
HAL Id: hal-04117298
https://hal.science/hal-04117298v1

Preprint submitted on 5 Jun 2023 (v1), last revised 14 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Discrete Logarithm Factory
Haetham Al Aswad, Cécile Pierrot, Emmanuel Thomé

To cite this version:
Haetham Al Aswad, Cécile Pierrot, Emmanuel Thomé. Discrete Logarithm Factory. 2023. �hal-
04117298v1�

https://hal.science/hal-04117298v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Discrete Logarithm Factory

Haetham Al Aswad⋆, Cécile Pierrot, and Emmanuel Thomé

Université de Lorraine, CNRS, INRIA Nancy, France.

Abstract. The Number Field Sieve and its variants are the best al-
gorithms to solve the discrete logarithm problem in finite fields. The
Factory variant accelerates the computation when several prime fields
are targeted. This article adapts the Factory variant to non-prime finite
fields of medium and large characteristic. We combine this idea with two
other variants of NFS, namely the tower and special variant. This combi-
nation leads to improvements in the asymptotic complexity. Besides, we
lay out estimates of the practicality of this method for 1024-bit targets
and extension degree 6.

1 Introduction

Context. The discrete logarithm problem in a cyclic group G with a generator
g ∈ G is the computational problem of finding an integer x modulo |G| for a
given target T ∈ G, such that T = gx. Despite the growing interest in post-
quantum cryptography, the discrete logarithm problem is still at the basis of
many currently-deployed public key protocols. This article deals with the discrete
logarithm problem in the group of invertible elements of a finite field, G =
F∗
pn , excluding small characteristic finite fields due to the existence of quasi-

polynomial time algorithms [BGJT14,GKZ14,KW22]. Therefore, our attention
is restricted here to medium and large characteristic finite fields. We recall the
usual notation1 LQ(α, c) = exp((c + o(1)) · (logQ)α(log logQ)1−α) where o(1)
tends to 0 as Q = pn tends to infinity. With this notation, a family of finite fields
of size Q and characteristic p is said to be of medium characteristic if p = LQ(α)
with 1/3 < α < 2/3, and of large characteristic if this statement holds with
2/3 < α. This latter case includes prime fields where n = 1 and p = LQ(1).

The Number Field Sieve. Initially proposed as an integer factoring algorithm in
the 90’s [LLMP90,BLP93], the Number Field Sieve (NFS) was later adapted to
the discrete logarithm problem in prime fields [Gor93], and medium and large
characteristic finite fields [JLSV06]. The NFS family includes numerous variants
to compute discrete logarithms in finite fields in time Lpn(1/3, c) for some con-
stant 0 < c < 2.3 that depends on the precise sub-case. For medium and large
characteristic finite fields, the most efficient algorithm to compute discrete loga-
rithm is some variant of NFS. We mention a few variants of interest. The special
⋆ Funded by French Ministry of Army - AID Agence de l’Innovation de Défense.
1 We use LQ(α) instead of LQ(α, c) when the value of c does not matter.

2 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

variant, SNFS [JP14] applies when the characteristic p is sparse, i.e., is the eval-
uation of a polynomial of relatively small degree and small coefficients, resulting
in a more efficient algorithm than NFS, in both medium and large characteristic
finite fields. The multiple variant, MNFS [Mat03,BP14,Pie15,SS16b] has a lower
complexity than NFS in medium and large characteristic. The Tower variant,
TNFS2 [KB16,KJ17,SS19] is more efficient than NFS in medium characteristic
finite fields when the extension degree is composite. When the characteristic is
sparse and of medium size, and when the extension degree is composite, TNFS
can be coupled with the SNFS resulting in the STNFS algorithm [KB16,KJ17].
Table 1 summarizes the asymptotic complexities of NFS and its variants. The
boundary case between medium and large characteristic area is not represented
in this table as complexities are functions of p and not constant.

Algorithm Characteristic area
Medium Large

Every finite field
NFS (96/9)1/3 ≈ 2.20 (64/9)1/3 ≈ 1.92

Multiple NFS ((72 + 32
√
6)/15)1/3 ≈ 2.16 ((92 + 26

√
13)/27)1/3 ≈ 1.90

Composite extension degree
Tower NFS ≥ (48/9)1/3 ≈ 1.75 (64/9)1/3 ≈ 1.92

Multiple Tower NFS ≥ ((3 + 4
√

(2/3))/10)1/3 ≈ 1.71 ((92 + 26
√
13)/27)1/3 ≈ 1.90

Sparse characteristic
Special NFS ≥ (64/9)1/3 ≈ 1.92 (32/9)1/3 ≈ 1.53

Sparse characteristic and composite extension degree
Special Tower NFS ≥ (32/9)1/3 ≈ 1.53 (32/9)1/3 ≈ 1.53

Table 1. Summary of the variants of NFS. All the asymptotic complexities are in
LQ(1/3, c). This table indicates the exact value and then an approximation of c in each
case. Each algorithm applies to all finite fields that satisfy the constraint expressed in
bold above it. The complexities of SNFS and STNFS for medium characteristic are
functions of on another parameter λ that is not represented in this table.

The general framework that is common to all variants of NFS is abundantly
described in the literature, and we will briefly recall it in this article. The NFS
framework sets up an algebraic context within which the target finite field Fpn is
presented in two or more distinct ways as quotient rings of number fields, bound
together in a commutative diagram. Setting up this algebraic context is referred
to as the polynomial selection, and to a large extent the polynomial selection
is the main differentiating point between most variants mentioned above. Then
smooth elements are found in a relation collection step, that permits afterwards
to solve a linear system and get the logarithm of some particular elements. Arbi-
trary discrete logarithms are reconstructed in the last step called the individual
logarithm step.
2 Sometimes referred to as the extended Tower Number Field Sieve (exTNFS).

Discrete Logarithm Factory 3

From a practical standpoint, the state of the art for the computation of
discrete logarithms in finite fields of small extension degree has been regularly
updated. In particular, recent work has shown that the TNFS variant is practical.
De Micheli, Gaudry and Pierrot [MGP21] reported in 2021 the first implementa-
tion of TNFS and performed a record computation on a 521-bit finite field with
extension degree n = 6. One year later, Robinson [Rob22] reported a record
computation using TNFS on a 512-bit finite field of extension degree n = 4.
On the “usual” NFS side, the latest record on a prime field Fp was done with
NFS in 2019 in a 795-bit finite field [BGG+20], although that computation was
a lot more massive than the one in [MGP21]. Table 2 lists some of these recent
computations. SNFS is also very practical as well, and is able to target finite
fields of much larger sizes, such as a 1024-bit prime field in [FGHT17].

Finite field Bitsize of pn Year Team
Fp 795 2019 Boudot, Gaudry, Guillevic, Heninger,

Thomé, Zimmermann
Fp2 595 2015 Barbulescu, Gaudry, Guillevic, Morain
Fp3 593 2019 Gaudry, Guillevic, Morain
Fp4 512 2022 Robinson
Fp5 324 2017 Grémy, Guillevic, Morain
Fp6 521 2021 De Micheli, Gaudry, Pierrot
Fp12 203 2013 Hayasaka, Aoki, Kobayashi,Takagi

Table 2. Discrete logarithm records [Gré17] in finite fields of various extension degrees,
performed with the Number Field Sieve. TNFS is only implemented for the Fp4 and
the Fp6 records.

Attacking one key versus attacking many keys. This article studies how the
cryptanalysis cost for several public keys evolves with the number of targeted
keys. We identify two distinct situations. When the finite field is fixed, an ad-
versary willing to compute several discrete logarithms at the same time can take
advantage of the fact that the first steps of NFS only depend on the group under
consideration, not on the specific target whose logarithm is desired. This is how
the Logjam attack [ABD+15] was carried out, by precomputing a data depend-
ing on the finite field only, and useful afterwards for all the individual logarithm
computations.

In this work, we look at the problem from a different angle. A certain finite
field bitsize is fixed, for example following a given cryptographic recommenda-
tion. Is there a more efficient way to solve the discrete logarithm problem in
several different finite fields of this given bitsize, rather than using NFS (or its
variants) on each field separately? In particular, is there a scheme where some
kind of precomputation is beneficial? A precise answer depends on whether the
set of target finite fields is known before the attack begins, which impacts the
possible uses of the attack. In both cases though, such an attack scenario is re-
ferred to as a Factory-like computation, owing to the state-of-the-art algorithms
described below.

4 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

Factoring Factory and discrete logarithm Factory. In 1993, Coppersmith pre-
sented the Factorization Factory algorithm [Cop93] to factor many numbers in
a more efficient way than applying NFS on each of the numbers. The idea is
to amortize the cost of a precomputation over many factorizations, by finding
smooth elements in a relation collection phase that is only half done but that can
be used for each of the different factorizations. With a reduction of the overall
factoring effort by more than 50%, Kleinjung, Bos and Lenstra used this idea
and managed to factor 17 Mersenne numbers [KBL14]. Coppersmith’s idea was
adapted to the computation of discrete logarithm in several prime finite fields
by Barbulescu in his PhD Thesis [Bar13].

Non-prime finite fields arise in the wild. The relevance of the existing Factory-
like methods that we just mentioned is lessened by their applicability to prime
fields only. The purpose of this article is to address this issue. Discrete logarithms
in cryptography are not restricted to prime fields. Several cryptographic proto-
cols rely on the hardness of the discrete logarithm problem in non-prime fields.
For instance, pairing-based protocols entail considering families of finite fields of
fixed extension degree. Even if we can work with prime extensions, most often
extension degrees are composite (e.g. n = 12). As an illustration, we find non
prime fields in the Elliptic Curve Direct Anonymous Attestation protocol that is
embedded in the current version of the Trusted Platform Module [TCG19]. The
emergence of SNARKs [Gro16, GWC19, CHM+20], which also require pairing
friendly curves accentuates the interest for these non-prime fields.

