REF] Barbulescu | Algorithmes de logarithmes discrets dans les corps finis[END_REF], where the descent step is presented for NFS Factory in prime finite fields. We adapt the idea to other characteristic sizes and to the different variants coupled with Factory.

After the smoothing step, the target is B-smooth with B = L Q (2/3, c B) > B, where c B is as in Lemma 1. Thanks to the previous steps, we know the virtual logarithms of the prime ideals in O K0 that are both factors of the target and of norm below B. It remains to compute the virtual logarithms of those of norm between B and B. Let q be such a prime ideal, of degree one and norm q. Define the special-q lattice L q of dimension 2η over Z, and of determinant q, that corresponds to the elements (a(ι), b(ι)) such that the ideal (a(ι) -b(ι)α 0) is divisible by q. Using the LLL algorithm, compute (u 0 , . . . , u 2η-1) a basis of L q where ∥u i ∥ ∞ = O(p 1/(2η)) for i = 0, . . . , 2η -1. Let ξ ∈ (0, 1) a positive real number, to be determined later. The first step of the descent step consists in finding (a(ι), b(ι)) ∈ L q such that :

-N0(b(ι)-a(ι)α0) q is q ξ -smooth. -and N i (b(ι) -a(ι)α 1) is q ξ -smooth.
This permits to express the virtual logarithm of q as a linear combination of virtual logarithms of prime ideals of norm smaller than q ξ . To recover the virtual logarithm of q, it is sufficient to repeat the process on each of the ideals in the linear combination until they are all in the factor basis.

We start by proving that the first step of the descent, i.e., finding (a(ι), b(ι)) as above, is the dominant step of the descent in terms of complexity. To descend the ideal q to the factor basis, we construct a tree where the root is q and the leaves are ideals in the factor basis. Each ideal that descends due to a pair (a(ι), b(ι)) introduces at most log 2 (N 0 (b(ι) -a(ι)α 0) + log 2 (N i (b(ι) -a(ι)α 1) new nodes. By Corollary 6.4 in [START_REF] Guillevic | Faster individual discrete logarithms in finite fields of composite extension degree[END_REF], both norms are smaller than Q. Hence, the arity of the tree is less than 2 log 2 Q, and its depth is smaller than the smallest integer k such that ξ k log B ≤ log B. Hence, k = O((log log Q)). The number of nodes in the tree is less than (2 log 2 (Q)) k = exp(O(log log(Q) 2)). Denote C the complexity of the first descent of q. We prove in the following paragraph that C = L Q (1/3). Hence, the complexity of descending q to the factor basis is dominated by exp(O(log log(Q) 2))•C = C. This process is applied on all the prime factors of the target that are not in the factor basis, their number is in O(log Q). In short, the complexity of the descent step is the complexity of descending q, that is the complexity of finding (a(ι), b(ι)) as described above.

Complexity of the descent step for NFS Factory and its variants. For µ = (µ 0 , . . . , µ 2η-1) of infinity norm S, we look for "good" (a(ι), b(ι)) of the form µ 0 u 0 + . . . µ 2η-1 u 2η-1 , either by sieving or ECM tests. Hence, ∥(a(ι), b(ι))∥ ∞ = O(Sq 1/(2η)). We take S 2η := L Q (1/3, s) for a positive s to be chosen. From the bound in §2.3, we get N

i (a(ι) -b(ι)α i) = O((S 2η) deg(fi)/2 ∥f i ∥ η ∞ q deg(fi)/2
), for i = 0, 1. We assume the two following usual heuristics. The probability of each of the norms being q ξ -smooth is the same as for a random integer of the same size, and the q ξ -smoothness probability of both norms are independent. Under these assumptions, the probability that both norms are q ξ -smooth is greater than the probability of a random integer of size the product of the norms being q ξ -smooth. Besides, the product of the norms divided by q is of size

N = O (S 2η) (deg(f)+deg(f1))/2 ∥f ∥ η ∞ ∥f 1 ∥ η ∞ q (deg(f)+deg(f1))/2-1 .
Denote q = L Q (α q , c q), where 1/3 ≤ α q ≤ 2/3, with c q > c if α q = 1/3, and c q < c B if α q = 2/3, since B < q < B. Hence, q ξ = L Q (α q , ξc q). The complexity of a q ξ -smoothness test by ECM is L Q (α q /2, (2α q ξc q) 1/2). It is negligible compared to L Q (1/3) whenever α q < 2/3, and is equal to L Q (1/3, (4ξc q /3) 1/2) if α q = 2/3.

