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Discrete Logarithm Factory

Haetham Al Aswad⋆, Cécile Pierrot, and Emmanuel Thomé

Université de Lorraine, CNRS, INRIA Nancy, France.

Abstract. The Number Field Sieve and its variants are the best algo-
rithms to solve the discrete logarithm problem in finite fields (except for
the weak small characteristic case). The Factory variant accelerates the
computation when several prime fields are targeted. This article adapts
the Factory variant to non-prime finite fields of medium and large char-
acteristic. We combine this idea with two other variants of NFS, namely
the tower and special variant. This combination improves the asymp-
totic complexity. Besides, we lay out estimates of the practicality of this
method for 1024-bit targets and extension degree 6.

1 Introduction

Context. The discrete logarithm problem in a cyclic group G with a generator
g ∈ G is the computational problem of finding an integer x modulo |G| for a
given target T ∈ G, such that T = gx. Despite the growing interest in post-
quantum cryptography, the discrete logarithm problem is still at the basis of
many currently-deployed public key protocols. This article deals with the discrete
logarithm problem in the group of invertible elements of a finite field, G =
F∗
pn , excluding small characteristic finite fields due to the existence of quasi-

polynomial time algorithms [5,19,30]. Therefore, our attention is restricted here
to medium and large characteristic finite fields. We recall the usual notation1

LQ(α, c) = exp((c + o(1)) · (logQ)α(log logQ)1−α) where o(1) tends to 0 as
Q = pn tends to infinity. With this notation, a family of finite fields of size Q
and characteristic p is said to be of medium characteristic if p = LQ(α) with
1/3 < α < 2/3, and of large characteristic if this statement holds with 2/3 < α.
This latter case includes prime fields where n = 1 and p = LQ(1).

The Number Field Sieve. Initially proposed as an integer factoring algorithm in
the 90’s [9,33], the Number Field Sieve (NFS) was later adapted to the discrete
logarithm problem in prime fields [18], and medium and large characteristic
finite fields [25]. Currently, the most efficient algorithms to compute discrete
logarithm in medium or large characteristic finite fields is still (a variant of)
NFS. Numerous variants exist, depending on the sub-case, but they all compute
discrete logarithms in finite fields in time Lpn(1/3, c) for some constant 0 <
c < 2.3 that depends on the precise sub-case. The special variant, SNFS [26]
⋆ Funded by French Ministry of Army - AID Agence de l’Innovation de Défense.
1 We use LQ(α) instead of LQ(α, c) when the value of c does not matter.
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applies when the characteristic p is sparse, i.e., is the evaluation of a polynomial
of relatively small degree and small coefficients, resulting in a more efficient
algorithm than NFS, in both medium and large characteristic finite fields. The
multiple variant, MNFS [6,34,36,40] has a lower complexity than NFS in medium
and large characteristic. The Tower variant, TNFS2 [27, 28, 41] is more efficient
than NFS in medium characteristic finite fields when the extension degree is
composite. When the characteristic is sparse and of medium size, and when the
extension degree is composite, TNFS can be coupled with SNFS resulting in
the STNFS algorithm [27,28]. See Table 1 for a summary. In the boundary case
between medium and large characteristic, complexities are functions of p and
harder to express than with a simple L(1/3, c) expression with constant c. See
later Figure 7 and expressions given in §A.1 for this particular parameter range.

Algorithm Characteristic range
Medium Large

Every finite field
NFS (96/9)1/3 ≈ 2.20 (64/9)1/3 ≈ 1.92

Multiple NFS ((72 + 32
√
6)/15)1/3 ≈ 2.16 ((92 + 26

√
13)/27)1/3 ≈ 1.90

Composite extension degree
Tower NFS ≥ (48/9)1/3 ≈ 1.75 (64/9)1/3 ≈ 1.92

Multiple Tower NFS ≥ ((3 + 4
√

(2/3))/10)1/3 ≈ 1.71 ((92 + 26
√
13)/27)1/3 ≈ 1.90

Sparse characteristic
Special NFS ≥ (64/9)1/3 ≈ 1.92 (32/9)1/3 ≈ 1.53

Sparse characteristic and composite extension degree
Special Tower NFS ≥ (32/9)1/3 ≈ 1.53 (32/9)1/3 ≈ 1.53

Table 1. Variants of NFS and their asymptotic complexities. All complexities are in
LQ(1/3, c). This table indicates the exact value and then an approximation of c in each
case. Each algorithm applies to finite fields that satisfy the constraint expressed in bold
above it. Some complexities are given as lower bounds, which are reached when the
input satisfies some additional constraints. The complexities of SNFS and STNFS for
medium characteristic are functions of another parameter λ that is omitted here.

The general framework is common to all variants of NFS. First one sets
up an algebraic context within which the target finite field Fpn is presented in
two or more distinct ways as quotient rings of number fields, bound together
in a commutative diagram. Setting up this algebraic context is referred to as
the polynomial selection, and to a large extent the polynomial selection is the
main difference between most variants mentioned above. Then smooth elements
are found in a relation collection step, that permits afterwards to solve a linear
system and get the logarithm of some particular elements. Arbitrary discrete
logarithms are reconstructed in the last step: the individual logarithm step.

2 Sometimes referred to as the extended Tower Number Field Sieve (exTNFS).
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The state of the art for the computation of discrete logarithms in finite
fields of small extension degree has been regularly updated. In particular, recent
work has shown that the TNFS variant is practical. De Micheli, Gaudry and
Pierrot [15] reported in 2021 the first implementation of TNFS and performed
a record computation on a 521-bit finite field with extension degree n = 6. One
year later, Robinson [38] reported a record computation using TNFS on a 512-
bit finite field of extension degree n = 4. On the “usual” NFS side, the latest
record on a prime field Fp was done with NFS in 2019 in a 795-bit finite field [8],
although that computation was a lot more massive than the one in [15]. Table 2
lists some of these recent computations. SNFS is also very practical as well, and
is able to target finite fields of much larger sizes, such as a 1024-bit prime field
in [16].

Finite field Bitsize of pn Year Team
Fp 795 2019 Boudot, Gaudry, Guillevic, Heninger,

Thomé, Zimmermann
Fp2 595 2015 Barbulescu, Gaudry, Guillevic, Morain
Fp3 593 2019 Gaudry, Guillevic, Morain
Fp4 512 2022 Robinson
Fp5 324 2017 Grémy, Guillevic, Morain
Fp6 521 2021 De Micheli, Gaudry, Pierrot
Fp12 203 2013 Hayasaka, Aoki, Kobayashi,Takagi

Table 2. Discrete logarithm records [20] in finite fields of various extension degrees,
performed with NFS. TNFS is only implemented for the Fp4 and the Fp6 records.

Attacking one key versus attacking many keys. This article studies how the
cryptanalysis cost for several public keys evolves with the number of targeted
keys. We identify two distinct situations. When the finite field is fixed, an ad-
versary willing to compute several discrete logarithms at the same time can take
advantage of the fact that the first steps of NFS only depend on the field, not on
the specific target element whose logarithm is desired. This is how the Logjam
attack [1] was carried out, by precomputing data depending on the finite field
only, and useful afterwards for all the individual logarithm computations.

In this work, we look at the problem from a different angle. A certain finite
field bitsize is fixed, for example following a given cryptographic recommenda-
tion. Is there a more efficient way to solve the discrete logarithm problem in
several finite fields, which have the same extension degree and the same given
bitsize, rather than using NFS (or its variants) on each field separately? In par-
ticular, is there a configuration where some kind of precomputation would be
beneficial? Whether or not the precise set of fields is known in advance, such
an attack scenario is referred to as a Factory-like computation, owing to the
state-of-the-art algorithms described below. Most of this article assumes that
the target finite fields are not known in advance.
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Factoring Factory and discrete logarithm Factory. In 1993, Coppersmith pre-
sented the Factorization Factory algorithm [12] to factor many numbers in a
more efficient way than applying NFS on each of the numbers. The idea is
to amortize the cost of a precomputation over many factorizations, by finding
smooth elements in a relation collection phase that is only half done but that
can be used for each of the different factorizations. With a reduction of the
overall factoring effort by more than 50%, Kleinjung, Bos and Lenstra used this
idea and managed to factor 17 Mersenne numbers [29]. Coppersmith’s idea was
adapted to the computation of discrete logarithm in several prime finite fields
by Barbulescu in his PhD thesis [3, §7.2].

Non-prime finite fields arise in the wild. The relevance of the existing Factory-
like methods that we just mentioned is lessened by their applicability to prime
fields only. The purpose of this article is to address this issue. Discrete loga-
rithms in cryptography are not restricted to prime fields. Several cryptographic
protocols rely on the hardness of the discrete logarithm problem in non-prime
fields. For instance, pairing-based protocols entail considering families of finite
fields of fixed extension degree. In this context, most often extension degrees
are composite (e.g. n = 12). To give but one example, we find non prime fields
in the Elliptic Curve Direct Anonymous Attestation protocol that is embedded
in the current version of the Trusted Platform Module [42]. The emergence of
SNARKs [11, 17, 21], which also require pairing friendly curves accentuates the
interest for these non-prime fields.

Our work. In this article, we generalize the discrete logarithm Factory algorithm
to finite fields of any extension degree. Several difficulties arise. The primary chal-
lenge lies in the need to adapt the algebraic framework of NFS: the goal is to
construct several branches of a diagram landing in several different finite fields,
but starting from the same shared branch. The way in which this diagram is cre-
ated depends very much on the polynomial selection, and thus on the considered
variant. We manage to combine the Factory idea with several variants: NFS,
TNFS, SNFS and STNFS. The second difficulty appears in the characterization
of the primes for which a given Factory algorithm can apply. We show that this
can be quantified precisely based on the Chebotarev density theorem.

For each variant combined with Factory we provide, based on usual NFS
heuristics, an improved asymptotic complexity for the computation of discrete
logarithms, with the requirement of a one-time precomputation that is solely
dependent on the bitsize of the finite fields. This complexity analysis is clearly
another difficult point of our work because of the accumulated technicalities. Let
us give the example of TNFS when we target several finite fields of size close to Q.
With a one-off precomputation that approximately costs LQ(1/3, 1.94), we lower
the complexity of TNFS per field from roughly LQ(1/3, 1.75) to LQ(1/3, 1.37).
Our work obtains several results of this kind for various sub-cases: Table 3 reca-
pitulates the asymptotic complexities we obtain in this work.

Besides, we employ an analytic approach in order to assess the crossover
point above which our Factory approach for TNFS is likely to be profitable.
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Our work (Factory)
Algorithm Range Usual Multiple Precomputation Computation

approach variant in each field
Prime fields 1.92 1.90 2.01 [3] 1.64 [3]

Large p 1.92 1.90 2.01 1.64
NFS p = LQ(2/3) Figure 7

Medium p 2.20 2.16 2.45 1.73
TNFS Medium p 1.75 1.71 1.94 1.37
SNFS Large p 1.53 - 1.85 1.39

Medium p Table 8
STNFS Medium p Table 9

Table 3. Approximation of asymptotic complexities of NFS, MNFS, NFS Factory
and their variants, expressed as LQ(1/3, c). This table indicates an approximation of c
in each case. When the characteristic p is expressed as p = LQ(2/3, cp), it represents
the boundary case between medium and large characteristic. At this boundary, the
complexities are given as a function of cp. For this reason we give a figure and not a
formula. Besides, in medium characteristic finite fields, both the complexities of SNFS
and STNFS depend on an integer parameter λ. Tables 8 and 9 give the complexities
for various values of λ. Moreover, the Multiple variant does not couple with the Special
variants SNFS and STNFS.