Our work. In this article, we generalize the discrete logarithm Factory algorithm
to finite fields of any extension degree. Several difficulties arise. The primary
challenge in this generalization lies in the need to adapt the algebraic framework
of NFS: the goal is to construct several branches of a diagram landing in several
different finite fields, but starting from the same shared branch. The way in which
this diagram is created depends very much on the polynomial selection, and thus
on the considered variant. We manage to combine the Factory idea with several
variants: NFS, TNFS, SNFS and STNFS. The second difficulty appears in the
characterization of the primes for which a given Factory algorithm can apply.
We show that this can be quantified based on the Frobenius density theorem.

For each variant that we can combine with Factory, we provide, based on
usual NFS heuristics, a new lower asymptotic complexity for the discrete loga-
rithm problem, with the requirement of a one-time precomputation that is solely
dependent on the bitsize of the finite fields. This complexity analysis is clearly
another difficult point of our work because of the accumulated technicalities. Let
us give the example of TNFS when we target several finite fields of size close to Q.
With a single computation that approximately costs LQ(1/3, 1.94), we lower the
complexity of TNFS per field from roughly LQ(1/3, 1.75) to LQ(1/3, 1.37). Our
work obtains several results of this kind for various sub-cases: Table 3 recapitu-
lates the asymptotic complexities that we obtain.

Besides, we employ an analytic approach in order to assess the crossover
point above which our Factory approach for TNFS is likely to be profitable.

Discrete Logarithm Factory 5

Our work (Factory)
Algorithm Range Usual Multiple Precomputation Computation

approach variant in each field
Prime fields 1.92 1.90 2.01 [Bar13] 1.64 [Bar13]

Large p 1.92 1.90 2.01 1.64
NFS p = LQ(2/3) Figure 8

Medium p 2.20 2.16 2.45 1.73
TNFS Medium p 1.75 1.71 1.94 1.37
SNFS Large p 1.53 - 1.85 1.39

Medium p Table 9
STNFS Medium p Table 10

Table 3. Approximation of asymptotic complexities of NFS, MNFS, NFS Factory
and their variants, expressed as LQ(1/3, c). This table indicates an approximation of c
in each case. When the characteristic p is expressed as p = LQ(2/3, cp), it represents
the boundary case between medium and large characteristic. At this boundary, the
complexities are given as a function of cp. For this reason we give a figure and not a
formula. Besides, in medium characteristic finite fields, both the complexities of SNFS
and STNFS depend on an integer parameter λ. Tables 9 and 10 give the complexities
for various values of λ. Moreover, the Multiple variant does not couple with the Special
variants SNFS and STNFS.

When applied to the case of 1024-bit finite fields of extension degree n = 6,
our estimates suggest that TNFS Factory is computationally more efficient than
applying TNFS on each finite field separately when solving discrete logarithms
in several tens of such finite fields.

Possible impact. One of the scenarios we had in mind during the course of this
study involves the potential risk of compromising the security of standardized
key sizes. Recommended key sizes correspond to the sizes of finite fields con-
sidered secure against the most efficient algorithms for attacking the discrete
logarithm problem, namely NFS and its variants. Each previously recommended
or current key size (e.g. 1024 bits, 2048 bits, 4096 bits, etc.) is associated with
a specific level of security. As a result, the distribution of finite fields used in
practical applications is not uniform across all possible sizes, but rather orga-
nized into groups or packages. Consequently, an attacker seeking to compromise
multiple keys potentially across different finite fields, can leverage the idea of
Factory. By adjusting the parameters and finding the most advantageous trade-
off in terms of the number of compromised finite fields and the cost they are
willing to invest in precomputation, they can minimize the overall expense. In
any case, the aggregation of finite fields within packages resulting from protocol
standardization has the potential to weaken a significant proportion of the public
keys generated according to these standards.

Outline of the article. We start with a short refresher concerning NFS and
its variants in Section 2. Section 3 presents the Factory idea adapted to non
prime finite fields. Section 4 details then the asymptotic complexity results of

6 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

this algorithm, while in Section 5 we discuss the feasibility and impact of this
method on moderate key sizes, for instance targets elements living in several
1024-bit finite fields.

2 Background

Notations. From now on, p always denotes a prime number. When the extension
degree n of the finite field Fpn is composite, η and κ denote non trivial factors
of n and such that n = ηκ. Asymptotic estimates use the classical O() and o()

notations, as well as the soft-O notation f = Õ(g) which means that there exists
a constant c such that f(x) = O(g(x) logc(x)), as x tends to infinity. We recall
that an integer is said to be x-smooth if we can write it as product of integers
that are all smaller than x.

2.1 The (Tower) Number Field Sieve

We start with a short refresher on the Tower variant of the Number Field Sieve,
of which the “usual” NFS can be considered a special case.

Commutative diagram. We target the finite field Fpn . Let η be a divisor of n.
The classical TNFS setup considers the intermediate number field Kh = Q(ι)
where ι is a root of h, a polynomial of degree η over Z that remains irreducible
modulo p. We let R be the ring of integers of Kh. For simplicity, we assume
throughout this article that h is monic and furthermore that it is chosen so that
R = Z[ι]/h. (For the usual NFS, we rather let η = 1, Kh = Q, and R = Z;
in particular there is no requirement that n be composite.) Above Kh, define
two number fields K0 = Kh[x]/f0(x) and K1 = Kh[x]/f1(x) where f0, f1 are
irreducible polynomials over R that share an irreducible factor φ of degree κ
modulo the unique ideal p over p in Kh (in particular, f0 and f1 have degree
at least κ). We write Oi the ring of integers of Ki and αi a root of fi in Ki for
i = 0, 1. Because of the conditions on the polynomials h, f0 and f1, there exist
two ring homomorphisms from R[x] to the target finite field Fpn through the
number fields K0 and K1. This allows to build a commutative diagram as shown
in Figure 4. For simplicity, we will assume that f0 and f1 are defined over Z,
although this is only possible when κ and η are coprime.

Based on the diagram above, we briefly comment the steps of NFS in the
following paragraphs. The polynomial selection step is the way the diagram of
Figure 4 is built. For an appropriate notion of size that is defined in the interme-
diate number fields, the relation collection step accumulates relations between
“small” elements in the number fields. Their images in the target finite field are
then recovered by the linear algebra step, and the process is made more general
by the individual logarithm step which leverages the acquired information to
compute logarithms of arbitrary elements of the target number field.

Discrete Logarithm Factory 7

R [X]

K0 ⊃ R [X] /f0(X) K1 ⊃ R [X] /f1(X)

R/p[X]/φ(X) ∼= Fpn

mod φ, mod p mod φ, mod p

Fig. 4. Commutative diagram of Tower NFS. R is the ring of integers of Kh = Q[x]/h.

Polynomial selection. Several methods to do NFS polynomial selection are known.
For example, the Conjugation, JLSV or Sarkar-Singh’s methods [BGGM15,
JLSV06, SS16b] can be used. Each polynomial selection method yields differ-
ent degrees and coefficient sizes. A table summing up all the parameters for f0
and f1 output by various polynomial selections for NFS and its variants (Mul-
tiple, Tower, Special and composition of two of it) is given in [DM21, Section
3.4.2]. In this work we do not deal with all the polynomial selections.

Relation collection. The goal of the relation collection step is to select among
the set of polynomials ϕ(x, ι) ∈ R[x] at the top of the diagram the candidates
that yield a relation. A relation is found if the polynomial ϕ(x, ι) mapped to K0

and K1 factors is smooth on both sides, meaning that it factors into products of
ideals in O0 and O1 whose norm is below some smoothness bounds B0 and B1.
Most often the search space for relation collection consists of linear polynomials
ϕ(x, ι) = a(ι) − b(ι)x ∈ R[x], and for usual NFS this simplifies to searching for
polynomials a− bx with integers coefficients a, b, since R = Z in that case. The
ideals that occur in the factorizations in O0 and O1 constitute the factor basis F .
More precisely, we define it as the disjoint union F = F0 ⊔F1 with, for i = 0, 1:

Fi(Bi) = {prime ideals of Oi of norm ≤ Bi, whose inertia degree over Q(ι) is 1}.

To verify the Bi-smoothness on each side, one needs to evaluate the norms
Ni(a(ι)− b(ι)αi) for i = 0, 1. To do so, we can write:

Ni(a(ι)− b(ι)αi)
∗
= Rest(Resx(a(t)− b(t)x, fi(x)), h(t)). (1)

where the equality ∗
= holds up to sign and up to powers of the leading coefficients

of h and fi. Since resultants are integers, this allows to verify the Bi-smoothness
over integer values. (When h and fi are not monic, we include in the factor basis
the few ideals that divide their leading coefficients, but this is an unimportant
technicality). The relation collection step stops when we have enough relations
to construct a system of linear equations that may be full rank. The unknowns
of these equations are the virtual logarithms of the ideals of the factor basis.

Linear algebra. A good feature of the linear system created is that the number
of non-zero coefficients per line is very small. This allows to use sparse linear

8 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

algebra algorithms such as Coppersmith’s block Wiedemann algorithm [Cop94],
for which parallelization is partly possible. The output of this step is a kernel
vector corresponding to the virtual logarithms of the ideals in the factor basis.