Large characteristic descent step for Factory. Plugging the properties of the polynomials output by the GJL polynomial selection, with η = 1, we get

N = O((S 2) (2d+1)/2 Q 1/(d+1) q (2d+1)/2-1 . Hence, N = L Q (2/3, s/γ + γ + c q /γ) if α q = 1/3, and N = L Q (α q + 1/3, c q /γ) if α q > 1/3.
The asymptotic complexity of the descent step is the inverse of the probability of N being q ξ -smooth (see §2.3) times the cost of ECM. Thus this complexity is:

-L Q 1 3 , s 3γξcq + γ 3ξcq + 1 3ξγ , if α q = 1 3 . -L Q 1 3 , 1 3ξγ , if 1 3 < α q < 2 3 . -L Q 1 3 , 1 3ξγ + 4ξcq 3 , if α q = 2 3 .
When q is small, i.e., α q = 1/3, the complexity of the descent grows as q ξ decreases, it is maximal when ξc q = c. Furthermore, the space of search of (a, b) has to be equal to the inverse of the probability of N being q ξ -smooth, which translates into s = s/(3γξc) + γ/(3ξc) + 1/(3ξγ) after equalizing ξc q and c. Thus, s = (γ 2 ξ + c)/((3cγ -1)ξ). Taking for instance ξ = 0.999, we get the complexity of the descent in approximately L Q (1/3, 1.19), which is negligible compared to the smoothing step. The complexity of the descent when α q is between 1/3 and 2/3 is upper bounded by the complexity when q is of large size, i.e., α q = 2/3. In this last case, the complexity grows as q grows, it is maximal when c q = c B . Hence, the complexity is upper bounded by L Q (1/3, 1/(3ξγ) + (4c B ξ/3) 1/2). By minimizing the last quantity in ξ, we get ξ = 1/(3c B γ 2) 1/3 . In short, the complexity of descending q is approximately L Q (1.3, 1.28), which is also negligible compared to the smoothing step. In conclusion, the complexity of the descent step in NFS Factory for large characteristic finite fields is negligible compared to the complexity of the smoothing step. The analysis giving the best parameter choices for the other variants follows the same idea. We omit the optimization details. 10. Asymptotic complexities of the individual logarithm step and the per-field step in NFS Factory and its variants. This table recap an approximation of c when the complexities are expressed as LQ(1/3, c). For NFS at the boundary case, the complexity depends on the finite field size. We refer to a figure plotting these complexities. For SNFS in medium characteristic (with or without Tower), the complexities depend on an integer λ. We refer to tables giving the complexities for various values of λ.

Boundary case descent step for Factory. We target finite fields F p n i where p i ≈ Q 1/n = L Q (2/3, c p), with c p a positive constant. When the polynomial selection method used is GJL, the complexity analysis of the descent step is the same as for NFS Factory in large characteristic. It is negligible compared to the smoothing step.

When using Conjugation, instead of looking for a "good" (a, b) in L q , we look for a "good" vector of dimension t, where t is a positive integer greater than or equal to two. Hence, η = 1, the dimension of L q is t and its determinant is q. We need to adapt the formula given for N at the beginning of this Appendix and use instead the formula at the beginning of §2.3 with the properties of the polynomials output by Conjugation. In short, taking S t = L Q (1/3, s), we get N = O((S t) 3n/ tQ (t-1)/(2n) q 3n/ t-1). Hence N = L Q (2/3, 3s/(tc p) + (t -1)c p /2 + 3c q /(tc p)) if α q = 1/3, and N = L Q (α q + 1/3, 3c q /(tc p)) if α q > 1/3. The complexity of the descent step is then:

-L Q 1 3 , s ξcqcp t + (t-1)cp 6ξcq + 1 ξ tcp , if α q = 1 3 . -L Q 1 3 , 1 ξ tcp , if 1 3 < α q < 2 3 .
-

L Q 1 3 , 1 ξ tcp + 4ξcq 3
, if α q = 2 3 .