When applied to the case of 1024-bit finite fields of extension degree n = 6,
our estimates suggest that TNFS Factory is computationally more efficient than
applying TNFS on each finite field separately when solving discrete logarithms
in several tens of such finite fields.

Possible impact. One of the scenarios we have in mind involves the potential risk
of compromising the security of standardized key sizes. Recommended key sizes
correspond to the sizes of finite fields considered secure against the most effi-
cient algorithms for attacking the discrete logarithm problem, namely NFS and
its variants. Each previously recommended or current key size (e.g. 1024 bits,
2048 bits, 4096 bits, etc.) is associated with a specific level of security. As a result,
the distribution of finite fields used in practical applications is not uniform across
all possible sizes, but rather organized into groups or packages. Consequently,
an attacker seeking to compromise multiple keys potentially across different fi-
nite fields, can leverage the idea of Factory. By adjusting the parameters and
finding the most advantageous trade-off in terms of the number of compromised
finite fields and the cost they are willing to invest in precomputation, they can
minimize the overall expense. In any case, the aggregation of finite fields within
packages resulting from protocol standardization has the potential to weaken a
significant proportion of the public keys generated according to these standards.

Outline of the article. We start with a short refresher concerning NFS and its
variants in Section 2. Section 3 presents the Factory idea adapted to non prime
finite fields and explains how we can predict how many fields can be addressed
with a given Factory setup. Section 4 details then the asymptotic complexity
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results of this algorithm, while in Section 5 we discuss the feasibility and impact
of this method on moderate key sizes, for instance to target elements in several
1024-bit finite fields.

2 Background

Notations. From now on, p always denotes a prime number. When the extension
degree n of the finite field Fpn is composite, η and κ denote non trivial factors of
n such that n = ηκ. Asymptotic estimates use the classical O and o notations, as
well as the soft-O notation f = Õ(g) which means that there exists a constant c
such that f(x) = O(g(x) logc(x)), as x tends to infinity. We recall that an integer
is x-smooth if we can write it as product of integers that are all smaller than x.
Likewise, an ideal is x-smooth if it factors into a product of prime ideals whose
(absolute) norm is less than x.

2.1 The (Tower) Number Field Sieve

We start with a short refresher on the Tower variant of the Number Field Sieve,
of which the “usual” NFS can be considered a special case.

Commutative diagram. We target the finite field Fpn . Let η be a divisor of n.
The classical TNFS setup considers the intermediate number field Kh = Q(ι)
where ι is a root of h, a polynomial of degree η over Z that remains irreducible
modulo p. For a number field K, we let OK be its ring of integers. For simplicity,
we assume throughout this article that OKh

= Z[ι]/h. This implies in particular
that h is monic. (For the usual NFS, we rather let η = 1, Kh = Q, and OKh

= Z;
in particular there is no requirement that n be composite.)

Above Kh, define two number fields K0 = Kh[x]/f0(x) and K1 = Kh[x]/f1(x)
where f0, f1 are irreducible polynomials over OKh

that share an irreducible factor
φ of degree κ modulo the unique ideal p over p in Kh. In particular, f0 and f1
have degree at least κ. Let αi be root of fi in Ki for i = 0, 1. Because of the
conditions on the polynomials h, f0 and f1, there exist two ring homomorphisms
from OKh

[x] to the target finite field Fpn through the number fields K0 and K1.
This allows to build a commutative diagram as in Figure 4. For simplicity, we
assume that f0 and f1 are defined over Z, although this is only possible when κ
and η are coprime.

The polynomial selection refers to the way the diagram of Figure 4 is built.
For an appropriate notion of size that is defined in the intermediate number
fields, the relation collection step accumulates relations between “small” elements
in the number fields. Their virtual logarithms in the target finite field are then
recovered by the linear algebra step, and the process is made more general by the
individual logarithm step which leverages the acquired information to compute
logarithms of arbitrary elements of the target number field.
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OKh [x]

K0 ⊃ OKh [x] /f0(x) K1 ⊃ OKh [x] /f1(x)

OKh/p[x]/φ(x)
∼= Fpn

mod φ, mod p mod φ, mod p

Diag. 4. Commutative diagram of Tower NFS.

Polynomial selection. Several methods to do NFS polynomial selection are known.
For example, the Conjugation, JLSV or Sarkar-Singh’s methods [4,25,40] can be
used. Each polynomial selection method yields different degrees and coefficient
sizes. A table summing up all the parameters for f0 and f1 output by various
polynomial selections for NFS and its variants (Multiple, Tower, Special and
composition of two of them) is given in [14, Section 3.4.2]. In this work we do
not deal with all the polynomial selections.

Relation collection. The goal of the relation collection step is to select, among the
set of polynomials ϕ(x, ι) ∈ OKh

[x] at the top of the diagram, the candidates
that yield a relation. A relation is found if the polynomial ϕ(x, ι) mapped to
principal ideals in OK0

and OK1
are smooth (respectively B0- and B1-smooth).

Most often the search space for relation collection consists of linear polynomials
ϕ(x, ι) = a(ι) − b(ι)x ∈ OKh

[x], and for usual NFS this simplifies to searching
for polynomials a− bx with integers coefficients a, b, since OKh

= Z in that case.
The ideals that occur in the factorizations in OK0 and OK1 constitute the factor
basis F . More precisely, we define it as the disjoint union F = F0 ⊔F1 with, for
i = 0, 1:

Fi(Bi) = {prime ideals of OKi of norm ≤ Bi and inertia degree 1 over Kh}.

To test the Bi-smoothness on each side, one needs to evaluate the norms Ni(a(ι)−
b(ι)αi) for i = 0, 1. To do so, we can write:

Ni(a(ι)− b(ι)αi)
∗
= Resy(Resx(a(y)− b(y)x, fi(x)), h(y)). (1)

where the equality ∗
= holds up to sign and up to powers of the leading coefficients

of h and fi. Since resultants are integers, this allows to test the Bi-smoothness
over integer values. The relation collection stops when we have enough relations
to construct a system of linear equations that may be full rank. The unknowns
of these equations are the virtual logarithms of the ideals of the factor basis.

Linear algebra. A good feature of the linear system created is that the number
of non-zero coefficients per line is very small. This allows to use sparse linear
algebra algorithms such as Coppersmith’s block Wiedemann algorithm [13], for
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which parallelization is partly possible. The output of this step is a kernel vector
corresponding to the virtual logarithms of the ideals in the factor basis.

Individual discrete logarithm. The final step consists in finding the discrete loga-
rithm of one or several target elements. This step is subdivided into two substeps:
a smoothing step and a descent step. The smoothing step is an iterative process
where the target element is randomized until the randomized value lifted back
to one of the number fields Ki is B′

i-smooth for a smoothness bound B′
i > Bi.

The second step consists in decomposing every factor of the lifted value, in our
case prime ideals with norms less than a smoothness bound B′

i, into elements of
the factor basis for which we now know the virtual logarithms. This eventually
makes it possible to reconstruct the discrete logarithm of the target element.

TNFS differs from NFS in this step as there exist improvements for the
smoothing step when the target finite field has proper subfields [2, 22].

2.2 Other variants of NFS

Special NFS. When the characteristic is sparse (the meaning of which will be
made precise later on), both NFS and TNFS can be adapted so that the polyno-
mials in the sieving step have lower norms, resulting in better asymptotic com-
plexities. This is called the Special variant of NFS and written SNFS or STNFS.
The key idea as explained in [26] lies in a dedicated polynomial selection that
takes advantage of the sparsity of the characteristic.

Multiple NFS. NFS and TNFS can be coupled with a multiple variant too [6,
34, 36, 40], the main idea being to have a lot of different intermediate number
fields where a polynomial from the sieving can be smooth. MNFS and MTNFS
give the best asymptotic complexities. However we do not detail this variant as
we do not see a way to adapt the Factory algorithm to it. Similarly, the special
variant and multiple variant cannot work together.

2.3 Smoothness probability

As is classical with analysis of NFS-based algorithms, we assume throughout
the paper that the probability of a norm being smooth is the same as that of
a random integer of the same size. To assess this latter probability, we use the
following restatement of results from [10]:

Proposition 1. Let (α1, α2, c1, c2) be four real numbers such that 1 > α1 >
α2 > 0 and c1, c2 > 0. As Q tends to infinity, the probability that a random
positive integer below LQ(α1, c1) splits into primes less than LQ(α2, c2) is

LQ

(
α1 − α2, (α1 − α2) c1 c

−1
2

)−1
.
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The norms are given by Equation (1). In the classical (non-Tower) NFS, the
definition of the resultant as the determinant of the Sylvester matrix gives a
bound that follows from Hadamard’s inequality:

|Res(ϕ, fi)| ≤ ∥ϕ∥deg fi
∞ · ∥fi∥deg ϕ

∞ · (deg fi + 1)deg ϕ/2(deg ϕ+ 1)deg fi/2.

When analyzing Tower variants, the degree of h appears in the resultant. Since
we assumed that OKh

= Z[ι], we can assume that all coefficients of ϕ(x, y) are
integers, all below a bound ∥ϕ∥∞. We obtain

|Resy(Resx(ϕ, fi), h)| ≤ ∥ϕ∥deg h·deg fi
∞ · ∥fi∥deg h·degx ϕ

∞ · ∥h∥deg fi·degy ϕ
∞ · c

where the factor c is a combinatorial contribution that can be uniformly bounded
depending on deg fi and deg h, and is negligible compared to the other factors
in all cases we consider in this article. Note also that in all cases of interest, we
have degy ϕ < deg h and (unless specified otherwise) degx ϕ = 1.

3 Discrete logarithm Factory

3.1 Common Setting

Whether it is deployed for integer factorization or for discrete logarithm in
medium or large characteristic finite fields, the Factory algorithm revolves around
the same idea. The primary objective is to share a portion of the relation collec-
tion step in NFS (or a variant). Our common setting is as follows.

Common Setting An order of magnitude Q and an extension degree n are
given. Precomputations based on Q and n are allowed. Given a set of finite fields
Fpn

1
,Fpn

2
, . . . with pn1 ≈ pn2 ≈ · · · ≈ Q, the goal is to successfully compute discrete

logarithms in a positive proportion of them. The primes pi are not known at
precomputation time.

To achieve this, our Factory approach consists of two steps. Figure 5 illus-
trates this.

The “one-off” step. Inputs are Q and n. We construct half of the diagram of
Figure 4, namely Kh and K0. Then, a first search aims to find (and store for later
use) elements ϕ in the search space that are B0-smooth when mapped to K0, for
a fixed smoothness bound B0. All parameters of this step —including B0 and
the number of elements ϕ to test— depend on Q and n.

The “per-field” step. Consider one of the pi’s of the common setting. Complete
the diagram of Figure 4 (define a number field Ki) so that the target finite field
is Fpn

i
. The relation collection step proceeds by determining which of the stored

ϕ are B∗-smooth when mapped to Ki, where B∗ is another smoothness bound.
Because this per-field step works in a similar way for primes of similar size,
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OKh [X] K3

OKh [X] /(f1(X)) ⊂ K1 K2

OKh [X] /(f0(X)) ⊂ K0 Fp3n

OKh/p1[X]/(φ1(X)) ∼= Fp1n Fp2n

mod φ1

mod p1
mod φ1

mod p1

mod φ2

mod p2

mod φ2

mod p2

Diag. 5. Example of a commutative diagram for Factory for three target finite fields.
The blue central branch is where the one-off precomputation takes place. This extends
Diagram 4 to multiple right sides.

parameters such as B∗ are identical for all the fields. The remaining steps of
NFS (or the variant) are unchanged.