Individual discrete logarithm. The final step consists in finding the discrete loga-
rithm of the target element. This step is subdivided into two substeps: a smooth-
ing step and a descent step. The smoothing step is an iterative process where the
target element t is randomized until the randomized value lifted back to one of
the number fields Ki is B′

i-smooth for a smoothness bound B′
i > Bi. The second

step consists in decomposing every factor of the lifted value, in our case prime
ideals with norms less than a smoothness bound B′

i, into elements of the factor
basis for which we now know the virtual logarithms. This eventually makes it
possible to reconstruct the discrete logarithm of the target element.

TNFS differs from NFS in this step as there exist improvements for the
smoothing step when the target finite field has proper subfields [Gui19,AP22].

2.2 Other variants of NFS

Special NFS. When the characteristic is sparse, both NFS and TNFS can be
adapted so that the polynomials in the sieving step have lower norms, resulting
in better asymptotic complexities. This is called the Special variant of NFS and
written SNFS or STNFS. The key idea as explained in [JP14] lies in a dedicated
polynomial selection that takes advantage of the sparsity of the characteristic.

Multiple NFS. NFS and TNFS can be coupled with a multiple variant too [Mat03,
BP14,Pie15,SS16b], the main idea being to have a lot of different intermediate
number fields where a polynomial from the sieving can be smooth. MNFS and
MTNFS give the best asymptotic complexities. However we don’t detail this
variant as we do not see a way to adapt the Factory algorithm to it. Similarly,
the special variant and multiple variant cannot work together.

2.3 Smoothness probability

A key heuristic assumption in the analysis is that the probability of a norm being
smooth is the same as that of a random integer of the same size. This allows us
to apply the theorem by Canfield-Erdős-Pomerance [CEP83], which we choose
to state as follows.

Corollary 1. Let (α1, α2, c1, c2) be four real numbers such that 1 > α1 > α2 > 0
and c1, c2 > 0. As Q tends to infinity, the probability that a random positive
integer below LQ(α1, c1) splits into primes less than LQ(α2, c2) is

LQ

(
α1 − α2, (α1 − α2) c1 c

−1
2

)−1
.

Discrete Logarithm Factory 9

The norms are estimated based on Equation (1). In the classical (non-Tower)
NFS, the definition of the resultant as the determinant of the Sylvester matrix
gives a bound that follows from Hadamard’s inequality:

|Res(ϕ, fi)| ≤ ||ϕ||deg fi
∞ · ||fi||deg ϕ

∞ · (deg fi + 1)deg ϕ/2(deg ϕ+ 1)deg fi/2.

When analyzing tower variants, the degree of h appears in the resultant. Since
we assumed that R = Z[ι], we can assume that all coefficients of ϕ(x, t) are
integers. If these integer coefficients are bounded in absolute value by E, we
obtain the following bound:

|Rest(Resx(ϕ, fi), h)| ≤ Edeg h·deg fi · ||fi||deg h·degx ϕ
∞ · ||h||deg fi·degt ϕ∞ · c

where the factor c is a combinatorial contribution that can be uniformly bounded
depending on deg fi and deg h, and is negligible compared to the other factors
in all cases we consider in this article. Note also that in all cases of interest, we
have degx ϕ = 1 and degt ϕ < deg h.

3 Discrete logarithm Factory

Whether it is deployed for integer factorization, for discrete logarithm in prime
finite fields or in medium or large characteristic finite fields as in this article,
the Factory algorithm revolves around the same idea. Given a chosen bitsize,
the primary objective is to share a portion of the relation collection step in NFS
(or one of its variants), to serve the factorization of several numbers, or to solve
discrete logarithm in many finite fields, all of the same bitsize. Specifically, the
Factory algorithm consists of two steps, which we detail here.

The common setting is a given order of magnitude Q as well as a fixed
extension degree n. The goal, ultimately, is to compute discrete logarithms in
many finite fields Fpn

1
,Fpn

2
, . . ., with pn1 ≈ pn2 ≈ Q.

The “one-off” step. We construct half of the diagram of Figure 4 by computing
Kh and K0. Afterward, a first search aims to identify (and store for later usage)
elements ϕ in the search space that are B0-smooth when mapped to K0, for
a fixed smoothness bound B0. All parameters of this one-off step, including of
course the bound B0 as well as the number of elements ϕ to test are tuned
according to Q and n.

The “per-field” step. After the one-off step, challenges are considered as a col-
lection of primes p1, p2, For each of theses prime numbers (say pi), the goal
of the per-field step is to solve the discrete logarithm in the finite field Fpn

i
,

where pni is close to Q. Once the diagram is complete, the relation collection
step proceeds by testing the stored elements to determine which are B∗-smooth
when mapped to Ki, where B∗ is another fixed smoothness bound. Because this
per-field step is designed to work in a similar way for several primes pi of sim-
ilar size, parameters such as B∗ are going to be identical for all of them. The
remaining steps of NFS (or one of its variants) are unchanged.

10 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

3.1 A baseline: Factory algorithm for prime fields

The factorization Factory algorithm, introduced by Coppersmith [Cop93], and
its adaptation to the discrete logarithm problem in prime finite fields, proposed
by Barbulescu [Bar13], both use a base-m method for the polynomial selection.
We describe this method for the discrete logarithm problem in prime fields.

Given an order of magnitude Q and an integer d, one chooses an inte-
ger m below Q1/d, and let f0(X) = X − m. Then one sets Kh = Q and
K0 = Q[X]/f0 ≃ Q for the precomputation step. To solve the discrete loga-
rithm in a prime field Fpi , where Q ≤ pi < m × Q, one computes the base-m
expansion of pi as pi =

∑d
k=0 akm

k and defines fi(X) =
∑d

k=0 akX
k. Then, f0

and fi share a common root modulo pi, which is m. We define Ki as Q[X]/fi
(the polynomial fi is generically irreducible). This completes Diagram 4, and
the elements stored at the precomputation step can be used to solve the discrete
logarithm in Fpi

.

3.2 Generalization to non prime finite fields

The novelty of this article is the generalization of the discrete logarithm Factory
to finite fields of any extension degree, instead of only extension degree n = 1.
Specifically, we aim to compute a table that can be used to efficiently solve
the discrete logarithm problem in several finite fields Fpn

i
(recall that all pni

are of the same size, and n is the same for all). Since n > 1, both number
fields K0 and Ki must be of degree greater than one over Q, hence, the base-
m polynomial selection used in the discrete logarithm Factory for prime fields
does not allow this generalization. We make use of other polynomial selection
methods, depending on the size of the characteristic and the variant of NFS.
However, not every polynomial selection is adapted for a Factory variant of
NFS: since we want to precompute a table of smooth elements in one number
field, and share this table for several finite fields, it means that we need to be
able to draw a diagram as Diagram 5:

Given a polynomial f0, constructing a compatible polynomial fi for any tar-
get finite field is not an easy task.

Let n = ηκ be a factorization of the extension degree, where η is a non trivial
divisor of n in the tower variants TNFS and STNFS, and η = 1 otherwise. The
polynomial h ∈ Z[X] of degree η defining Kh has to be irreducible and can
be selected before searching for f0 and fi. Define R = Z[ι] where ι is a root
of h in Kh. In order to simplify the exposition, we require that η and κ are
coprime, which allows us to search for f0 and fi with integer coefficients instead
of coefficients in Z[ι]. Both f0 and fi must be coprime and irreducible over Q,
and share an irreducible factor φi of degree κ modulo pi. Then Fpn

i
is represented

as (R/piR) [X]/(φi). Other properties, such as small coefficient sizes and small
degrees for h, f0 and fi are desired for the efficiency of NFS and NFS Factory,
or their variants.

Discrete Logarithm Factory 11

R [X] K3

R [X] /(f1(X)) ⊂ K1 K2

R [X] /(f0(X)) ⊂ K0 Fp3n

R/p1[X]/(φ1(X)) ∼= Fp1n Fp2n

mod φ1

mod p1
mod φ1

mod p1

mod φ2

mod p2

mod φ2

mod p2

Fig. 5. Example of a commutative diagram for Factory for three target finite fields.
The blue branch is the shared one.

Polynomial selections for Factory. We review the different polynomial se-
lection methods that we can use for NFS Factory. When working with a Tower
variant, the irreducible polynomial h ∈ Z[X] of degree η is assumed to be already
fixed. In each of the cases below, the construction works only if specific require-
ments on the primes pi are met. Those requirements are studied in Section 3.3.

Generalized-Joux-Lercier [BGGM15] Factory. Choose f0 ∈ Z[X] irreducible, of
degree d+1 > κ for some integer d, and with small integer coefficients. Following
the description at the beginning of Section 3, the precomputation step can be
carried out based on f0.

Let pi be a prime number such that h is irreducible modulo pi, and f0 admits
an irreducible factor modulo pi of degree κ, which we lift to an integer polynomial
as φi(X) = Xκ +

∑κ−1
j=0 φjX

j with −pi/2 < φj ≤ pi/2 for 0 ≤ j ≤ κ− 1. Build
the lattice of dimension (d+ 1)× (d+ 1) whose basis is given by:

Mpi =



pi
. . . κ rows

pi
φ0 φ1 . . . 1

. . . d+ 1− κ rows.
φ0 φ1 . . . 1


The shortest vector output by the LLL algorithm [LLL82] when applied to Mpi

gives a polynomial fi that is an integer linear combination of
(
piX

ℓ
)

and
(
Xkφi

)
for 0 ≤ ℓ ≤ κ − 1 and 0 ≤ k ≤ d − κ. Thus φi divides fi modulo pi. We can
safely assume that f0 is irreducible over Z; in the unlikely event that it is not,
we can replace it with the appropriate irreducible factor that reduces modulo
pi to a multiple of φi. Alongside with h, the polynomial fi defines Ki, and φi

defines Fpn
i
, as in Diagram 5. The computation per field step can proceed by using

12 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

the stored table (which does not depend on pi) to solve the discrete logarithm
problem in Fpn

i
. Moreover, as the dimension of Mpi

is d+1, and its determinant
is pκi , LLL guarantees that the degree of fi is at most d, and its coefficients have
sizes in Õ

(
pi

κ/(d+1)
)
.