Figure 11 plots the asymptotic complexities of different parts of Factory: the smoothing step, the descent step for both small and large q, and the computation in each step. We see that both the descent step and the smoothing step are negligible with regard to the computation per field.

Medium characteristic descent step for Factory. Here the analysis is quite close from the one at the boundary case for Conjugation. Again, we look for a "good" vector of dimension t, where t is taken equal to δn(log(Q)/ log log(Q)) -1/3+o (1) . Hence, η = 1, the dimension of L q is t and its determinant is q. Taking S t = L Q (1/3, s), we get N = O((S t) 3n/ tQ (t-1)/(2n) q 3n/ t-1). Hence we can write the norm N = L Q (2/3, 3s/ δ + δ/2+3c q / δ) if α q = 1/3, and N = L Q (α q +1/3, 3c q / δ) if α q > 1/3. The asymptotic complexity of the descent step depends on the size of q, it is:

-L Q 1 3 , s ξcq δ + δ 6ξcq + 1 ξ δ , if α q = 1 3 . -L Q 1 3 , 1 ξ δ , if 1 3 < α q < 2 3 .
-

L Q 1 3 , 1 ξ δ + 4ξcq 3
, if α q = 2 3 .

The hardest q to descend is the one of small size with a complexity in approximately L Q (1/3, 1.43). The descent step has a complexity that is dominant compared to the smoothness step, but negligible compared to the per-field step.

Medium characteristic descent step for TNFS Factory. We consider Conjugation for the polynomial selection. We get N = O((S 2η) 3κ/2 Q 1/(2κ) q 3κ/2-1). Hence, N = L Q (2/3, 3s/(2c κ)+c κ /2+3c q /(2c κ)) if α q = 1/3 and N = L Q (2/3, 3c q /(2c κ)) if α q > 1/3. The complexity of the descent step is: 12. Asymptotic complexities for different part of medium characteristic SNFS Factory. These complexities are expressed as LQ(1/3, c) and only an approximation of c is given. The individual logarithm phase, that consists of the smoothing step and the descent step, is always negligible with regard to the other steps in the computation per field.

Medium characteristic descent step for STNFS Factory. With Joux-Pierrot selection and the usual notations, we get, N = O((S 2η) κ(λ+1)/2 Q 1/(λκ) q κ(λ+1)/2-1). Hence, N = L Q (2/3, (λ + 1)s/(2c κ) + c κ /λ + (λ + 1)c q /(2c κ)) if α q = 1/3, and N = L Q (α q + 1/3, (λ + 1)c q /(2c κ)) if α q > 1/3. The complexity of the descent step depends on λ, it is:

-L Q 1 3 , s(λ+1) 6ξcqcκ + cκ 3ξcqλ + λ+1 6ξcκ , if α q = 1 3 . -L Q 1 3 , λ+1 6ξcκ , if 1 3 < α q < 2 3 .
-

L Q 1 3 , λ+1 6ξcκ + 4ξcq 3
, if α q = 2 3 .

The hardest q to descend is the one of large size. Table 13 presents approximate values of the complexity for different small values of λ. We see that the asymptotic complexity of both the descent step is negligible compared to the complexity of the smoothing step. Note that both the smoothing and the descent are negligible with regard to the computation in each field when λ is lower of equal to 4, but when λ = 5 the smoothing step starts to be dominant. 13. Asymptotic complexities for different part of medium characteristic STNFS Factory. These complexities are expressed as LQ(1/3, c) and only an approximation of c is given. The dominant step is indicated in bold.

mod φ 2 mod p 2 Diag. 5 .

 225 Example of a commutative diagram for Factory for three target finite fields. The blue central branch is where the one-off precomputation takes place. This extends Diagram 4 to multiple right sides.

3 .

 3 Medium characteristic: 1/3 < α < 2/3. (a) NFS Factory. f 0 is constructed by the Conjugation method. The optimal values are 2c = 2((1 + √ 2)/3) 2/3 ≈ 1.73 and c A = 2c √ 2 ≈ 2.45. (b) TNFS Factory. h and f 0 are constructed by the Conjugation method.