The complexities we formulate are functions of Q and n. Just like finite field
discrete logarithm distinguishes between small, medium, and large characteristic,
we will make distinctions based on how Q and n evolve asymptotically. Likewise,
we will define several variants that are adapted to n factoring in a certain way,
or the primes pi being of a special form.

3.2 A baseline: Factory algorithm for prime fields

The factorization Factory algorithm was introduced by Coppersmith [12] and its
adaptation to the discrete logarithm problem in prime finite fields was proposed
by Barbulescu [3].

We follow the common setting of §3.1 but restrict ourselves to n = 1. The
one-off step sets Kh = Q (hence η = 1), and starts with the well known base-
m method. Choose a degree d and an integer m close to Q1/d. Define K0 by
f0(X) = X − m. For the per-field step, write the base-m expansion of pi as
pi =

∑d
k=0 akm

k and set fi(X) =
∑d

k=0 akX
k. Then, f0 and fi share a common

root modulo pi, which is m. Define Ki as Q[X]/fi (the polynomial fi is generically
irreducible). This completes Diagram 4.

3.3 Factory for non prime finite fields: polynomial selection

The novelty of this article is the generalization of the Factory approach to finite
fields of arbitrary extension degree. Since n > 1, both number fields K0 and
Ki must be of degree greater than one over Q, hence the base-m polynomial
selection cannot be used.
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We follow the notations of §2.1. In particular, η = deg h is non trivial only
in the tower cases (TNFS, STNFS). In order to simplify the exposition, we
assume that η and κ are coprime, which allows us to search for f0 and fi in Z[X]
rather than in OKh

[X]. Both f0 and fi must be coprime and irreducible, and
share an irreducible factor φi of degree κ modulo pi. Then Fpn

i
is represented

as (OKh
/piOKh

) [X]/(φi). In the different polynomial selection methods that we
now review, we assume that the polynomial h has been fixed beforehand, and we
only detail how the polynomials f0, and fi are chosen (in conjunction with pi).

Generalized-Joux-Lercier [4] Factory. Choose f0 ∈ Z[X] irreducible, of degree
d+ 1 > κ for some integer d, and with small integer coefficients.

Let pi be a prime number such that h is irreducible modulo pi, and f0 admits
an irreducible factor modulo pi of degree κ, which we lift to an integer polynomial
as φi(X) = Xκ +

∑κ−1
j=0 φi,jX

j with −pi/2 < φi,j ≤ pi/2 for 0 ≤ j ≤ κ − 1.
Build the lattice of dimension (d+ 1)× (d+ 1) whose basis matrix is:

Mpi
=



pi
. . . κ rows

pi
φi,0 φi,1 . . . 1

. . . d+ 1− κ rows. . . . . .
φi,0 φi,1 . . . 1


The shortest vector output by the LLL algorithm when applied to Mpi

gives
the coefficients of a polynomial fi that is a multiple of φi modulo pi. We safely
assume that fi is irreducible over Z; in the unlikely event that it is not, we replace
it with the appropriate irreducible factor that reduces modulo pi to a multiple
of φi. Remark that as the dimension of Mpi

is d+ 1, and its determinant is pκi ,
lattice reduction guarantees that the degree of fi is at most d, and its coefficients
have sizes in Õ

(
pi

κ/(d+1)
)
.

Conjugation [4] Factory. Select g0 and g1 two polynomials with small integer
coefficients with deg g1 < deg g0 = κ. Select µ a quadratic irreducible polynomial
over Z with small coefficients. Define the polynomial f0 as ResY (µ(Y ), g0 + Y g1).
The degree of f0 is 2κ with coefficients in O(1).

Let pi be a prime number such that h is irreducible modulo pi, and µ has
a root λi in Fpi

such that φi := g0 + λig1 is irreducible modulo pi. Define
fi = vg0 + ug1, where (u, v) is a rational reconstruction of λi. Then f0 = 0
mod φi mod pi and fi = vφi mod pi. Thus both polynomials share φi as an
irreducible factor modulo pi, and f0 is irreducible over Q. Moreover, fi is of
degree κ with coefficient sizes in O(

√
pi).

Joux-Pierrot [26] Factory, first approach: starting from a fixed integer u. The
original SNFS algorithm proposes only one polynomial selection, that is used
for sparse characteristic in both medium and large characteristic finite fields.
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However, if we want to combine SNFS with Factory, two different approaches
are possible.

For the first approach we choose two integers λ > 1 and u ≈ Q1/(λn), as well
as a polynomial R of degree at most κ − 1 with coefficients 0, 1, or −1, until
f0(X) := Xκ +R(X)− u is irreducible over Q.

Let Pi be a polynomial of degree di close to λ and with small coefficients.
Assume that pi := Pi(u) is prime and h and f0 are irreducible modulo pi. Define
fi(X) = Pi (X

κ +R(X)). Then f0 divides fi modulo pi since Xκ + R(X) = u
mod f0 and Pi(u) = pi. Thus f0 and fi share f0 mod pi as an irreducible factor
of degree κ modulo pi. As above, we may assume that f0 is irreducible over Z.
Moreover, as explained in [26], R can be chosen of degree O(log(κ)), resulting
in fi of degree diκ and coefficient sizes in Õ(log(κ)di).

Joux-Pierrot [26] Factory, second approach: starting from a fixed P . Choose an
integer λ > 1 and a polynomial P of degree λ with small coefficients, as well
as a polynomial R of degree at most κ − 1 with coefficients 0, 1, or −1, until
f0(X) := P (Xκ +R(X)) is irreducible over Q. As explained in [26], R can be
chosen of degree O(log(κ)), resulting in f0 of degree λκ and coefficient sizes in
Õ(log(κ)λ).

Let ui be an integer such that ui ≈ Q1/(λn) and pi := P (ui) is prime and both
h and Xκ+R(X)−ui are irreducible modulo pi. Define fi(X) = Xκ+R(X)−ui.
Then fi is an irreducible factor of f0 modulo pi, and is irreducible over Q.

Table 6 summarizes the degrees and sizes of the coefficients of the polyno-
mials output by the methods that we just mentioned. To fix terminology, in the
remainder of the paper we will sometimes refer to NFS Factory when η = 1 and
TNFS Factory if both η and κ are greater than one. As is the case with non-
Factory variants, the Generalized-Joux-Lercier method is well suited to the large
characteristic case, while the Conjugation method is intended for the medium
characteristic case. The boundary case is not a clear cut. As regards “special”
primes, whenever either of the Joux-Pierrot constructions can be used we use
the terms SNFS Factory (when η = 1) or STNFS Factory (in the tower case).

3.4 Fantastic primes and how many are there?

Each of the polynomial selection methods in §3.3 lays out requirements on the
primes pi. How many of the primes pi work with a given setup of the one-off
step depends on properties of the number field tower that is used to define K0.
This is actually controlled by the Chebotarev density theorem.

Chebotarev density Theorem in towers of number fields. Consider the
tower Q ⊂ Kh ⊂ K0. The field K0 need not be a normal field, so let us also
define its normal closure L and let G = Gal(L/Q). By Galois correspondence,
this tower is connected to the chain of subgroups {1} < GK0 < GKh < G, where
GX denotes the subgroup of G that fixes the subfield X ⊂ L. The group G acts
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Polynomial
selection

Properties of
f0 and fi

deg(f0) deg(fi) ∥f0∥∞ ∥fi∥∞

GJL d+ 1 > κ d Õ(1) Õ
(
pn/(d+1)

)
Conjugation 2κ κ Õ(1) Õ

(√
p
)

Joux-Pierrot, 1st approach κ λd, d ≈ λ Õ
(
Q1/(λn)

)
Õ
(
log(κ)d

)
Joux-Pierrot, 2nd approach λκ κ Õ

(
log(κ)λ

)
Õ
(
p1/λ

)
Table 6. Degrees and infinity norms of the polynomials given by the different poly-
nomial selections used for our Factory variants. This table assumes that pn0 ≈ pni ≈ Q.

on the cosets G/GKh , which are partitioned in a set of smaller cosets G/GK0 . The
Frobenius symbol

[
L/Q
p

]
(defined up to conjugation) and the Chebotarev density

Theorem [35, Chapter 8] tell us two things. Here, we consider only primes that are
coprime to disc(L/Q) and to all leading coefficients of the defining polynomials.

– The decomposition of a prime number p ∈ Q as a product of prime ideals in
Kh and K0 (and, eventually, in L) can be read off directly from the orbits of
the action of the cyclic subgroup generated by

[
L/Q
p

]
on the cosets G/GKh ,

G/GK0 , and so on. For example its orbits on G/GKh have sizes n1, . . . , nk

if and only if p factors into prime ideals of degrees n1, . . . , nk in Kh. If we
take a closer look at how

[
L/Q
p

]
acts on the smaller cosets G/GK0 , then

these orbits split into orbits of sizes (ni,j)1≤i≤k,1≤j≤ki
(with

∑
j ni,j = ni)

if and only if the i-th prime ideal above p in Kh splits into factors of degrees
ni,1, . . . , ni,ki

in K0. This extends to towers of arbitrary height.
– For S a subset of the set of prime numbers, define the density of S as

lim
X→∞

#{x < X | x ∈ S}
#{x < X | x is prime}

.

Chebotarev’s theorem says that the density of primes whose decomposition
patterns along the tower matches the orbit sizes of the action of a conjugacy
class C ⊂ G is exactly the ratio |C|/|G|.

Computationally accessible data. In theory, the above results are strong enough
to predict the density of primes that work with the setup of any given one-
off step. Alas, the computation of the Galois group of (the normal closure of)
K0 may be out of reach. In some specific cases, it is possible to compute the
densities based on data related to smaller fields. We will discuss a few such cases
below. Supplementary material of this work includes a short Magma program
that computes these densities, given a tower of number fields.
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Intervals and explicit bounds. It will be of some use in this paper to discuss the
density of primes that we can use in intervals rather than over all primes. This
is a well studied problem, which happens to be easy in the instances we will
be looking at (and very challenging otherwise). Namely, we will be interested in
intervals of the form [x, xA] for A > 1, and in such cases the error bounds given
by [31] suffice to prove that we have the expected density. We will not discuss
this point further.

Some specific cases. Here we allow some simplifying assumptions. A baseline
is given in the case where K0 and Kh are defined over Q (we already made this
assumption in §2.1), and that their normal closures have no isomorphic subfields.
Then the decompositions of h and f0 modulo prime numbers are independent.
In this case, the probability that h is irreducible modulo pi, and f0 has an
irreducible factor of degree κ modulo pi is given by

#Gal(h)η ·#Gal(f0)κ
#Gal(h) ·#Gal(f0)

.

In this expression, Gal(f)k is the set of elements of Gal(f) which have a cycle of
length k in their action on the roots of f . The formula above applies to both the
Generalized-Joux-Lercier Factory approach, and the Joux-Pierrot Factory, first
approach. Note, of course, that in the non-tower cases, we have η = 1 and thus
#Gal(h) = #Gal(h)η = 1.

Conjugation Factory. In the Conjugation setup given in §3.3, the condition is
more specific. Let α be a root of f0 in K0. Then θ = −g0(α)/g1(α) is a root of
µ, and M = Kh(θ) is a subfield of K0, of degree 2 above Kh. The number field
tower that is of interest to us is Q ⊂ Kh ⊂ M ⊂ K0. The primes pi that work
in the Conjugation setup are those for which there exists a prime ideal p ⊂ OK0

such that [p∩OKh
: pZ] = η, [p∩OM : p∩OKh

] = 1, and [p∩OK0
: p∩OM ] = κ.