Conjugation [BGGM15] Factory. Select g0 and g1 two polynomials with small
integer coefficients with deg g1 < deg g0 = κ. Select µ a quadratic, monic, irre-
ducible polynomial over Z with small coefficients. Define the polynomial f0 as
ResY (µ(Y), g0 + Y g1). The degree of f0 is 2κ with coefficients in O(1).

Let pi be a prime number such that h is irreducible modulo pi, and µi has
a root λi in Fpi

such that φi := g0 + λig1 is irreducible modulo pi. Define
fi = vg0 + ug1, where (u, v) is a rational reconstruction of λi. Then f0 = 0
mod φi mod pi and fi = vφi mod pi. Thus both polynomials share φi as an
irreducible factor modulo pi, and f0 is irreducible over Q. Moreover, fi is of
degree κ with coefficient sizes in O(

√
pi). Alongside with h, the polynomial fi

defines Ki, and φi defines Fpn
i
. Then, the stored table is used to compute discrete

logarithms in Fpn
i
.

Joux-Pierrot [JP14] Factory, first approach: starting from a fixed integer u. The
original SNFS algorithm proposes only one polynomial selection, that is used
for sparse characteristics in both medium and large characteristics finite fields.
However, if we want to combine SNFS with Factory, two different approaches
are possible.

For the first approach we choose two integers λ > 1 and u ≈ Q1/(λn), as well
as a polynomial R of degree at most κ − 1 with coefficients 0, 1, or −1, until
f0(X) := Xκ +R(X)− u is irreducible over Q. We perform the precomputation
step based on f0 with parameters depending on Q, n and λ.

Let Pi be a polynomial of degree di close to λ and with small coefficients.
Assume that pi := Pi(u) is prime and h and f0 are irreducible modulo pi. Define
fi(X) = Pi (X

κ +R(X)). Then f0 divides fi modulo pi since Xκ + R(X) = u
mod f0 and Pi(u) = pi. Thus f0 and fi share f0 mod pi as an irreducible factor
of degree κ modulo pi. (As above, we may safely assume that f0 is irreducible
over Z.) Moreover, as explained in [JP14], R can be chosen of degree O(log(κ)),
resulting in fi of degree diκ and coefficient sizes in Õ(log(κ)di). Again alongside
with h, the polynomial fi defines Ki, and fi mod pi defines Fpn

i
, which allows

to complete the discrete logarithm computation for Fpn
i
.

Joux-Pierrot [JP14] Factory, second approach: starting from a fixed P . Choose
an integer λ > 1 and a polynomial P of degree λ with small coefficients, as well
as a polynomial R of degree at most κ − 1 with coefficients 0, 1, or −1, until
f0(X) := P (Xκ +R(X)) is irreducible over Q. In fact, as explained in [JP14],
R can be chosen of degree O(log(κ)), resulting in f0 of degree λκ and coefficient
sizes in Õ(log(κ)λ).

Let ui be an integer such that ui ≈ Q1/(λn) and pi := P (ui) is prime and h
and Xκ+R(X)−ui are irreducible modulo pi. Define fi(X) = Xκ+R(X)−ui.

Discrete Logarithm Factory 13

Then fi is an irreducible factor of f0 modulo pi, and is irreducible over Q. Again
we complete the diagram and compute a discrete logarithm in Fpn

i
.

Table 6 summarizes the polynomial selections to use in the Factory variant of
NFS. Table 7 gives the degrees and infinite norms of these polynomials.

Something special?
Characteristic Medium Large Algorithm

No Conjugation GJL NFS Factory
Composite extension Conjugation - TNFS Factory
Sparse characteristic Joux-Pierrot Joux-Pierrot SNFS Factory
Composite extension Joux-Pierrot - STNFS Factory

And sparse characteristic
Table 6. Polynomial selections and algorithm for Factory, according to the size of the
characteristic, and the potential feature of the target finite field (sparse characteristic
or composite extension).

Polynomial
selection

Properties of
f0 and fi

deg(f) deg(fi) ∥f∥∞ ∥fi∥∞

GJL d+ 1 > κ d Õ(1) Õ
(
pn/(d+1)

)
Conjugation 2κ κ Õ(1) Õ

(√
p
)

Joux-Pierrot, first approach κ λd, d ≈ λ Õ
(
Q1/(λn)

)
Õ
(
log(κ)d

)
Joux-Pierrot, second approach λκ κ Õ

(
log(κ)λ

)
Õ
(
p1/λ

)
Table 7. Degrees and infinite norms of the polynomials given by three different
polynomial selections used for the Factory variant of NFS. In all these polynomial
selections, when considering a Tower variant that needs an extra polynomial h of degree
η and with small coefficients. The one-off step is done with h and f0.

3.3 Fantastic primes and how many are they?

Now that we know several polynomial selections that are compatible with the
factory idea, we characterize the prime numbers for which a given one-off setup
(consisting of an order of magnitude Q, a fixed extension degree n, the number
fields Kh, K0, and a precomputed table), can be compatible with the per-field
step. For this to hold for one of the challenge primes pi, we must make sure
that there exists an irreducible polynomial fi that shares an irreducible factor
of degree κ with f0 modulo pi.

14 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

Frobenius density Theorem [SL96]. If a degree n polynomial f splits modulo a
prime number p into a product of k irreducible factors of degrees n1, . . . , nk, we
say that f has a decomposition type (n1, . . . , nk) over p. Similarly, if a permu-
tation σ in the group of permutations of n points Sn splits into a product of
k disjoint cycles of orders n1, . . . , nk, we say σ has type (n1, . . . , nk). Moreover,
the density of a set of prime numbers S is defined as:

lim
X→∞

#{x < X | x ∈ S}
#{x < X | x is prime}

.

Let f ∈ Z[X] be an irreducible integer polynomial of degree n. Denote Gal(f)
its Galois group, seen as a subgroup of the symmetric group Sn. The Frobenius
density Theorem states that for (n1, . . . , nk) a partition of n, the set of prime
numbers above which f has decomposition type (n1, . . . , nk) has density

#{σ ∈ Gal(f) | σ has type (n1, . . . , nk)}
#Gal(f)

.

Application to Factory algorithms. Let n = ηκ , h, and f0 be as before.
We assume that the decompositions of h and f0 modulo prime numbers are
independent. For each polynomial selection method, we give the density of prime
numbers for which Diagram 5 can be completed with Ki and Fpn

i
. We denote

Gal(f0)k the subset of permutations of Gal(f0) that have k in their pattern cycle.
We also define σf0,k = #Gal(f0)k

#Gal(f0)
. We use similar notations with respect to h.

The notation σconj,f0,κ is defined below in Paragraph Conjugation Factory.
All polynomial selection methods listed in 3.2 require that for a prime pi to

work in the per-field step, h must be irreducible modulo pi, and f0 must have
an irreducible factor of degree κ. Unless some obstruction calls for more precise
investigation, we expect that the density of primes pi for which these conditions
are met is

#Gal(h)η ·#Gal(f0)κ
#Gal(h) ·#Gal(f0)

= σh,η · σf0,κ.

In particular, this is clearly the case with the Generalized-Joux-Lercier Factory
approach, and the Joux-Pierrot Factory, first approach. We review the remaining
cases for which this density result is not as obvious. Note of course that whenever
the algorithm used is not combined with the Tower variant, then η = 1 and h is
a linear polynomial, thus #Gal(h) = #Gal(h)η = 1.

Conjugation Factory. In the setup given in Section 3.2, the condition on pi is
that µ factors modulo pi and that f0 has an irreducible factor φ of degree κ. It
turns out that if κ is odd, the latter implies the former: φ remains irreducible
in Fp2

i
, and since f0 = (g0 + βg1) (g0 + γg1) where β and γ are the two distinct

roots of µ in Fp2
i
, we can say that φ has to be one of these two factors, hence

β and γ are in Fp. Therefore, if κ is odd, the density of primes pi for which the
per-field step works is the same as above. If κ is even, unfortunately we do not
have the exact same statement, although experimental evidence suggests that a
similar result holds. In both cases, we denote σconj,f0,κ this density.

Discrete Logarithm Factory 15

Joux-Pierrot Factory, second approach. In order to estimate the density of prime
numbers for which Factory can proceed, based on the Galois group of h and f0,
we would like to ensure that Xκ +R(X)− ui is irreducible modulo pi := P (ui)
whenever pi is prime and f0 admits an irreducible factor of degree κ modulo
pi. Unfortunately, this is not true. Instead, we estimate the density of prime
numbers pi = P (ui) with Xκ + R(X) − ui irreducible modulo pi among prime
numbers of the form P (ui). Short of a more satisfactory result, we rely on the
heuristic that when p = P (u) is prime, the probability that Xκ + R(X)− u be
irreducible is the same as the probability that a random polynomial over Fp be
irreducible, which is 1/κ. This leads us to the following.

Assumption 1 In a large interval (a, b), the number of integers u satisfying the
conditions that p = P (u) is prime and Xκ + R(X) − u is irreducible modulo p
is about 1/κ times the number of integers a < u < b for which P (u) is prime.