Figure 7

 7 Figure 7 depicts the interplay of these different results, together with the complexities of Theorem 1.

Fig. 7 .

 7 Fig. 7. Asymptotic complexities of NFS, MNFS, and NFS Factory when p = Lpn (2/3, cp). The complexities are Lpn (1/3, c) and c is a function of cp in each case. Red lines (resp. blue curves) are for algorithms that use GJL (resp. Conjugation) method.

 with a(ι) and b(ι) in Z[ι] of degree at most η-1. According to the norm bounds of §2.3 (with deg x ϕ = 1 and deg y ϕ = η -1), we have N i (ϕ) = O(∥ϕ∥

Fig. 11 .

 11 Fig. 11. Asymptotic complexities of some steps inside NFS Factory at the boundary Target finite fields have characteristic p such that p = Lpn (2/3, cp). This graph shows how c varies as a function of cp when the complexities are expressed as Lpn (1/3, c).

Table 9 Table

 9

	Our work (Factory)

 Relation collection. The goal of the relation collection step is to select, among the set of polynomials ϕ(x, ι) ∈ O K h [x] at the top of the diagram, the candidates that yield a relation. A relation is found if the polynomial ϕ(x, ι) mapped to principal ideals in O K0 and O K1 are smooth (respectively B 0 -and B 1 -smooth).

	mod p	mod φ, mod p
	Diag. 4. Commutative diagram of Tower NFS.
	Polynomial selection. Several methods to do NFS polynomial selection are known.
	For example, the Conjugation, JLSV or Sarkar-Singh's methods [4,25,40] can be
	used. Each polynomial selection method yields different degrees and coefficient
	sizes. A table summing up all the parameters for f 0 and f 1 output by various
	polynomial selections for NFS and its variants (Multiple, Tower, Special and
	composition of two of them) is given in [14, Section 3.4.2]. In this work we do
	not deal with all the polynomial selections.	
	Most often the search space for relation collection consists of linear polynomials
	ϕ	

Table 6 .

 6 Degrees and infinity norms of the polynomials given by the different polynomial selections used for our Factory variants. This table assumes that p n 0 ≈ p n i ≈ Q.

Table 8 .

 8 Asymptotic complexities (in LQ(1/3, •)) of SNFS (without Factory) and the two steps of SNFS Factory (case 2a of Theorem 2) in medium characteristic finite fields. When λ ≥ 4, we adjust the parameters to keep the individual logarithm step negligible. c is given in §A.4.

	λ	SNFS (without Factory)	SNFS Factory
			one-off	per-field
	λ = 2	2.20	2.45	1.73
	λ = 3	2.12	2.50	1.58
	λ = 4	2.07	2.16 2(1.1 × c) ≈ 1.64
	λ = 5	2.04	2.15 2(1.1 × c) ≈ 1.57
	λ STNFS without Factory	STNFS Factory
			one-off	per-field
	λ = 2	1.75	1.94	1.37
	λ = 3	1.68	1.73	2(1.1 × c) ≈ 1.38
	λ = 4	1.64	1.71	2(1.1 × c) ≈ 1.30
	λ = 5	1.62	1.70 2(1.15 × c) ≈ 1.31
	Table			

Table 13 Table

 13 Table 10 recapitulates the asymptotic complexities for the individual logarithm step in all the variants.

	Algorithm	Characteristic Smoothing computation per field
		Large	1.30	1.28	1.64
	NFS Factory Boundary case		Figure 11	
		Medium	1.30	1.43	1.73
	TNFS Factory	Medium	1.30	1.28	1.37
	SNFS	Large	1.30	1.06	1.39
		Medium		Table 12	
	STNFS Factory	Medium			

⋆ Funded by French Ministry of Army -AID Agence de l'Innovation de Défense. 1 We use LQ(α) instead of LQ(α, c) when the value of c does not matter.

A Proofs of Theorem 1 and Theorem 2

A. [START_REF] Adrian | Imperfect forward secrecy: How Diffie-Hellman fails in practice[END_REF] The boundary case α = 2/3 in Theorem 1

We are here in the regime where Q 1/n = L(1/3, c p) for some c p .