If the Galois group of K0 and its subfields can be computed, we can determine
how many Frobenius symbols reveal that at least one such prime ideal exists
above p. By Chebotarev’s theorem, this also gives the density of such primes.

Joux-Pierrot Factory, second approach. This case seems to be outside the scope
of investigation by the methods that we just mentioned. As described in §3.3,
an integer ui varies, and the cases of interest are when pi = P (ui) is prime and
the polynomial Xκ + R(X) − ui is irreducible mod pi. Contrary to the cases
above, this polynomial varies together with pi. Short of a better solution, we
hypothesize the following.

Assumption 1 In the context of the Joux-Pierrot construction (second ap-
proach), in a large interval (a, b), the number of integers u satisfying the condi-
tions that p = P (u) is prime and Xκ+R(X)−u is irreducible modulo p is about
1/κ times the number of integers a < u < b for which P (u) is prime.
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In addition to the above, the Joux-Pierrot setup, when instantiated in the tower
case, also requires that h is irreducible modulo pi. We will assume that this latter
condition is independent of the irreducibility of Xκ +R(X)− u.

It is straightforward to test Assumption 1 over arbitrary examples. We did
so for various choices of η, κ, and λ = degP , and found good accordance of
experimental data with Assumption 1.

Limitations of the Galois point of view. There are two main caveats to
estimates given by the Galois theory approach. First, explicitly computing Galois
groups is not always easy, and while these computations are extremely easy in
the examples we considered, we cannot rule out that it becomes out or reach in
certain cases. Second, even if we can mathematically write what the proportion
is, it can actually be that this formula predicts a density of zero, which is not
very useful. We can, for example, fabricate examples in the Conjugation method
with κ = ℓ2 for a prime ℓ and for which Gal(f0) = Z/(2ℓ)Z × Z/ℓZ. In such a
case, no prime ideal of degree ℓ2 exists, and obviously such setups would be of
no use for computing discrete logarithms!

This being said, the high-level view tells us that the factorization patterns
modulo primes definitely follow predictable patterns. Empirical observations are
a quick and easy way to get an idea of the correct ratios (in fact, these same
empirical observations can be leveraged to get insights about what the Galois
groups are). For a Factory approach to apply to as many primes as possible, it
certainly makes sense to assess what happens modulo a moderate collection of
primes.

3.5 Two constructions for 500 and 600-bit target finite fields

As an illustration, we show two different constructions, together with an evalu-
ation of the proportion of primes (i.e. characteristics) that can be reached. The
ratios of primes that we mention can be computed with the Magma script that
is provided as supplementary material with this work.

NFS Factory with Conjugation. The authors of [23] report a discrete logarithm
computation on Fp3 with NFS (that is, no tower is at play: we have η = 1) for the
593-bit prime p = 908761003790427908077548955758380356675829026531247.
The Conjugation method was used, and it produced:

f0 = ResY (X
3 − 3X − 1− Y (X2 +X), 28Y 2 + 16Y − 109)

= 28X6 + 16X5 − 261X4 − 322X3 + 79X2 + 152X + 28

f1 = 24757815186639197370442122X3 + 40806897040253680471775183X2

−33466548519663911639551183X − 24757815186639197370442122

The absolute Galois group Gal(f0) comprises eighteen permutations. Eight
of them act on the cosets of the Galois tower in a way that is consistent with
p splitting in M and being inert in K0. This predicts that a fraction of 4/9
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of the primes work. This is what we observe experimentally. For instance, let
p2 = 925345433540865564015707127491171005390356157011113, modulo which
f0 factors into an irreducible polynomial of degree 3 and three linear polynomials.
If we apply the method given in §3.3, we find another polynomial f2, written
below, that allows to complete Diagram 5. Furthermore, the largest coefficient
in absolute value of f2 is less than 1.45×√

p2.

f2 = 17678995119854355812622458X3 + 43866070922692969501665811X2

−9170914436870097936201563X − 17678995119854355812622458

TNFS Factory with Conjugation. In [15], a 521-bit discrete logarithm compu-
tation was carried out on Fp6

1
with p1 = 135066410865995223349603927 using

TNFS where polynomials were chosen with the Conjugation method as:

h = X3 −X + 1,

f0 = X4 + 1 = ResY (X
2 + 1 +XY, Y 2 − 2),

f1 = 11672244015875X2 + 1532885840586X + 11672244015875

In this case, the tower K0 ⊃ M ⊃ Kh ⊃ Q corresponds to the chain of Galois
groups Z/2Z < (Z/2Z)2 < (Z/2Z)3 < (Z/2Z)3 ⋉ (Z/3Z). We can also write this
chain as ⟨α⟩ < ⟨α, β⟩ < ⟨α, β, γ⟩ < ⟨α, β, γ, σ⟩, with α2 = β2 = γ2 = σ3 = 1 and
the only non-abelian relation being ασ = σ2α. The GK0 -cosets can be written as
GK0β{0,1}γ{0,1}σ{0,1,2}, the GM -cosets can be written as GMγ{0,1}σ{0,1,2}, the
GKh-cosets can be written as GKhσ{0,1,2}. The multiplication by τ = βσ on the
right has a single orbit of size 3 on the GKh -cosets, which splits into two orbits,
still of size 3, on the GM -cosets. These become two orbits of size 6 on the GK0-
cosets. The only elements of G with this pattern are τ and τ−1, which makes
for 1

12 of the possible Frobenius elements. This correctly predicts the fraction of
primes pi for which this number field tower works in a Factory setting.

For example, we can consider p2 = p1+456, modulo which the polynomial h
is irreducible, Y 2 − 2 has a root, and f0 factors into two irreducible polyno-
mials of degree 2. The Conjugation method yields f2 := 11622094549025X2 −
115506194478X + 11622094549025, which completes Diagram 5. Its largest co-
efficient in absolute value is less than 1.01×√

p2.

4 Asymptotic analysis

This section provides the complexities of the one-off step and the per-field step in
each of the NFS variants that we combine with Factory. In Table 3 we compare
our results to the analyses found in the literature for the non-Factory NFS
variants [4,26,27,36,39]. Recall that our common setting is as in §3.1, and that
as far as analysis goes, we will assume the classical NFS heuristics of §2.3.

Notations. For Q a finite field size, we let cA, c0, c∗ be constants such that
A = LQ(1/3, cA) denotes the relation search space, i.e., the number of el-
ements ϕ tested for smoothness in K0. The smoothness bounds are denoted
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B0 = LQ(1/3, c0) for K0 and B∗ = LQ(1/3, c∗) for all the Ki with i > 0. We
let N0 (resp. N∗) denote bounds on the norms of the sieve elements norms once
mapped to K0 (resp. to Ki for i > 0). In all variants, parameters are such that
N0 = LQ(2/3, cN0) (likewise for N∗) where cN0 and cN∗ depend on cA and other
parameters. By Proposition 1, an element in K0 of norm N0 is B0-smooth with
probability P0 = LQ(1/3, cN0

/(3c0))
−1. Likewise, for other fields Ki we define

P∗ and we have P∗ = LQ(1/3, cN∗/(3c∗))
−1.

Methodology. The one-off step is performed by a sieve algorithm that de-
tects elements that are B0-smooth once mapped to K0. The asymptotic com-
plexity of this step is A1+o(1). The number of elements stored for later use is
the number of sieve elements that are B0-smooth once mapped to K0, that is
AP0 = LQ(1/3, cA − cN0

/(3c0)).
The per-field step starts by detecting which of the stored elements are B∗-

smooth once mapped to Ki. We can perform this detection with either a batch
technique, or by smoothness tests on each element using the ECM algorithm.
The batch technique has quasi-linear complexity in the stored table size, and
the complexity of the ECM algorithm to test an element for B-smoothness with
B = LQ(1/3) is LQ(1/6). Regardless of the technique used, the complexity of
detecting which of the stored elements are B∗-smooth is (AP0)

1+o(1), which is
similar to the complexity in memory of the algorithm.

The per-field step proceeds with a sparse linear algebra phase that costs (B0+
B∗)

2+o(1), and an individual logarithm computation of negligible complexity
compared to the two previous steps. The complexity of the per-field step is
(AP0 + (B0 +B∗)

2)
1+o(1).

We want to minimize the complexity of the per-field step (Equation (2) be-
low). Some necessary conditions apply: we need enough equations for the linear
algebra step (Equation (3) below), and we want to balance the costs of smooth-
ness detection and linear algebra, as is done in many asymptotic analyses of NFS
(Equation (4) below). This rewrites as:

minimize: max(c0, c∗) (2)
under conditions

cA − cN0
/(3c0)− cN∗/(3c∗) ≥ max(c0, c∗) (3)

and 2max(c0, c∗) = cA − cN0
/(3c0) (4)

where cN0
and cN∗ are polynomials of degree at most one in cA, and do not

depend on c0 and c∗.
If the system above has a solution, then it has a solution with c0 = c∗.

Indeed, if c0 > c∗, then replacing c∗ by c̃∗ = c0 satisfies Conditions (3) and (4),
and provides the same minimum value given by (2). On the other hand, if c0 < c∗,
then replace c0 by c̃0 = c∗ and replace cA by c̃A < cA so that the right-hand
side of Equation (4) does not change. This can be done because cA − cN0

/(3c0)
increases as a function of cA. Then Condition (3) still holds and the minimum
value in (2) is unchanged.
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Therefore we may take B0 = B∗ = LQ(1/3, c) and slightly rearrange the
system into the following equivalent form.

minimize: c (5)
under conditions

3c2 ≥ cN∗ (6)

and 6c2 − 3cAc+ cN0
= 0 (7)

4.1 NFS Factory and TNFS Factory

Theorem 1 presents the complexities of NFS Factory and TNFS Factory in the
large characteristic, boundary, and medium characteristic cases.

Theorem 1 (Complexities of NFS Factory and TNFS Factory). Let
α ∈ (1/3, 1) and cp > 0 be two constants. In the common setting of §3.1, we
study the regime where inputs Q and n are such that Q1/n = LQ(α, cp). Let f0
(and h for the tower variants) be polynomials constructed for the one-off step by
one of the methods in 3.3. For a proportion σ of the prime numbers pi such that
Q ≤ pni ≤ Q · Qo(1), the Factory algorithm succeeds. The proportion σ can be
computed along the lines of §3.4 (either with Galois theory or empirically). The
one-off step costs LQ (1/3, cA), the storage cost is LQ (1/3, 2c), and the per-field
cost is LQ (1/3, 2c). The values of cA and c depend on the characteristic size and
the algorithm employed:

1. Large characteristic: 2/3 < α < 1.
(a) NFS Factory. f0 is constructed by the GJL method. The optimal values

are 2c = 2((2 +
√
6)/6)2/3 ≈ 1.64, and cA = c

√
6 ≈ 2.01.

2. Boundary: α = 2/3 (hence Q1/n = LQ(2/3, cp)).
(a) NFS Factory with GJL. Under the condition cp ≥ γ, the situation is

identical to the case above, the threshold value γ being
√
6c
2 ≈ 1.11.

(b) NFS Factory with Conjugation. Let t be a fixed integer that denotes
the sieve dimension (i.e., degx ϕ = t− 1). f0 is constructed by the Con-
jugation method. The optimal value for c is the smallest real solution of
Equation (8), resulting in cA = 6cptc

2/(3cptc− 2).