Numerical test of Assumption 1. We performed a numerical test with κ = 5,
λ = 2, P (X) = X2 + 2X + 2, and R(X) = X4 − X3 + 1. Using SageMath,
we picked one million random integer u between 230 and 240. All one million
polynomials fu = X5 + R(X) − u were found to be irreducible over Z. Out
of the one million integer, 25,823 resulted in a prime value for P (u), and fu
was irreducible modulo P (u) for 5,215 of them. According to Assumption 1,
the number of integers u for which P (u) is prime and fu is irreducible modulo
P (u) should be approximately 1/5 times 25,823, yielding an approximate value
of 5,165. Similar results were obtained for different polynomials with varying
values of κ and λ.

3.4 Two constructions for 500 and 600-bit target finite fields

As an illustration, we exhibit two different constructions for NFS Factory and
TNFS Factory, together with an evaluation of the proportion of primes (charac-
teristics) reached by this method.

NFS Factory with Conjugation. In the 593-bit discrete logarithm computation
on Fp3 reported in [GMT16], the authors performed the computation with NFS.
The polynomials generated with the Conjugation method are:

f0 = 28X6 + 16X5 − 261X4 − 322X3 + 79X2 + 152X + 28

f1 = 24757815186639197370442122X3 + 40806897040253680471775183X2

−33466548519663911639551183X − 24757815186639197370442122

If the precomputation of Factory is performed using the polynomial f0, then,
since 3 is odd, the expected density of prime numbers modulo which the Dia-
gram 5 can be completed is #Gal(f0)3/#Gal(f0). The Galois group of f0 com-
prises eighteen permutations, out of which eight have 3 in their cycle pattern.
The expected density of such primes is 4/9. This is observed experimentally.

16 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

For instance, let p2 = 925345433540865564015707127491171005390356157011113
modulo which f0 factors into an irreducible polynomial of degree three and three
linear polynomials. If we apply the method given in Section 3.2, we find another
polynomial f2, written below, that allows to complete Diagram 5. Furthermore,
the largest coefficient in absolute value of f2 is smaller than 1.45×√

p2.

f2 = 17678995119854355812622458X3 + 43866070922692969501665811X2

−9170914436870097936201563X − 17678995119854355812622458

TNFS Factory with Conjugation. In [MGP21], a 521-bit discrete logarithm com-
putation was carried out on Fp6

1
with p1 = 135066410865995223349603927 using

TNFS where polynomials were chosen with the Conjugation method as:

h = X3 −X + 1,

f0 = X4 + 1 = ResY (X
2 + 1 +XY, Y 2 − 2),

f1 = 11672244015875X2 + 1532885840586X + 11672244015875

If one desires to perform a TNFS Factory, since 2 is even, we are unable
to estimate the density of prime numbers for which Factory can proceed. We
evaluate this density experimentally. We randomly pick one hundred thousand
primes p such that p6 has approximately 521 bits, satisfying the conditions that
h is irreducible, µ has a root, and f0 has an irreducible factor of degree 2, with
a success rate of approximately 8.30%.

For example, let us consider p2 = 131115867028015243141537139 modulo
which the polynomial h is irreducible, and f0 factors into two irreducible poly-
nomials of degree 2. By applying the method described in Section 3.2, we obtain
the polynomial f2 := 7293863374885X2 + 4971416414367X − 7293863374885,
which completes Diagram 5. The largest coefficient in absolute value in f2 is
smaller than 0.64×√

p2.
It’s worth noting that in this particular case, µ does not have a root modulo

p2, but we can still construct f2 with coefficients of size √
p2. In fact, for this

setup, the construction is possible whenever f0 has an irreducible factor modulo
p, regardless of the presence of a root of µ modulo p. This observation suggests
that the density of prime numbers suitable for Factory given the precomputed ta-
ble in this specific setup, is actually #Gal(h)3#Gal(f0)2/(#Gal(h)#Gal(f0)),
that is equal to 1/4. However, this does not hold true for the general case when
κ is even, as we found counter-examples with κ = 4

4 Asymptotic analysis

This section provides the complexities of the one-off step and the computation
per field step in each of the NFS variants that we combine with Factory. We
compare and we refer to [BGGM15], [KB16], [Pie15], [SS16a], and [JP14] for the
complexities of NFS and its variants without Factory.

Discrete Logarithm Factory 17

Notations. For Q = pn a finite field size, cA, c0, and c∗ are constants such
that A = LQ(1/3, cA) denotes the relation search space, i.e., the number of
elements ϕ tested for smoothness in K0. The smoothness bounds are denoted
B0 = LQ(1/3, c0) for K0 and B∗ = LQ(1/3, c∗) for all the Ki with i < 0.
Moreover, Ni denotes the sieve elements norms once mapped to Ki for all i. In all
variants, and for all i we take the parameters such that Ni = LQ(2/3, cNi

), where
cNi

depends on cA and other parameters. The probability of an element in K0 of
norm N0 to be B0-smooth is denoted P0 and is equal to LQ(1/3, cN0/(3c0))

−1.
Similarly, the probability of an element in Ki of norm Ni to be B∗-smooth is
denoted P∗ and is equal to LQ(1/3, cNi

/(3c∗))
−1. This comes from Corollary 1.

Methodology. The one-off step is performed by a sieve algorithm detecting el-
ements that are B0-smooth once mapped to K0. The asymptotic complexity of
this step is A. The number of elements to be stored for later use in compu-
tation per field step is the number of sieve elements that are B0-smooth once
mapped to K0, that is AP0 = LQ(1/3, cA − cN0

/(3c0)). The computation per
field step starts by detecting which of the stored elements are B∗-smooth once
mapped to Ki. This detection can be performed using a batch technique, or by
smoothness tests on each element using the ECM algorithm. The batch tech-
nique has quasi-linear complexity in the stored table size, and the complexity
of the ECM algorithm to test an element for B-smoothness with B = LQ(1/3)
is LQ(1/6). Regardless of the technique used, the complexity of detecting which
of the stored elements are B∗-smoothness is AP0, which is also the complex-
ity in memory of the algorithm. The computation in each field proceeds with
a sparse linear algebra phase that costs (B0 + B∗)

2, and an individual loga-
rithm computation of negligible complexity compared to the two previous steps.
The complexity of the computation per field step is AP0 + (B0 + B∗)

2. As in
many asymptotic analysis of NFS, we impose that smoothness detection and
linear algebra have equal costs: 2max(c0, c∗) = cA − cN0

/(3c0). In short, the
cost of the computation per field step is LQ(1/3, 2max(c0, c∗)). To have enough
equations for the linear algebra step, the number of expected relations that is
AP0P1 = LQ (1/3, 2max(c0, c∗)− cNi

/(3c∗)) must be greater than the factor
basis size B0 +B∗ = LQ(1/3,max(c0, c∗)).

We choose parameters that minimize the complexity of the computation per
field step under the conditions of having enough relations and equalizing the
costs of smoothness detection and linear algebra, thus:

minimize: max(c0, c∗) (2)

under conditions:
max(c0, c∗)−

cNi

3c∗
≥ 0 (3)

and 2max(c0, c∗) = cA − cN0
/(3c0) (4)

where cN0
and cNi

are polynomials of degree at most one in cA, and are inde-
pendent with respect to c0 and c∗. If the system above has a solution, then it has
a solution with c0 = c∗. Indeed, if c0 > c∗, then replacing c∗ by c̃∗ = c0 satisfies

18 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

Conditions (3) and (4), and provides the same minimum value given by (2). On
the other hand, if c0 < c∗, then replace c0 by c̃0 = c∗ and replace cA by c̃A < cA
to satisfy Equation (4). Indeed the number of stored elements cA − cN0/(3c0)
increases as a function of cA. Then Inequality (3) is still valid and the minimum
value in (2) is unchanged. Hence, we take B0 = B∗ = LQ(1/3, c) and rewrite the
system of equations:

minimize: c (5)

under conditions:
3c2 ≥ cNi

(6)

and 6c2 − 3cAc+ cN0
= 0 (7)

Such parameters provide the asymptotic complexity to solve the discrete loga-
rithm in FQ using Factory. In each variant, we provide a range of prime numbers
pi, that depends on Q, h, and f0, for which the stored table can be used to solve
the discrete logarithm in Fpn

i
with complexity LQ(1/3, 2c). To announce these

complexities we need the following assumption:

Assumption 2 Frobenius’s Theorem 3.3 is still valid when considering large
intervals of prime numbers instead of the set of all prime numbers.

For instance, if the Galois group of f0 is made of k elements out of which k0 have
κ in their cycle pattern, then under Assumption 2, f0 admits an irreducible factor
of degree κ modulo k0/k of the prime numbers in a given large interval. This
assumption is further supported by two experiments presented in Section 3.4.

4.1 NFS Factory

For the NFS setup with Tower, let R = Z, and consider f0, f1 two polynomials,
defining Ki as in Diagram 4, for i = 0, 1. The norm of a sieve element ϕ ∈ Z[X]

once mapped to Ki is Ni := |Res(ϕ, fi)| = Õ
(
∥ϕ∥deg(fi)∞ ∥fi∥deg(ϕ)∞

)
, for i = 0, 1.

Large characteristic finite fields Factory with GJL. We study the case
where p = LQ(α) with 2/3 < α < 1. The case of finite fields with α = 1, i.e.,
prime finite fields, is detailed in [Bar13]. The Generalized-Joux-Lercier poly-
nomial selection outputs irreducible and co-prime polynomials f0 and f1 ∈
Z[X] that share an irreducible factor of degree n modulo p. They have re-
spective degrees d + 1 > n and d, and respective coefficient sizes in Õ(1) and
Õ
(
pn/(d+1)

)
. The sieve for the one-off step is performed in dimension 2, be-

cause the sieved elements ϕ ∈ Z[X] are of the form aX− b, where, a, b ∈ Z. This
turns out to be the best choice for large characteristic finite fields. Hence,

√
A

bounds the coefficients of ϕ. Furthermore, we set a constant γ such that d =

1/γ (log(Q)/ log(log(Q)))
1/3. The norms of the sieve elements can be expressed

as: N0 = Õ
(
A(d+1)/2

)
= LQ (2/3, cA/(2γ)), and N1 = Õ

(
Ad/2Q1/(d+1)

)
=

LQ (2/3, cA/(2γ) + γ).