The boundary case with GJL (case 2a). The asymptotic analysis in the large characteristic case applies as soon as d = 1/γ (log(Q)/ log(log(Q)))

1/3 is larger than or equal to n = 1/c p (log(Q)/ log(log(Q))) 1-α , which is equivalent to c p ≥ γ since 1 -α = 1/3. For this range of finite fields, we get exactly the same asymptotic complexities as in the large characteristic case.

STNFS Factory (case 2b

). The Special Tower Number Field Sieve targets medium characteristic finite fields with sparse characteristic p, and composite extension degree n = κη. Let κ = 1/c κ (log(Q)/ log log(Q)) 1/3+o (1) for some constant c κ to be determined. Consider p i = P (u), where P is a polynomial of degree λ with small coefficients, and u ≈ Q 1/(λn) an integer. Again we assume that κ and η are coprime. The polynomials are chosen with the second approach of the Joux-Pierrot method as in §3.3. The bound of §2. [START_REF] Barbulescu | Algorithmes de logarithmes discrets dans les corps finis[END_REF] gives

The solution of the system related to Equations (5), [START_REF] Barbulescu | The multiple number field sieve for medium and high characteristic finite fields[END_REF], and (7) is

.

When λ = 2, we set c = c. However, when λ ≥ 3, the situation is similar to SNFS Factory, and we need to take c larger than c in order to keep the individual logarithm step negligible (see Appendix B). Table 9 shows the values taken for c for various values of λ. The complexity of the one-off step is L Q (1/3, c A), and the complexity of the per-field step is L Q (1/3, 2c).

B Complexity of the Individual Logarithm step

The individual logarithm step is the last one in NFS and its variants, and also the last one inside the per-field phase in Factory, coupled or not with other variants. We prove in this Appendix that the complexity of the individual logarithm step is negligible compared to the rest of the per-field step for all the variants we studied. Hence, the complexities given in Table 3 are indeed the complete asymptotic complexities of the per-field step. The individual logarithm step consists of two main steps: the smoothing and the descent step.

B.1 Smoothing step

The smoothing step consists in reducing the computation of the discrete logarithm of the target to the discrete logarithm of another element that is B-smooth once lifted to one of the number fields, where

The smoothing step was improved for finite fields of composite extension degree in [START_REF] Al Aswad | Individual discrete logarithm with sublattice reduction[END_REF][START_REF] Guillevic | Faster individual discrete logarithms in finite fields of composite extension degree[END_REF].

The following lemma recapitulates the complexity of the smoothing step for all Factory variants. This result implies that the smoothing step is negligible compared to the complexity of the per-field, for all Factory variants. Proof. The lemma is a direct consequence of Corollary 6.4 and Corollary 6.5 in [START_REF] Guillevic | Faster individual discrete logarithms in finite fields of composite extension degree[END_REF], where substituting e and d by 1 is valid for all our Factory variants. ⊓ ⊔

-

The hardest q to descend is the one of large size with a complexity in approximately L Q (1/3, 1.28), which is negligible compared to the complexity of the smoothness step.

Large characteristic descent step for SNFS Factory. Plugging the properties of the polynomials given by the Joux-Pierrot polynomial selection, we get the norm

The complexity of the descent step is:

-

The hardest q to descend is the one of large size with a complexity in approximately L Q (1/3, 1.06), which is negligible compared to the complexity of the smoothness step.

Medium characteristic descent step for SNFS Factory. We look for a "good" vector of dimension t, where t is taken equal to δn(log(Q)/ log log(Q)) -1/3+o (1) . Therefore, η = 1, the dimension of L q is t and its determinant is q. We use the formula for N of §2.3, with the properties of the polynomials output by the Joux-Pierrot method. Writing S t = L Q (1/3, s), we obtain N = O((S t) n(λ+1)/ tQ (t-1)/(λn) q n(λ+1)/ t-1).

Hence, N = L Q (2/3, s(λ + 1)/ δ + δ/λ + (λ + 1)c q / δ) if α q = 1/3, and N = L Q (α q + 1/3, (λ + 1)c q / δ) if α q > 1/3. The complexity of the descent step is:

-

, if α q = 2 3 .

As previously, the hardest q to descend is the one of large size. Table 12 presents approximate values of the complexity for various values of λ. The complexity of the descent step is always dominant compared to the smoothing step, but still negligible compared to the per-field step.