18cptX
3 − 24X2 − 3c2pt(t− 1)X + 2cp(t− 1) = 0 (8)

3. Medium characteristic: 1/3 < α < 2/3.
(a) NFS Factory. f0 is constructed by the Conjugation method. The opti-

mal values are 2c = 2((1 +
√
2)/3)2/3 ≈ 1.73 and cA = 2c

√
2 ≈ 2.45.

(b) TNFS Factory. h and f0 are constructed by the Conjugation method.
The degree of h is denoted η and is a non trivial factor of n. Denote
κ = n/η. In the optimal case where κ = 1/cκ(log(Q)/ log log(Q)))1/3+o(1)

with cκ =
√
2((2 + 2

√
2)/3)1/3 ≈ 1.66, the optimal values are 2c =

((2 + 2
√
2)/3)2/3 ≈ 1.37, and cA = 2c

√
2 ≈ 1.94.
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Table 3 recapitulates the complexities announced in Theorem 1 together with
the previous state-of-the-art complexities of NFS and its variants.

Remark 1. It is worth noting that if the large characteristic regime of Theorem 1
is pushed towards α = 1, the asymptotic complexities of the one-off step and
the per-field step for large characteristic finite fields are the same as in NFS
Factory for prime fields. However, the parameter values that allow to reach the
minimal complexity for the per-field step are not. Specifically, our parameter γ
in the proof of Theorem 1 and the corresponding parameter 1/δ in [3, page 98]
are different.

Proof. We prove the complexity announced for NFS Factory for large character-
istic finite fields in Theorem 1. The rest of the proof is in in Appendix A, since
it follows the same patterns.

We study the case where Q1/n = LQ(α) with 2/3 < α < 1. The case of finite
fields with α = 1, i.e., prime finite fields, is detailed in [3, §7.2]. The Generalized-
Joux-Lercier method is detailed in §3.3 and the degrees and coefficient sizes of the
polynomials it outputs are given by Table 6. The sieve for the one-off step is per-
formed in dimension 2, because deg ϕ = 1 turns out to be the best choice for large
characteristic finite fields. It follows that ∥ϕ∥∞ ≤

√
A. Furthermore, we set a con-

stant γ such that d = 1/γ (log(Q)/ log(log(Q)))
1/3. Following the bound given in

§2.3, the upper bounds on the norms can be expressed as N0 = Õ
(
A(d+1)/2

)
=

LQ (2/3, cA/(2γ)) and N∗ = Õ
(
Ad/2Q1/(d+1)

)
= LQ (2/3, cA/(2γ) + γ), from

which we obtain the expressions of cN0
and cN∗ .

We detail the resolution of the system that minimizes Constraint (5), while
verifying Conditions (6), and (7) in this variant. Thanks to Equation (7), we get
cA = (12c2γ)/(6cγ−1). Substituting cA in Condition (6) we get (−6cγ2+(18c3+
1)γ−9c2)/(6cγ−1) ≥ 0. The discriminant of the numerator is 324c6−180c3+1,
which has one negative real root and one positive real root, namely ρ = ((2 +√
6)/6)2/3. If 0 < c < ρ, then the numerator of Condition (6) is negative for

all γ, which implies that the denominator must be negative, contradicting the
fact that cA > 0. Therefore, c ≥ ρ. In fact, c = ρ is a valid solution. The solution
to the system is given by

c =

(
2 +

√
6

6

) 2
3

≈ 0.82, γ =

√
6c

2
≈ 1.11, cA = c

√
6 ≈ 2.01.

The complexity of the one-off step is LQ(1/3, cA) ≈ LQ(1/3, 2.01), and the
complexity of the per-field step is LQ(1/3, 2c) ≈ LQ(1/3, 1.64).

Still in the context of the common setting given in §3.1, we want to know
how much leeway we have in the choice of pi. The size of pi only affects N∗.
As long as pni ≤ Q1+o(1), it is easy to see that the asymptotic results above are
unchanged. ⊓⊔

Remark 2 (Comparisons at the boundary). Multiple algorithms compete in the
boundary case. In addition to the complexities given by Theorem 1, other state
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of the art results are usual (non-Factory) NFS, as well as the MNFS variant.
Both can use either the GJL or Conjugation constructions [4, 36]. Their costs
are:

– NFS with GJL: LQ

(
1/3, (64/9)1/3

)
≈ LQ(1/3, 1.92) if cp ≥ (8/3)1/3 ≈ 1.39

– MNFS with GJL: LQ(1/3, (2(46 + 13
√
13)/27)1/3) ≈ LQ(1/3, 1.90) if cp ≥

((7 + 2
√
13)/6)1/3 ≈ 1.33.

– NFS with Conjugation: LQ

(
1/3, 2/(cpt) + 2

√
1/(cpt)2 + cp(t− 1)/6

)
.

– MNFS with Conjugation: LQ

(
1/3, 2/(cpt) + 2

√
5/(9(cpt)2) + cp(t− 1)/6

)
.

Figure 7 depicts the interplay of these different results, together with the com-
plexities of Theorem 1.

Fig. 7. Asymptotic complexities of NFS, MNFS, and NFS Factory when p =
Lpn(2/3, cp). The complexities are Lpn(1/3, c) and c is a function of cp in each case. Red
lines (resp. blue curves) are for algorithms that use GJL (resp. Conjugation) method.

4.2 SNFS Factory and STNFS Factory

SNFS is designed for finite fields where the characteristic p is a sparse prime,
where the adjective “sparse” is taken here with the ad hoc meaning that we
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can write p = P (u), where P is a polynomial of small degree and coefficients
(subject to specific size constraints), and u is an integer. Theorem 2 presents
the complexities of SNFS in large and medium characteristic finite fields and of
STNFS Factory.

Theorem 2 (Complexities of SNFS Factory and STNFS Factory). Let
α ∈ (1/3, 1) be a constant. In the common setting of §3.1, we study the regime
where inputs Q and n are such that Q1/n = LQ(α). Let f0 (and h for the
tower variant) be polynomials constructed for the one-off step by one of the
methods of §3.3. For a proportion σ of a set P of sparse prime numbers pi, the
Factory algorithm succeeds. The one-off step costs LQ (1/3, cA), the storage cost
is LQ (1/3, 2c), and the per-field cost is LQ (1/3, 2c). The values of cA and c
depend on the characteristic size and the algorithm employed:

1. Large characteristic: 2/3 < α < 1:
(a) SNFS Factory. Let λ = 1/(cλn) · (log(Q)/ log log(Q))1/3 with cλ =

(8/9)1/3 ≈ 0.96, and u an integer close to Q1/(nλ). The polynomial f0 is
constructed with the Joux-Pierrot first approach method. The prime pi
is chosen from the set P = {P (u) | P ∈ Z[x], P (u) is prime, deg(P ) =

λ + o(1), and ∥P∥∞ = O(1)}. A proportion σ = #Gal(f0)n
#Gal(f0)

of these
primes work. The optimal values are 2c = (8/3)1/3 ≈ 1.39 and cA =
2(8/9)2/3 ≈ 1.85.

2. Medium characteristic: 1/3 < α < 2/3. Let λ > 1 an integer and P a
polynomial of degree λ and with coefficients in O(1). In both cases below, the
prime pi is chosen from the set P = {P (u) | P (u) is prime, Q ≤ P (u)n ≤
Q ·Qo(1)}.
(a) SNFS Factory. The polynomial f0 of degree λn is constructed with

the Joux-Pierrot second approach method. Based on Assumption 1, a
proportion σ = 1

n of the primes in P work. The optimal values are
c ≥ c̃ = ((λ + 4 + 2

√
2λ+ 4)/(9λ))1/3 and cA = 2c(1 + 2λ/(X − 2λ)),

with X = (9c3 + 1)λ − 2λ + (−72c3λ + (81c6 − 18c3 + 1)λ2)1/2. When
λ ≥ 4, we must have c > c̃. See Appendix A for more details.

(b) STNFS Factory. The polynomials h and f0 are constructed with the
the Joux-Pierrot second approach method. The degree of h is denoted η
and is a non trivial factor of n. Denote κ = n/η. Based on Assump-
tion 1, a proportion σ = 1

κ · #Gal(h)η
#Gal(h) of the primes in P work. The

optimal values are obtained when κ = 1/cκ(log(Q)/ log log(Q))1/3+o(1)

(cκ is given in Appendix A), and are as follows. c ≥ c̃ = ((λ + 4 +
2
√
2λ+ 4)/(18λ))1/3, cA = 2c(1+ 2λ/(X − 2λ)), with X = (18c3 +1)l+

(−144c3l + (324c6 − 36c3 + 1)l2)1/2. When λ ≥ 3, we must have c > c̃.
See Appendix A for more details.

Proof. We give the proof of Theorem 2 in Appendix A. ⊓⊔

Table 3 recapitulates the complexities announced in Theorem 2 together with
the previous state-of-the-art complexities of SNFS and its variants. Moreover,
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Tables 8 and 9 present the complexities of SNFS and STNFS in the medium
characteristic case for various values of λ.

Remark 3 (Comparisons at the boundary). Our study indicates that coupling
Factory with SNFS in the boundary case Q1/n = LQ(2/3, cp) does not always
yield better complexities. While reducing the complexity of the main phase (siev-
ing and linear algebra in each fields), it leads to an increase in the complexity of
the individual logarithm step. Consequently, for certain ranges of cp, the resulting
complexity becomes significantly large. We omit the analysis for this case.

λ SNFS (without Factory) SNFS Factory
one-off per-field

λ = 2 2.20 2.45 1.73
λ = 3 2.12 2.50 1.58
λ = 4 2.07 2.16 2(1.1× c̃) ≈ 1.64
λ = 5 2.04 2.15 2(1.1× c̃) ≈ 1.57

Table 8. Asymptotic complexities (in LQ(1/3, ·)) of SNFS (without Factory) and
the two steps of SNFS Factory (case 2a of Theorem 2) in medium characteristic finite
fields. When λ ≥ 4, we adjust the parameters to keep the individual logarithm step
negligible. c̃ is given in §A.4.

λ STNFS without Factory STNFS Factory
one-off per-field

λ = 2 1.75 1.94 1.37
λ = 3 1.68 1.73 2(1.1× c̃) ≈ 1.38
λ = 4 1.64 1.71 2(1.1× c̃) ≈ 1.30
λ = 5 1.62 1.70 2(1.15× c̃) ≈ 1.31

Table 9. Asymptotic complexities (in LQ(1/3, ·)) of STNFS (without Factory) and
the two steps of STNFS Factory (case 2b of Theorem 2) in medium characteristic finite
fields of composite extension degree and appropriately sized factors. When λ ≥ 3, we
adjust the parameters to keep the individual logarithm step negligible. c̃ is given in
§A.4.

4.3 Conclusion of the asymptotic analysis

In Appendix B, we prove that the individual logarithm step is negligible com-
pared to the per field step in all the variants discussed in this section. Therefore,
the complexities presented here represent the overall asymptotic complexities
for Factory in each case. Table 3 provides a summary of the complexities for
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NFS, all relevant variants included. We see that the Factory approach reduces
the complexity of computing discrete logarithms for a wide range of finite fields,
at the expense of a one-off computation. In our analysis, we choose to minimize
the complexity of the per-field step at the expense of a larger one-off step, but
other trade-offs are possible.

Covering an arbitrary high density of prime numbers with several one-off steps.
In each NFS Factory variant, a given one-off step allows to target a constant
proportion of finite fields of a given extension degree and size (see §3.4). If several
one-off steps are carried out, the number of “missed” primes decreases exponen-
tially, and thus nearly all prime numbers can be covered without affecting the
asymptotic complexity. For example assume that the ratio of successful primes
is consistently at least 1

2n and we do 2 logQ different one-off steps (which is well
within the tolerance of the subexponential complexities). The density of missed
primes (as Q tends to infinity) is then bounded by (1− 1/(2n))2 logQ ≤ Q−1/n,
which means that only very few primes around Q1/n are missed.