Discrete Logarithm Factory 19

We detail the resolution of the system that minimizes Constraint (5), while
verifying Conditions(6), and (7) in this variant. Thanks to Equation (7), we get
cA = (12c2γ)/(6cγ−1). Substituting cA in Condition (6) we get (−6cγ2+(18c3+
1)γ−9c2)/(6cγ−1) ≥ 0. The discriminant of the numerator is 324c6−180c3+1,
which has one negative real root and one positive real root, namely c0 = ((5 +
2
√
6)/18)1/3. If 0 < c < c0, then the numerator of Condition (6) is negative for

all γ, which implies that the denominator must be negative, contradicting the
fact that cA > 0. Therefore, c must be greater than or equal to c0. In fact, c = c0
is a valid solution. The solution to the system is given by:

c =

(
5 + 2

√
6

18

) 1
3

≈ 0.8193, γ =
3 +

√
6

6c
≈ 1.1086, cA =

2
(√

6 + 3
)

√
6 + 2

×c ≈ 2.0068

The complexity of the one-off step is LQ(1/3, cA) ≈ LQ(1/3, 2.01), and the
complexity of the computation in each field step is LQ(1/3, 2c) ≈ LQ(1/3, 1.64).

Suppose a one-off step was performed using the polynomial f0 on a target
size Q = pn. Let pi be a prime number that satisfies two conditions: first, f0
has an irreducible factor of degree n modulo pi, and second, Q ≤ pni ≤ QQ1/n.
Using the GJL polynomial selection method, as explained in Section 3.2, we
complete Diagram 4 with Fpn

i
at the bottom and Ki defined by a polynomial

fi of degree d with coefficient sizes in Õ
(
p
n/(d+1)
i

)
. Considering that pni ≤

QQ1/n, the norm of the stored elements, once mapped to Ki, is expressed as
Ni = Õ

(
Ad/2Q1/(d+1)Q1/(n(d+1))

)
. Moreover, Q1/(n(d+1)) = p1/(d+1) = LQ(α −

1/3), where α − 1/3 < 2/3. Hence, Ni = LQ (2/3, cA/(2γ) + γ), which is the
same asymptotic expression for N1. Based on the complexity analysis above
and thanks to the stored table, we solve the discrete logarithm in Fpn

i
with a

complexity of LQ(1/3, 2c) ≈ LQ(1/3, 1.64). The following theorem provides a
summary of the complexity of NFS Factory in large characteristic finite fields.

Theorem 2. Under Assumption 2 and classical NFS heuristics, for Q = pn

where p = LQ(α) with 2/3 < α < 1, for σf0,n of the prime numbers pi such that
Q ≤ pni ≤ QQ1/n. With a one time computation of complexity LQ (1/3, cA) and
a memory complexity of LQ (1/3, 2c), the asymptotic complexity of computing a

discrete logarithm in Fpn
i

is LQ (1/3, 2c), where 2c = 2
(
(5 + 2

√
6)/18

)1/3 ≈ 1.64,
and cA = 2c

(√
6 + 3

)
/(
√
6 + 2) ≈ 2.01.

For the sake of comparison, the complexity of NFS in large characteristic
finite fields is LQ

(
1/3, (64/9)1/3

)
≈ LQ(1/3, 1.92), and the multiple variant

MNFS, which is the state-of-the-art algorithm for general large characteristic
finite fields, has a complexity of LQ(1/3, (2(46+13

√
13)/27)1/3) ≈ LQ(1/3, 1.90).

Boundary case: α = 2/3. We assume here that the characteristic p is at
the boundary case between medium and large characteristic areas, meaning that
p = LQ(2/3, cp) for some positive constant cp.

20 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

The boundary case with GJL. The asymptotic analysis in the large characteristic
case applies as soon as d = 1/γ (log(Q)/ log(log(Q)))

1/3 is larger or equal than
n = 1/cp (log(Q)/ log(log(Q)))

1−α, which is equivalent to cp ≥ γ since 1 − α =
1/3. For this range of finite fields, namely when p = LQ(2/3, cp) with cp ≥ γ and
γ = (3 +

√
6)/(6c) ≈ 1.1086, we get exactly the same asymptotic complexities

as in Theorem 2. This should be compared with the asymptotic complexities
of NFS and MNFS with GJL at the boundary case. These complexities are
respectively equal to, LQ

(
1/3, (64/9)1/3

)
≈ LQ(1/3, 1.92) with the condition

cp ≥ (8/3)1/3 ≈ 1.39, and LQ(1/3, (2(46+ 13
√
13)/27)1/3) ≈ LQ(1/3, 1.90) with

condition cp ≥ ((7 + 2
√
13)/6)1/3 ≈ 1.33.

The boundary case with Conjugation. The Conjugation polynomial selection
method outputs irreducible and co-prime polynomials f0 and f1 ∈ Z[X] that
share an irreducible factor of degree n modulo p. They have respective de-
grees 2n and n, and respective coefficient sizes in Õ(1) and Õ

(√
p
)
. Let t

a fixed integer that denotes the sieve dimension. The norms of the sieve ele-
ments can be expressed as: N0 = Õ

(
A(2n)/t

)
= LQ (2/3, 2cA/(cpt)), and N1 =

Õ
(
An/tQ(t−1)/(2n)

)
= LQ (2/3, cA/(cpt) + (t− 1)cp/2). The solution of the sys-

tem that minimizes Constraint (5), while verifying Conditions (6), and (7) as
function of cp and t is c the largest real solution of equation:

18cptX
3 − 24X2 − 3c2pt(t− 1)X + 2cp(t− 1) = 0 (8)

and cA = 6cptc
2/(3cptc − 2). The asymptotic complexity of the one-off step

is LQ(1/3, cA), and the complexity of the computation in each field step is
LQ(1/3, 2c).

Suppose a one-off step was performed with the polynomial f0 on a target size
Q = pn. Let pi be a prime number that satisfies two conditions: first, f0 has an
irreducible factor of degree n modulo pi, and second, p ≤ pi ≤ ppo(1). Diagram 4
is constructed thanks to Conjugation and Ki is defined by a polynomial fi of
degree n and with coefficient sizes in Õ

(√
pi
)
. The norms of the stored elements

are Ni = Õ
(
An/tQ(t−1)/(2n)po(1)

)
. Since, po(1) is negligible compared to any

function in LQ(2/3), then Ni = LQ (2/3, cA/(cpt) + (t− 1)cp/2). We get the
following theorem:

Theorem 3. Under Assumption 2 and classical NFS heuristics, for Q = pn

where p = LQ(2/3, cp) with cp a positive constant, for t ≥ 2 an integer, for
σconj,f0,n of the prime numbers pi such that Q ≤ pni ≤ QQo(1). With a one time
computation of complexity LQ (1/3, cA) and a memory complexity of LQ (1/3, 2c),
the asymptotic complexity of computing a discrete logarithm in Fpn

i
is LQ (1/3, 2c),

where c is the largest real solution of Equation (8), and cA = 6cptc
2/(3cptc− 2).

This should be compared with the asymptotic complexities of NFS and
MNFS with Conjugation at the boundary case. NFS has complexity LQ (1/3, 2c)

with c = 1/(cpt)+
√

1/(cpt)2 + cp(t− 1)/6, and MNFS has complexity LQ(1/3, 2c̃)

Discrete Logarithm Factory 21

with c̃ = 1/(cpt)+
√
5/(9(cpt)2) + cp(t− 1)/6). The various asymptotic complex-

ities of NFS, MNFS, and NFS Factory at boundary case, with both polynomial
selection methods, GJL and Conjugation, are represented in Figure 8.

Fig. 8. Asymptotic complexities of NFS, MNFS, and NFS Factory for finite fields Fpn

with p = Lpn(2/3, cp). The complexities are Lpn(1/3, c) and c is represented as a
function of cp in each case. Red lines correspond to algorithms that use GJL whereas
blue curves are for Conjugation method. .

Medium characteristic finite fields Factory with Conjugation. Now
we assume that p the characteristics are such that p = LQ(α) with 1/3 <
α < 2/3. The Conjugation polynomial selection outputs irreducible and co-
prime polynomials f0 and f1 ∈ Z[X] that share an irreducible factor of de-
gree n modulo p. They have respective degrees 2n and n, and respective co-
efficient sizes in Õ(1) and Õ

(√
p
)
. Denote t the sieving dimension that we

take equal to t = δn (log(Q)/ log(log(Q)))
−1/3 for a positive constant δ. Hence,

A1/t bounds the coefficients of the sieve elements. The norms of the sieve el-
ements can be expressed as: N0 = Õ

(
A(2n)/t

)
= LQ (2/3, 2cA/δ), and N1 =

Õ
(
An/tQ(t−1)/(2n)

)
= LQ (2/3, cA/δ + δ/2). The solution of the system that

minimizes Constraint (5), while verifying Conditions (6), and (7) is given by:

c =
(

3+2
√
2

9

)1/3
≈ 0.8652, δ = 2(

√
2+2)

(
√
2+1)c

≈ 2.6308, cA = 2(
√
2+2)√
2+1

× c ≈ 2.4471

22 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

In other words, the asymptotic complexity of the one-off step is LQ(1/3, cA) ≈
LQ(1/3, 2.45), and the asymptotic complexity of the computation per field step
is LQ(1/3, 2c) ≈ LQ(1/3, 1.73).