Possible optimizations if the target fields are known in advance We assume here
that we slightly depart from the common setting of §3.1 in that the target finite
fields are known before the one-off computation begins. Following the reasoning
above, it is possible to adaptively choose polynomials so that only a few one-off
steps are needed to cover all primes. Additionally, the one-off and per-field steps
can conceivably be merged in a single computation, which removes the need to
store the output of the first sieve. The techniques of [7] would apply in this
situation.

Logjam-Factory attack: multiple targets in each finite field. It is possible to com-
bine a Logjam attack as in [1] with Factory in order to target not one, but
several targets in several finite fields. After performing the one-off and per-field
steps on a finite field, we learn the logarithms of the factor base elements related
to some target field. Subsequently, an individual logarithm step recovers the
logarithm of any target in this field with a negligible cost compared to the per-
field step. Specifically, we can recover the logarithms of LQ(1/3, c1 − c2) targets
without increasing the per-field step’s asymptotic complexity, where LQ(1/3, c1)
and LQ(1/3, c2) are the respective complexities of the per-field step and the
individual logarithm steps.

5 Estimation of practical cost

The purpose of this section is to compare computational cost estimates of TNFS
and TNFS Factory on 1024-bit finite fields with extension degree equal to 6.

Setup. The factors of n = 6 are taken equal to η = 2 and κ = 3 since this
setting is optimal both for TNFS (compared to other non-Factory approaches)
and TNFS Factory (compared to other Factory approaches). To see this, denote
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A the sieve space, and Q the finite field size. Intuitively, relying on the norm
bounds of §2.3, if κ = 2, then the product of the norms of a sieve element in
both number fields has order of magnitude N2 := A3Q1/2. On the other hand,
if κ = 3, we obtain N3 := A9/2Q1/6. Hence N2/N3 = A−3/2Q1/3. For Q ≈ 21024,
the sieve space A is certainly smaller than 2100, hence, N2/N3 ≥ 2190 ≫ 1
Therefore (η = 2, κ = 3) is better.

Let p be a prime number such that p6 has roughly 1024 bits.

Polynomial selection. Previous records such as [15, 38] suggest that the Conju-
gation method (§3.3) performs best in practice. Our analysis supports this and
indicates that it should be the best method in practice for TNFS Factory as
well. Let h ∈ Z[X] a degree 2 irreducible polynomial with small coefficients,
and f0 and f1 in Z[X] of respective degrees 6 and 3, output by the Conjuga-
tion method. Following Table 6, we assume that ∥h∥∞ = 1, ∥f0∥∞ = 1, and
∥f1∥∞ =

√
p. (This is supported by reported experiments: in [15], these values

were respectively equal to 1, 1, and approximately 1.0043 × √
p.) The number

fields of Diagram 4 are defined as Kh := Q(ι), K0 := Q(ι, α0) and K1 := Q(ι, α1),
where ι, α0 and α1 are the respective roots of h, f0 and f1,

One-off step for TNFS Factory and relation collection for TNFS: The special-q
technique [37]. The aim of the one-off step in TNFS Factory is to find elements
ϕ(x, ι) = a(ι) − b(ι)x such that ϕ(α0, ι) is B-smooth, where B is a smoothness
bound, and a and b are polynomials of degree at most η − 1. The aim of the
relation collection in TNFS is to find similar ϕ such that both ϕ(α0, ι) and
ϕ(α1, ι) are B-smooth. In both cases, a special-q technique should be used to
divide the search space into groups of elements that share a common prime
ideal q in their factorization in one of the number fields.

For TNFS Factory, given an ideal q ⊂ OK0 , a sieve algorithm is applied
to detect which of the elements ϕ(α0, ι) ∈ q are B-smooth (not counting the
ideal q in the factorization). Furthermore, the sieve algorithm only considers
vectors (a, b) which, as a 2η-dimensional vector, is within a Euclidean ball of
some radius R. If the Euclidean norm of (a, b) is written r, we have ∥ϕ∥∞ ≤ r,
and by §2.3 we estimate the norm of ϕ(αi, ι) by Ni(r) := rη deg(fi)∥fi∥η∞, for
i = 0, 1 (here we assume ∥h∥∞ = 1, and ignore the extra combinatorial factor).
Moreover, let V2η(r) be the volume of the 2η-dimensional ball of radius r, and
ρ be the Dickman-de Bruijn function. We estimate the number of B-smooth
elements among all elements that are divisible by q as:∫ R

r=0

ρ

(
log(N0(r))− log(q)

log(B)

)
dV2η(r).

In turn, the total number of B-smooth elements (i.e., the output size of the
one-off step) is the product of the above estimate by the number of special-q
considered. Furthermore, we estimate the computational cost of the one-off step
by the number of special-q considered times the cost of the sieve algorithm per
special-q, which we approximate as V2η(R) log log(B).



Discrete Logarithm Factory 25

For TNFS, a sieve is performed in both number fields to detect elements that
are B-smooth in both number fields. Alternatively, it is also possible to combine a
sieve algorithm on the special-q side with a batch smoothness detection algorithm
on the other side. The number of expected relations for q (assuming it is on the
K1 side) is: ∫ R

r=0

ρ

(
log(N0(r))

log(B)

)
ρ

(
log(N1(r))− log(q)

log(B)

)
dV2η(r).

Again, this must be multiplied by the number of special-q considered to get the
total number of expected relations, and the cost of the relation collection step
is the number of special-q times 2V2η(R) log log(B) if a sieve is performed on
both sides. If a sieve is performed on one side and batch smoothness detection
on the other side, then this estimate drops to the number of special-q times
V2η(R) log log(B), plus a quasi-linear cost in the number of smooth elements
output by the sieve.

Computation per field for TNFS Factory and linear algebra for TNFS. The per-
field step of TNFS Factory starts by detecting which of elements stored after
the one-off step are B-smooth in Ki. This can be done with batch smoothness
detection with a quasi-linear cost in the number of the stored elements. The
total number of relations produced is estimated as:∫ R

r=0

ρ

(
log(N0(r))− log(q)

log(B)

)
ρ

(
log(N1(r))

log(B)

)
dV2η(r).

Then a sparse linear algebra phase computes the discrete logarithms of the factor
basis for a cost that we estimate as (2 Li(B))2, where Li is the logarithmic integral
function. Similarly, the linear algebra cost for TNFS is (2 Li(B))2.

We neglect the cost of the individual logarithm step in both cases. Anyway
this cost is not only small, but also of roughly identical cost with both algorithms.
Appendix B supports this statement.

Best parameters. For TNFS Factory, we searched for parameters that minimize
the cost of the per-field step, under the condition of having enough relations,
i.e., more than 2Li(B). We denote [qmin, qmax] the special-q range. The best
parameters we found are R = 196, qmin ≈ 235.8, qmax ≈ 238.3, B = 233. As a
consequence, our calculations show that the estimated cost of the one-off step
is 267.8, and the estimated cost of the per-field step is 260.8.

For TNFS without Factory, we searched for parameters that minimize the
sum of the costs of the relation collection and the linear algebra steps, under
the condition of having enough relations. Sieving on both sides gave the better
estimated cost. The best parameters we found are R = 138, qmin ≈ 233.7, qmax ≈
236.3, B = 235. We computed that this implies an estimated cost of TNFS around
264.4.
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What is the value of these estimates? Estimating the practical cost of NFS and
its variants is a difficult problem and we do not claim to get precise results in
this section, far from it.

It would be possible to be more accurate. Actual computations in the 1000-
bit range are out of reach at this point, but a middle ground could be to make
the simulation more accurate by basing it on sample runs that closely follow the
expected form of the input of the different stages of the algorithm. Unfortunately,
quite a few questions are unanswered at this point about how to correctly model
the inputs, and about the accuracy of the simulation. Further research on this
topic is needed.

Nevertheless, our approach (which follows, for example, what is done in [24])
tells more than if we content ourselves with the L(1/3, c) estimates only, as is
too often encountered. Furthermore, we believe that the qualitative comparison
of TNFS versus TNFS Factory is likely to be modeled correctly by our approach.
In that sense, since 267.8/(264.4− 260.8) ≈ 11, our estimation suggests that when
considering some tens of finite fields Fp6 of size 1024 bits, TNFS Factory is more
advantageous than applying TNFS on each of the target finite fields.

6 Conclusion

The Factory variant for NFS brings a shift in the attacker’s approach by targeting
a specific size, such as 1024 bits, rather than a particular finite field. Through a
costly one-time computation, the attacker gains the ability to efficiently target
finite fields of the same size. Our practical estimates suggest that in the kilobit
range, this Factory approach is more efficient than the non-Factory approach if
several tens of finite fields are considered.

A given one-off step is only able to target a constant proportion of the finite
field characteristics, but we show how this proportion can be computed. By
combining a few one-off steps, it is possible to reach almost all primes without
affecting the asymptotic complexity significantly.

Furthermore, the flexibility provided by the potential trade-off between the
costs of the one-off and the per-field steps enables accommodation of the avail-
able computation power and memory. This allows for better optimization based
on the specific resources at hand. This technique can be leveraged to accelerate
discrete logarithm computations for desired finite field sizes, perhaps even in
software like SageMath or Magma.

A drawback of Factory in practical use is its subexponential memory com-
plexity. The required table for storage grows subexponentially in size. However,
if the attacker has prior knowledge of the specific finite fields being targeted
(not just their size), it is possible to alleviate this in the manner of the Factoring
Factory algorithm, as explored in [7]. The memory requirements then become
equivalent to those for NFS and its variants.
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Remark 4. Unlike the Conjugation case that benefits from increasing the sieve
dimension t, analysis shows that such a strategy does not pay off with GJL.

The boundary case with Conjugation (case 2b). The polynomials output
by the Conjugation method have degrees 2n and n, and coefficient sizes as in
Table 6. Let t ∈ Z be the sieve dimension. The norms of the sieve elements
are N0 = Õ

(
A(2n)/t

)
= LQ (2/3, 2cA/(cpt)) and N∗ = Õ

(
An/tQ(t−1)/(2n)

)
=

LQ (2/3, cA/(cpt) + (t− 1)cp/2). The solution of the system that minimizes Con-
straint (5) while verifying Conditions (6) and (7) as function of cp and t is c the
largest real solution of equation:

18cptX
3 − 24X2 − 3c2pt(t− 1)X + 2cp(t− 1) = 0 (9)

and cA = 6cptc
2/(3cptc − 2). The asymptotic complexity of the one-off (resp.

per-field) step is LQ(1/3, cA) (resp. LQ(1/3, 2c)).
We want to know how much leeway we have in the choice of pi. The size of

pi only affects N∗. If we change the asymptotic expression of pi to pni ≤ Q1+o(1)

(instead of pni ≈ Q), then N∗ merely increases to Õ
(
An/tQ(t−1)/(2n)po(1)

)
. Since,

po(1) is negligible compared to any function in LQ(2/3), the asymptotic results
above are unchanged. (A similar observation applies to the other cases as well.)

A.2 The medium characteristic case 1/3 < α < 2/3 in Theorem 1

NFS Factory (case 3a). Let t = δn (log(Q)/ log(log(Q)))
−1/3+o(1) be the

sieve dimension, for a positive constant δ. As Q tends to infinity, t also tends
to infinity, so that the constraint that t ∈ Z is absorbed by the o(1) in the
exponent. The coefficients of the sieve elements are bounded by A1/t. Their
norms can be expressed as N0 = Õ

(
A(2n)/t

)
= LQ (2/3, 2cA/δ) and N∗ =

Õ
(
An/tQ(t−1)/(2n)

)
= LQ (2/3, cA/δ + δ/2). If we inject these expressions of

cN0
and cN∗ in system given by Constraint (5) and Conditions (6), and (7), we

obtain

c =

(
1 +

√
2

3

)2/3

≈ 0.87, δ =
2
√
2

c
≈ 2.63, cA = 2c

√
2 ≈ 2.45,

from which the claimed results follow.

TNFS Factory (case 3b). We only consider the case where η and κ are
coprime. The general case is similar. Let κ = 1/cκ(log(Q)/ log log(Q)))1/3+o(1)

with cκ a constant. As Q tends to infinity, κ also tends to infinity, so that the
constraint that κ is an integer divisor of n can be absorbed by the o(1) in the
exponent, provided of course that the input is such that n has such a factor. The
sieve is done over elements of the form a(ι)X−b(ι) ∈ OKh

[X] with a(ι) and b(ι) in
Z[ι] of degree at most η−1. According to the norm bounds of §2.3 (with degx ϕ =
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1 and degy ϕ = η − 1), we have Ni(ϕ) = Õ(∥ϕ∥η deg(fi)
∞ ∥fi∥η∞∥h∥(η−1) deg(fi)

∞ )

for all i ≥ 0. More precisely, since ∥ϕ∥∞ ≤ A1/(2η), we get N0 = Õ(Aκ) =

LQ(2/3, cA/cκ) and N∗ = Õ(Aκ/2Q1/(2κ)) = LQ(2/3, cA/(2cκ) + cκ/2). These
expressions of cN0 and cN∗ yield the following optimum:

c =
1

2

(
2 + 2

√
2

9

) 2
3

≈ 0.69, cκ = 2
√
c ≈ 1.66, cA = 2c

√
2 ≈ 1.94.

A.3 The large characteristic case in Theorem 2 (case 1a)

We consider the polynomials given by the first approach of Joux-Pierrot, as
in §3.3. Hence N0 = Õ(An/tQ(t−1)/(nλ)) and N∗ = Õ(Aλn/t log(n)λ(t−1)). Let
λ = 1/(cλn)(log(Q)/ log log(Q))1/3 with cλ a constant. The norm of the sieve
elements are N0 = LQ(2/3, cλ) and N∗ = LQ(2/3, cA/(2cλ)), since log(n)λ is
negligible compared to LQ(αp − 2/3), and αp − 2/3 ≤ 1/3 < 2/3. From Con-
dition (7) we get cA = 2c + cλ/(3c). Substituting cA in Condition (6), we get
cλ ≥ 6c2/(18c3−1). For a given value c, it is best to choose the smallest possible
value of cλ in order to minimize cA, hence cλ is set to cλ = 6c2/(18c3−1). More-
over, c can be chosen close to zero. In return, cA grows to infinity as c tends to
zero. We choose c to minimize cA, and get

c =

(
1

3

)1/3

≈ 0.69, cλ =

(
8

9

)1/3

≈ 0.96, cA = 2

(
8

9

)2/3

≈ 1.85.

A.4 The medium characteristic case 1/3 < α < 2/3 in Theorem 2

SNFS Factory (case 2a). The polynomials are chosen with the second ap-
proach of the Joux-Pierrot method of §3.3. Hence N0 = Õ(Aλn/t log(n)λ(t−1))

and N∗ = Õ(An/tQ(t−1)/(nλ)). We set t = δn(log(Q)/ log log(Q))−1/3+o(1). The
norm of the sieve elements are N0 = LQ(2/3, λcA/δ), since log(n)λ(t−1) is neg-
ligible compared to LQ(2/3), and N∗ = LQ(2/3, cA/δ + δ/λ). A solution of the
system is:

c ≥ c̃ =
(

λ+4+2
√
2λ+4

9λ

)1/3
, cA = 6c2δ

3cδ−λ , δ =
λ(9c3+1)+

√
−27λc3+λ2(81c6−18c3+1)

6c .

When λ ∈ {2, 3}, we set c = c̃. However, when λ ∈ {4, 5}, only the relation
collection and linear algebra steps of the per-field step can reach complexity
LQ(1/3, c̃). As we show in Appendix B, the individual logarithm step is unfor-
tunately more expensive, and we need to take c somewhat larger than c̃ in order
to keep the individual logarithm step negligible. Table 8 shows the values taken
for c for various values of λ. The complexity of the one-off step is LQ(1/3, cA),
and the complexity of the per-field step is LQ(1/3, 2c).
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STNFS Factory (case 2b). The Special Tower Number Field Sieve targets
medium characteristic finite fields with sparse characteristic p, and composite
extension degree n = κη. Let κ = 1/cκ(log(Q)/ log log(Q))1/3+o(1) for some
constant cκ to be determined. Consider pi = P (u), where P is a polynomial
of degree λ with small coefficients, and u ≈ Q1/(λn) an integer. Again we
assume that κ and η are coprime. The polynomials are chosen with the sec-
ond approach of the Joux-Pierrot method as in §3.3. The bound of §2.3 gives
N0 = Õ(Aλκ/2 log(κ)λ) = LQ(2/3, λcA/(2cκ)) and N∗ = Õ(Aκ/2Q1/(λκ)) =
LQ(2/3, cA/(2cκ) + cκ/λ). The solution of the system related to Equations (5),
(6), and (7) is

c ≥ c̃ =
(

λ+4+2
√
2λ+4

18λ

)1/3
, cA = 12c2cκ

6ccκ−λ

cκ =
λ(18c3+1)+

√
−144λc3+λ2(324c6−36c3+1)

12c .

When λ = 2, we set c = c̃. However, when λ ≥ 3, the situation is similar to
SNFS Factory, and we need to take c larger than c̃ in order to keep the individual
logarithm step negligible (see Appendix B). Table 9 shows the values taken for
c for various values of λ. The complexity of the one-off step is LQ(1/3, cA), and
the complexity of the per-field step is LQ(1/3, 2c).

B Complexity of the Individual Logarithm step

The individual logarithm step is the last one in NFS and its variants, and also the
last one inside the per-field phase in Factory, coupled or not with other variants.
We prove in this Appendix that the complexity of the individual logarithm step is
negligible compared to the rest of the per-field step for all the variants we studied.
Hence, the complexities given in Table 3 are indeed the complete asymptotic
complexities of the per-field step. The individual logarithm step consists of two
main steps: the smoothing and the descent step.

B.1 Smoothing step

The smoothing step consists in reducing the computation of the discrete loga-
rithm of the target to the discrete logarithm of another element that is B̃-smooth
once lifted to one of the number fields, where B̃ = LQ(2/3, cB̃) > B. The smooth-
ing step was improved for finite fields of composite extension degree in [2, 22].
The following lemma recapitulates the complexity of the smoothing step for
all Factory variants. This result implies that the smoothing step is negligible
compared to the complexity of the per-field, for all Factory variants.

Lemma 1. In all NFS Factory variants, the running time of the smoothing step
in Fpn to output an element B̃-smooth is Lpn(1/3, C = 31/3(23/27)2/3), where
B̃ = Lpn(2/3, cB̃) with cB̃ = (1/3)1/3(27/23)2/3. The approximated values are:
C ≈ 1.30, and cB̃ ≈ 0.77.

Proof. The lemma is a direct consequence of Corollary 6.4 and Corollary 6.5
in [22], where substituting e and d by 1 is valid for all our Factory variants. ⊓⊔
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B.2 Descent step

This paragraph is inspired from [3], where the descent step is presented for NFS
Factory in prime finite fields. We adapt the idea to other characteristic sizes and
to the different variants coupled with Factory.

After the smoothing step, the target is B̃-smooth with B̃ = LQ(2/3, cB̃) > B,
where cB̃ is as in Lemma 1. Thanks to the previous steps, we know the virtual
logarithms of the prime ideals in OK0

that are both factors of the target and of
norm below B. It remains to compute the virtual logarithms of those of norm
between B and B̃. Let q be such a prime ideal, of degree one and norm q.
Define the special-q lattice Lq of dimension 2η over Z, and of determinant q,
that corresponds to the elements (a(ι), b(ι)) such that the ideal (a(ι) − b(ι)α0)
is divisible by q. Using the LLL algorithm, compute (u0, . . . , u2η−1) a basis of
Lq where ∥ui∥∞ = Õ(p1/(2η)) for i = 0, . . . , 2η − 1. Let ξ ∈ (0, 1) a positive real
number, to be determined later. The first step of the descent step consists in
finding (a(ι), b(ι)) ∈ Lq such that :

– N0(b(ι)−a(ι)α0)
q is qξ-smooth.

– and Ni (b(ι)− a(ι)α1) is qξ-smooth.

This permits to express the virtual logarithm of q as a linear combination of
virtual logarithms of prime ideals of norm smaller than qξ. To recover the virtual
logarithm of q, it is sufficient to repeat the process on each of the ideals in the
linear combination until they are all in the factor basis.

We start by proving that the first step of the descent, i.e., finding (a(ι), b(ι))
as above, is the dominant step of the descent in terms of complexity. To descend
the ideal q to the factor basis, we construct a tree where the root is q and
the leaves are ideals in the factor basis. Each ideal that descends due to a pair
(a(ι), b(ι)) introduces at most log2(N0(b(ι) − a(ι)α0) + log2(Ni(b(ι) − a(ι)α1)
new nodes. By Corollary 6.4 in [22], both norms are smaller than Q. Hence, the
arity of the tree is less than 2 log2 Q, and its depth is smaller than the smallest
integer k such that ξk log B̃ ≤ logB. Hence, k = O((log logQ)). The number
of nodes in the tree is less than (2 log2(Q))k = exp(O(log log(Q)2)). Denote C
the complexity of the first descent of q. We prove in the following paragraph
that C = LQ(1/3). Hence, the complexity of descending q to the factor basis is
dominated by exp(O(log log(Q)2))·C = C. This process is applied on all the prime
factors of the target that are not in the factor basis, their number is in O(logQ).
In short, the complexity of the descent step is the complexity of descending q,
that is the complexity of finding (a(ι), b(ι)) as described above.

Complexity of the descent step for NFS Factory and its variants. For
µ = (µ0, . . . , µ2η−1) of infinity norm S, we look for “good” (a(ι), b(ι)) of the form
µ0u0 + . . . µ2η−1u2η−1, either by sieving or ECM tests. Hence, ∥(a(ι), b(ι))∥∞ =

Õ(Sq1/(2η)). We take S2η := LQ(1/3, s) for a positive s to be chosen. From the
bound in §2.3, we get Ni(a(ι) − b(ι)αi) = Õ((S2η)deg(fi)/2∥fi∥η∞qdeg(fi)/2), for
i = 0, 1. We assume the two following usual heuristics. The probability of each
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of the norms being qξ-smooth is the same as for a random integer of the same
size, and the qξ-smoothness probability of both norms are independent. Under
these assumptions, the probability that both norms are qξ-smooth is greater
than the probability of a random integer of size the product of the norms being
qξ-smooth. Besides, the product of the norms divided by q is of size

N = Õ
(
(S2η)(deg(f)+deg(f1))/2∥f∥η∞∥f1∥η∞q(deg(f)+deg(f1))/2−1

)
.