Suppose a one-off step was performed with the polynomial f0 on a target
size Q. Let pi be a prime number that satisfies two conditions: first, f0 has an
irreducible factor of degree n modulo pi, and second, Q ≤ pni ≤ QQ1/t. Again we
complete Diagram 4 thanks to the Conjugation polynomial selection method, as
explained in Section 3.2 and 3.3. Ki defined by a polynomial fi of degree n and
with coefficient sizes in Õ

(√
pi
)
.

Since pni ≤ QQ1/t, the coefficient sizes of fi are in Õ
(
Q1/(2n)Q1/(2tn)

)
, which

implies that Ni = O
(
An/tQ(t−1)/(2n)Q1/(2n)

)
. Furthermore, Q1/(2n) = LQ(α)

and α < 2/3. We get the norms Ni = LQ (2/3, cA/δ + δ/2). By the complexity
analysis above, we deduce the following theorem that sums up the complexity
of NFS Factory in medium characteristic finite fields.

Theorem 4. Under Assumption 2 and classical NFS heuristics, for Q = pn

where p = LQ(α) with 1/3 < α < 2/3, for σconj,f0,n of prime numbers pi such
that Q ≤ pni ≤ QQ1/t. With a one time computation of complexity LQ (1/3, cA)
and a memory complexity of LQ (1/3, 2c), the asymptotic complexity of comput-
ing a discrete logarithm in Fpn

i
is LQ (1/3, 2c), where 2c = 2(3 + 2

√
2)/9)1/3 ≈

1.73, and cA = 2c(
√
2 + 2)/(

√
2 + 1) ≈ 2.45.

Let us recall that the asymptotic complexites of NFS and MNFS, without
Factory, in medium characteristic finite fields. NFS has asymptotic complex-
ity LQ

(
1/3, (96/9)1/3

)
which is approximmately LQ(1/3, 2.20), and MNFS has

asymptotic complexity LQ(1/3, (8(9+4
√
6)/15)1/3) that is approximately equal

to LQ(1/3, 2.16).

4.2 TNFS Factory for medium characteristic finite fields

The Tower Number Field Sieve (TNFS) targets finite fields of medium charac-
teristic with composite extension degree. Let n = ηκ a non trivial decomposition
of the extension degree n. For the ease of presentation, we only consider the case
where η and κ are co-prime. The general case is fundamentally the same. As in
Diagram 4, h of degree η and coefficient sizes in Õ(1) defines R, the polyno-
mials f0 and f1 in Z[X] output by the Conjugation method define K0 and K1,
and FQ at the bottom with Q = pn. The polynomials f0 and f1 have respec-
tive degrees 2κ and κ, and respective coefficient sizes in Õ(1) and Õ(

√
p). Let

κ = 1/cκ(log(Q)/ log log(Q)))1/3 with cκ a constant. The sieve is done over ele-
ments of the form a(ι)X−b(ι) ∈ R[X] with a(ι) and b(ι) in Z[ι] of degree at most
η−1. As explained in Section 2.3, the norms are Ni(ϕ) = |ResY (ResX(a(Y)X−
b(Y), fi(X)), h(Y))| = Õ(∥ϕ∥η deg(fi)

∞ ∥fi∥η∞∥h∥(η−1) deg(fi)
∞), for i = 0, 1. More

precisely, since ∥ϕ∥∞ is bounded by A1/(2η), we get N0 = Õ(Aκ) = LQ(2/3, cA/cκ)

and N1 = Õ(Aκ/2Q1/(2κ)) = LQ(2/3, cA/(2cκ) + cκ/2). The solution of the sys-

Discrete Logarithm Factory 23

tem that minimizes Constraint (5), while verifying Conditions (6), and (7) is:

c =

(
3 + 2

√
2

18

) 1
3

≈ 0.6867, cκ =

√
2 + 2

3c
≈ 1.6573, cA =

2(
√
2 + 2)√
2 + 1

×c ≈ 1.9422

Suppose a one-off step was performed with the polynomials h and f0 on a
target size Q. Let pi be a prime number that satisfies three conditions: first, h is
irreducible modulo pi, second, f0 has an irreducible factor of degree κ modulo pi,
and third, Q ≤ pni ≤ QQ1/η. Thanks to Conjugation we can draw a diagram
as in Figure 4 where Ki is defined by a polynomial fi of degree κ and with
coefficient sizes in Õ

(√
pi
)
. Since pni ≤ QQ1/η, the coefficient sizes of fi are in

Õ
(
Q1/(2n)Q1/(2ηn)

)
, which implies that, Ni = Õ(Aκ/2Q1/(2κ)Q1/(2n)). Further-

more, Q1/(2n) = LQ(α) and α < 2/3. Hence, the norms Ni = Õ
(
An/tQ1/(2κ)

)
=

LQ (2/3, cA/(2cκ) + cκ/2). By the complexity analysis given in the above para-
graph, we use the stored table and are able to solve the discrete logarithm in Fpn

i

with asymptotic complexity LQ(1/3, 2c) ≈ LQ(1/3, 1.37). To state the theorem
that recapitulates the complexity of the TNFS Factory, we first need the follow-
ing assumption:

Assumption 3 The two events, h is irreducible modulo a prime number p
and f0 admits an irreducible factor of degree κ modulo the same prime p, are
independent.

Assumption 3, jointly with Assumption 2, are supported by the experiment given
in Section 3.4.

Theorem 5. Under Assumptions 2 and 3, and classical NFS heuristics, for
Q = pn with p = LQ(α) with 1/3 < α < 2/3, for σh,ησconj,f0,κ of the prime
numbers pi such that Q ≤ pni ≤ QQ1/η. With a one time computation of
complexity LQ (1/3, cA) and a memory complexity of LQ (1/3, 2c), the asymp-
totic complexity of computing a discrete logarithm in Fpn

i
is LQ (1/3, 2c), where

2c = 2(3 + 2
√
2)/18)1/3 ≈ 1.37, and cA = 2c(

√
2 + 2)/(

√
2 + 1) ≈ 1.94.

Note for the sake of comparison that the asymptotic complexities, of TNFS
without Factory is LQ

(
1/3, (48/9)1/3

)
≈ LQ(1/3, 1.75), and of the Multiple

Tower variant MTNFS is LQ(1/3, 2c), with 2c = 2(3/10+2
√

2/3/5)1/3) ≈ 1.71.

4.3 SNFS Factory

The Special Number Field Sieve (SNFS) algorithm is designed for finite fields
where the characteristic p is a sparse prime, meaning we can write p = P (u),
where P is a polynomial of small degree and coefficients, and u is an integer. Let p
be such a prime, and λ be the degree of P . In the SNFS setup, f0 and f1 are given
thanks to the Joux-Pierrot method. The polynomials have degrees n and λn,
with coefficient sizes in Õ(p1/λ) and Õ(log(κ)λ). The norms of the sieve elements
are in Õ(An/tQ(t−1)/(nλ)) in one of the number fields and Õ(Aλn/t log(n)λ(t−1))
in the other, where t denotes the sieve dimension.

24 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

Large sparse characteristic finite fields. Here p = LQ(α) with 2/3 < α ≤ 1.
We consider the polynomials given by the first approach of Joux-Pierrot, (see
Section 3.2). Hence, N0 = Õ(An/tQ(t−1)/(nλ)) and N1 = Õ(Aλn/t log(n)λ(t−1)).
The sieve dimension t is set to 2 and λ to 1/(cλn)(log(Q)/ log log(Q))1/3 with
cλ a constant. The norm of the sieve elements are N0 = LQ(2/3, cλ) and N1 =
LQ(2/3, cA/(2cλ)), since log(n)λ is negligible in comparison with LQ(αp − 2/3),
and αp − 2/3 ≤ 1/3 < 2/3. From Condition (7) we get cA = 2c + cλ/(3c).
Substituting cA in Condition (6), we get cλ ≥ 6c2/(18c3−1). For a given value c,
it is best to choose the smallest possible value of cλ in order to minimize cA,
hence cλ is set to cλ = 6c2/(18c3 − 1). Moreover, c can be chosen close to zero.
In return, cA grows to infinity as c tends to zero. We choose c to minimize cA:

c =

(
1

3

)1/3

≈ 0.6934, cλ = 2

(
1

3

)2/3

≈ 0.9615, cA =
8

3

(
1

3

)1/3

≈ 1.8490,

Suppose a one-off step that is performed with the polynomial f0 on a target
size Q. Let Pi be a polynomial of degree di = λ + o(λ), with small coefficients,
such that Pi(u) = pi is a prime number and f0 is irreducible modulo pi. Dia-
gram 4 is completed with Ki defined by a polynomial fi of degree din and with
coefficient sizes in Õ(log(n)di).

The norm of the stored elements are Ni = Õ(Aλn/2Ao(λn) log(n)d), and
Ao(λn) log(n)d is negligible compared to any function in the class LQ(2/3) as
Q tends to infinity. Thus Ni = LQ(2/3, cA/(2cλ)). With this table of smooth
elements in hand, we can solve the discrete logarithm in Fpn

i
with complexity

LQ(1/3, 2c) ≈ LQ(1/3, 1.39). Finally, the asymptotic complexities of SNFS Fac-
tory in large characteristic finite fields are given by:

Theorem 6. Let λ = 1/(cλn)·(log(Q)/ log log(Q))1/3 with cλ = 2·(1/3)2/3, and
let u an integer close to Q1/(nλ) as in the definition of f0. Under Assumption 2
and classical NFS heuristics, for σf0,n of prime numbers pi of the form pi = Pi(u)

with Pi of a polynomial of degree λ + o(λ) and coefficients in Õ(1). With a
one time computation of complexity LQ (1/3, cA) and a memory complexity of
LQ (1/3, 2c), the asymptotic complexity of computing a discrete logarithm in Fpn

i

is LQ (1/3, 2c), where 2c = (8/3)1/3 ≈ 1.39, and cA = 8/3(1/3)1/3 ≈ 1.85.