Denote q = LQ(αq, cq), where 1/3 ≤ αq ≤ 2/3, with cq > c if αq = 1/3, and cq <

cB̃ if αq = 2/3, since B < q < B̃. Hence, qξ = LQ(αq, ξcq). The complexity of a
qξ-smoothness test by ECM is LQ(αq/2, (2αqξcq)

1/2). It is negligible compared
to LQ(1/3) whenever αq < 2/3, and is equal to LQ(1/3, (4ξcq/3)

1/2) if αq = 2/3.

Large characteristic descent step for Factory. Plugging the properties of the
polynomials output by the GJL polynomial selection, with η = 1, we get N =
Õ((S2)(2d+1)/2Q1/(d+1)q(2d+1)/2−1. Hence, N = LQ(2/3, s/γ+ γ+ cq/γ) if αq =
1/3, and N = LQ(αq + 1/3, cq/γ) if αq > 1/3. The asymptotic complexity of
the descent step is the inverse of the probability of N being qξ-smooth (see §2.3)
times the cost of ECM. Thus this complexity is:

– LQ

(
1
3 ,

s
3γξcq

+ γ
3ξcq

+ 1
3ξγ

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
3ξγ

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
3ξγ +

√
4ξcq
3

)
, if αq = 2

3 .

When q is small, i.e., αq = 1/3, the complexity of the descent grows as qξ

decreases, it is maximal when ξcq = c. Furthermore, the space of search of (a, b)
has to be equal to the inverse of the probability of N being qξ-smooth, which
translates into s = s/(3γξc) + γ/(3ξc) + 1/(3ξγ) after equalizing ξcq and c.
Thus, s = (γ2ξ + c)/((3cγ − 1)ξ). Taking for instance ξ = 0.999, we get the
complexity of the descent in approximately LQ(1/3, 1.19), which is negligible
compared to the smoothing step. The complexity of the descent when αq is
between 1/3 and 2/3 is upper bounded by the complexity when q is of large size,
i.e., αq = 2/3. In this last case, the complexity grows as q grows, it is maximal
when cq = cB̃ . Hence, the complexity is upper bounded by LQ(1/3, 1/(3ξγ) +

(4cB̃ξ/3)
1/2). By minimizing the last quantity in ξ, we get ξ = 1/(3cB̃γ

2)1/3. In
short, the complexity of descending q is approximately LQ(1.3, 1.28), which is
also negligible compared to the smoothing step. In conclusion, the complexity of
the descent step in NFS Factory for large characteristic finite fields is negligible
compared to the complexity of the smoothing step.

The analysis giving the best parameter choices for the other variants follows
the same idea. We omit the optimization details. Table 10 recapitulates the
asymptotic complexities for the individual logarithm step in all the variants.
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Algorithm Characteristic Smoothing Descent computation per field
Large 1.30 1.28 1.64

NFS Factory Boundary case Figure 11
Medium 1.30 1.43 1.73

TNFS Factory Medium 1.30 1.28 1.37
SNFS Large 1.30 1.06 1.39

Medium Table 12
STNFS Factory Medium Table 13

Table 10. Asymptotic complexities of the individual logarithm step and the per-field
step in NFS Factory and its variants. This table recap an approximation of c when the
complexities are expressed as LQ(1/3, c). For NFS at the boundary case, the complexity
depends on the finite field size. We refer to a figure plotting these complexities. For
SNFS in medium characteristic (with or without Tower), the complexities depend on
an integer λ. We refer to tables giving the complexities for various values of λ.

Boundary case descent step for Factory. We target finite fields Fpn
i

where pi ≈
Q1/n = LQ(2/3, cp), with cp a positive constant. When the polynomial selection
method used is GJL, the complexity analysis of the descent step is the same as for
NFS Factory in large characteristic. It is negligible compared to the smoothing
step.

When using Conjugation, instead of looking for a “good” (a, b) in Lq, we look
for a “good” vector of dimension t̃, where t̃ is a positive integer greater than or
equal to two. Hence, η = 1, the dimension of Lq is t̃ and its determinant is q.
We need to adapt the formula given for N at the beginning of this Appendix
and use instead the formula at the beginning of §2.3 with the properties of the
polynomials output by Conjugation. In short, taking S t̃ = LQ(1/3, s), we get
N = Õ((S t̃)3n/t̃Q(t̃−1)/(2n)q3n/t̃−1). Hence N = LQ(2/3, 3s/(t̃cp)+ (t̃−1)cp/2+
3cq/(t̃cp)) if αq = 1/3, and N = LQ(αq + 1/3, 3cq/(t̃cp)) if αq > 1/3. The
complexity of the descent step is then:

– LQ

(
1
3 ,

s
ξcqcp t̃

+
(t̃−1)cp
6ξcq

+ 1
ξt̃cp

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
ξt̃cp

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
ξt̃cp

+
√

4ξcq
3

)
, if αq = 2

3 .

Figure 11 plots the asymptotic complexities of different parts of Factory: the
smoothing step, the descent step for both small and large q, and the computation
in each step. We see that both the descent step and the smoothing step are
negligible with regard to the computation per field.

Medium characteristic descent step for Factory. Here the analysis is quite close
from the one at the boundary case for Conjugation. Again, we look for a “good”
vector of dimension t̃, where t̃ is taken equal to δ̃n(log(Q)/ log log(Q))−1/3+o(1).
Hence, η = 1, the dimension of Lq is t̃ and its determinant is q. Taking S t̃ =
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Fig. 11. Asymptotic complexities of some steps inside NFS Factory at the bound-
ary case. Target finite fields have characteristic p such that p = Lpn(2/3, cp). This
graph shows how c varies as a function of cp when the complexities are expressed as
Lpn(1/3, c).

LQ(1/3, s), we get N = Õ((S t̃)3n/t̃Q(t̃−1)/(2n)q3n/t̃−1). Hence we can write the
norm N = LQ(2/3, 3s/δ̃+ δ̃/2+3cq/δ̃) if αq = 1/3, and N = LQ(αq+1/3, 3cq/δ̃)
if αq > 1/3. The asymptotic complexity of the descent step depends on the size
of q, it is:

– LQ

(
1
3 ,

s
ξcq δ̃

+ δ̃
6ξcq

+ 1
ξδ̃

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
ξδ̃

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
ξδ̃

+
√

4ξcq
3

)
, if αq = 2

3 .

The hardest q to descend is the one of small size with a complexity in ap-
proximately LQ(1/3, 1.43). The descent step has a complexity that is dominant
compared to the smoothness step, but negligible compared to the per-field step.

Medium characteristic descent step for TNFS Factory. We consider Conjugation
for the polynomial selection. We get N = Õ((S2η)3κ/2Q1/(2κ)q3κ/2−1). Hence,
N = LQ(2/3, 3s/(2cκ)+cκ/2+3cq/(2cκ)) if αq = 1/3 and N = LQ(2/3, 3cq/(2cκ))
if αq > 1/3. The complexity of the descent step is:
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– LQ

(
1
3 ,

s
2ξcqcκ

+ cκ
6ξcq

+ 1
2ξcκ

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
2ξcκ

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
2ξcκ

+
√

4ξcq
3

)
, if αq = 2

3 .

The hardest q to descend is the one of large size with a complexity in approx-
imately LQ(1/3, 1.28), which is negligible compared to the complexity of the
smoothness step.

Large characteristic descent step for SNFS Factory. Plugging the properties
of the polynomials given by the Joux-Pierrot polynomial selection, we get the
norm N = Õ((S2)n(λ+1)/2Q1/(λn)qn(λ+1)/2−1). Hence, N = LQ(2/3, s/(2cλ) +
cλ + cq/(2λ)) if αq = 1/3, and N = LQ(αq + 1/3, cq/(2λ)) if αq > 1/3. The
complexity of the descent step is:

– LQ

(
1
3 ,

s
6ξcqcλ

+ cλ
3ξcq

+ 1
6ξcλ

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
6ξcλ

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
6ξcλ

+
√

4ξcq
3

)
, if αq = 2

3 .

The hardest q to descend is the one of large size with a complexity in approx-
imately LQ(1/3, 1.06), which is negligible compared to the complexity of the
smoothness step.

Medium characteristic descent step for SNFS Factory. We look for a “good”
vector of dimension t̃, where t̃ is taken equal to δ̃n(log(Q)/ log log(Q))−1/3+o(1).
Therefore, η = 1, the dimension of Lq is t̃ and its determinant is q. We use
the formula for N of §2.3, with the properties of the polynomials output by the
Joux-Pierrot method. Writing S t̃ = LQ(1/3, s), we obtain

N = Õ((S t̃)n(λ+1)/t̃Q(t̃−1)/(λn)qn(λ+1)/t̃−1).

Hence, N = LQ(2/3, s(λ + 1)/δ̃ + δ̃/λ + (λ + 1)cq/δ̃) if αq = 1/3, and N =

LQ(αq + 1/3, (λ+ 1)cq/δ̃) if αq > 1/3. The complexity of the descent step is:

– LQ

(
1
3 ,

s(λ+1)

3ξcq δ̃
+ δ̃

3ξcqλ
+ λ+1

3ξδ̃

)
, if αq = 1

3 .

– LQ

(
1
3 ,

λ+1
3ξδ̃

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

λ+1
3ξδ̃

+
√

4ξcq
3

)
, if αq = 2

3 .

As previously, the hardest q to descend is the one of large size. Table 12 presents
approximate values of the complexity for various values of λ. The complexity of
the descent step is always dominant compared to the smoothing step, but still
negligible compared to the per-field step.
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λ Smoothing Descent computation per field
λ = 2 1.43 1.30 1.73
λ = 3 1.46 1.30 1.58
λ = 4 1.33 1.30 1.64
λ = 5 1.36 1.30 1.57

Table 12. Asymptotic complexities for different part of medium characteristic SNFS
Factory. These complexities are expressed as LQ(1/3, c) and only an approximation of
c is given. The individual logarithm phase, that consists of the smoothing step and the
descent step, is always negligible with regard to the other steps in the computation per
field.

Medium characteristic descent step for STNFS Factory. With Joux-Pierrot se-
lection and the usual notations, we get, N = Õ((S2η)κ(λ+1)/2Q1/(λκ)qκ(λ+1)/2−1).
Hence, N = LQ(2/3, (λ + 1)s/(2cκ) + cκ/λ + (λ + 1)cq/(2cκ)) if αq = 1/3, and
N = LQ(αq + 1/3, (λ + 1)cq/(2cκ)) if αq > 1/3. The complexity of the descent
step depends on λ, it is:

– LQ

(
1
3 ,

s(λ+1)
6ξcqcκ

+ cκ
3ξcqλ

+ λ+1
6ξcκ

)
, if αq = 1

3 .

– LQ

(
1
3 ,

λ+1
6ξcκ

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

λ+1
6ξcκ

+
√

4ξcq
3

)
, if αq = 2

3 .

The hardest q to descend is the one of large size. Table 13 presents approx-
imate values of the complexity for different small values of λ. We see that the
asymptotic complexity of both the descent step is negligible compared to the
complexity of the smoothing step. Note that both the smoothing and the de-
scent are negligible with regard to the computation in each field when λ is lower
of equal to 4, but when λ = 5 the smoothing step starts to be dominant.

λ Descent Smoothing computation per field
λ = 2 1.26 1.30 1.37
λ = 3 1.04 1.30 1.38
λ = 4 1.06 1.30 1.30
λ = 5 1.08 1.30 1.31

Table 13. Asymptotic complexities for different part of medium characteristic STNFS
Factory. These complexities are expressed as LQ(1/3, c) and only an approximation of
c is given. The dominant step is indicated in bold.
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