We recall the complexity of SNFS without Factory in large characteristic
finite fields, that is LQ

(
1/3, (32/9)1/3

)
≈ LQ(1/3, 1.53).

Boundary case with sparse characteristic finite fields: α = 2/3. Our
study indicates that coupling Factory with SNFS where p = Lpn(2/3, cp) and cp
is a positive constant, does not always yield improved complexities. While reduc-
ing the complexity of the main phase (sieving and linear algebra in each fields),
it leads to an increase in the complexity of the individual logarithm step. Conse-
quently, for certain ranges of cp, the resulting complexity becomes significantly
large. We omit the analysis for this particular case.

Discrete Logarithm Factory 25

Medium sparse characteristic finite fields. Here p = LQ(α) with 1/3 <
α < 2/3 and the polynomials f0 and f1 are chosen thanks to the second approach
for the Joux-Pierrot method, see Section 3.2. Hence, N0 = Õ(Aλn/t log(n)λ(t−1)),
and N1 = Õ(An/tQ(t−1)/(nλ)). An integer λ > 1 is fixed and we set the sieve
dimension t to δn(log(Q)/ log log(Q))−1/3. The norm of the sieve elements are
N0 = LQ(2/3, λcA/δ), since log(n)λ(t−1) is negligible in comparison with LQ(2/3),
and N1 = LQ(2/3, cA/δ + δ/λ). A solution of the usual system is:

c ≥ c̃ =
(

λ+4+2
√
2λ+4

9λ

)1/3
, cA = 6c2δ

3cδ−λ

δ =
λ(9c3+1)+

√
−27λc3+λ2(81c6−18c3+1)

6c

When λ ∈ {2, 3}, c is taken equal to c̃. However, when λ ∈ {4, 5}, c is taken
larger than c̃ in order to keep the individual logarithm step negligible, as shown
in Appendix A. Table 9 shows the values taken for c for various values of λ.
The complexity of the one-off step is LQ(1/3, cA), and the complexity of the
computation in each field step is LQ(1/3, 2c).

Suppose a one-off step was performed with the polynomial f0 = P (Xn +
R(X)) on a target size Q. Let Q1/(λn) ≤ ui ≤ Q1/(λn)Q1/(λnt) an integer such
that pi := P (ui) is prime and f2 := Xn + R(X) − ui is irreducible modulo pi.
This completes Diagram 4 with Ki defined with fi. Moreover, fi has coefficient
sizes in Õ(Q1/(λn)Q1/(λnt)), hence, the norms of the stored elements in Ki are
Ni = Õ(An/tQ(t−1)/(nλ)Q(t−1)/(λnt)) with Q(t−1)/(λnt) negligible with respect to
LQ(2/3). In short Ni = LQ(2/3, cA/δ + δ/λ). The following theorem sums up
the complexity of SNFS Factory in medium characteristic finite fields.

Theorem 7. Let λ > 1 an integer and P a polynomial of degree λ and with
coefficient sizes in Õ(1), and t = δn(log(Q)/ log log(Q))−1/3 with the constant δ
determined below. Under Assumption 1 and classical NFS heuristics, for 1/n of
the integers Q1/(λn) ≤ ui ≤ Q1/(λn)Q1/(λnt) such that pi := P (ui) is prime. With
a one time computation of complexity LQ (1/3, cA) and a memory complexity of
LQ (1/3, 2c), the asymptotic complexity of computing a discrete logarithm in Fpn

i

is LQ (1/3, 2c), where c and cA are described above.

We recall the complexity of SNFS (without Factory) in medium characteristic
finite fields: LQ(1/3, (64/9 × (λ + 1)/λ)1/3). Table 9 shows the complexities of
SNFS (with and without Factory) for medium characteristic finite fields for
different explicit values of λ.

4.4 STNFS Factory

The Special Tower Number Field Sieve targets medium characteristic finite fields
with sparse characteristic p, and composite extension degree n = κη. Consider
p = P (u), where P is a polynomial of degree λ with small coefficients, and
u ≈ p1/λ is an integer. Again we assume that κ and η are co-prime. For the
STNFS setup, let h ∈ Z[X] irreducible of degree η, and f0 and f1 output by the

26 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

λ SNFS (without Factory) one-off computation per field
λ = 2 2.20 2.45 1.73
λ = 3 2.12 2.50 1.58
λ = 4 2.07 2.16 2(1.1× c̃) ≈ 1.64
λ = 5 2.04 2.15 2(1.1× c̃) ≈ 1.57

Table 9. Asymptotic complexities of the two steps of SNFS Factory and of SNFS in
medium characteristic finite field, expressed as LQ(1/3, c). Only an approximation of
c is given in this table. When λ = 4 or λ = 5, we adjust the parameters to keep the
individual logarithm step negligible. c̃ is given above in Section 4.3.

second approach of Joux-Pierrot as in Section 3.2. They have respective degrees
λκ and κ, and respective coefficient sizes in Õ(log(κ)λ) and Õ(p1/λ). We set t = 2
(this turns out to be the best choice), and κ = 1/cκ(log(Q)/ log log(Q))1/3 for
some constant cκ. Thanks to the bound in Section 2.3, the sieve elements norms
are N0 = Õ(Aλκ/2 log(κ)λ) = LQ(2/3, λcA/(2cκ)) and N1 = Õ(Aκ/2Q1/(λκ)) =
LQ(2/3, cA/(2cκ)+cκ/λ). Eventually, the solution of the system related to Equa-
tions (5), (6), (7) is:

c ≥ c̃ =
(

λ+4+2
√
2λ+4

18λ

)1/3
, cA = 12c2cκ

6ccκ−λ

cκ =
λ(18c3+1)+

√
−144λc3+λ2(324c6−36c3+1)

12c .

When λ is equal to two, c is then equal to c̃. However, when λ is three, four,
or five, c is taken larger than c̃ in order to keep the individual logarithm step
negligible, as shown in Appendix A. Table 10 shows the values taken for c for
various values of λ. The complexity of the one-off step is LQ(1/3, cA), and the
complexity of the computation in each field step is LQ(1/3, 2c).

Suppose a one-off step is performed with the polynomial f0 = P (Xκ +
R(X)) on a target size Q. Let Q1/(λn) ≤ ui ≤ Q1/(λn)Q1/(λnη) an integer such
that pi := P (ui) is prime and h and fi := Xn + R(X) − ui are irreducible
modulo pi. This completes Diagram (4). Moreover, fi has coefficient sizes in
Õ(Q1/(λn)Q1/(λnη)). The norms of the stored elements, when mapped to Ki, are
in Ni = Õ(Aκ/2Q1/(λκ)Q1/(λn)) where Q1/(λn) = LQ(α) with α < 2/3. In short
Ni = LQ(2/3, cA/(2cκ) + cκ/λ). Thanks to the complexity analysis above, we
know we can use the stored table to solve the discrete logarithm problem in Fpn

i

with complexity LQ(1/3, 2c). This gives:

Theorem 8 (STNFS Factory). Let λ > 1 and integer and P a polynomial of
degree λ and with small coefficients, and κ = 1/cκ(log(Q)/ log log(Q))1/3 with
the constant cκ explicit below. Under Assumptions 1 and 2 and classical NFS
heuristics, for σh×1/κ of the integers Q1/(λn) ≤ ui ≤ Q1/(λn)Q1/(λnη) such that
pi := P (ui) is prime. With a one time computation of complexity LQ (1/3, cA)
and a memory complexity of LQ (1/3, 2c), the complexity of computing a discrete
logarithm in Fpn

i
is LQ (1/3, 2c), where c, and cA are described above.

Discrete Logarithm Factory 27

For the sake of comparison, we recall the asymptotic complexity of STNFS
in medium characteristic finite fields, that is LQ(1/3, (32/9 × (λ + 1)/λ)1/3).
Table 10 recaps the asymptotic complexities of STNFS with and without Factory
for different values of λ.

λ STNFS without Factory one-off computation per field
λ = 2 1.75 1.94 1.37
λ = 3 1.68 1.73 2(1.1× c̃) ≈ 1.38
λ = 4 1.64 1.71 2(1.1× c̃) ≈ 1.30
λ = 5 1.62 1.70 2(1.15× c̃) ≈ 1.31

Table 10. Asymptotic complexities approximations for the two steps of STNFS Fac-
tory and for STNFS, expressed as LQ(1/3, c). Only the approximation of c is given in
this table. When λ is equal to 3, 4, or 5, we adjust the parameters to keep the individual
logarithm step negligible. c̃ is given above in Section 4.4.

Conclusion of the asymptotic analysis

In Appendix A, we prove that the individual logarithm step is of negligible
complexity compared to the complexity of the computation per field step in all
the variants discussed in this section. Therefore, the complexities presented here
represent the overall asymptotic complexities for Factory in each case.

The Factory variant offers the ability to reduce the complexity of NFS and
its variants for a wide range of finite fields, requiring a one-time one-off. A trade-
off between the one-off step and the computation per field step is possible. In
our analysis, we choose to minimize the complexity of the computation in each
field step at the expense of a larger one-time one-off step. Table 3 provides a
summary of the complexities for NFS, all relevant variants included.

5 Estimation of practical cost

The purpose of this section is to compare computational cost estimates of TNFS
and TNFS Factory on 1024-bit finite fields with extension degree equal to 6.

Setup. The factors of n = 6 are taken equal to η = 2 and κ = 3 as our analysis
indicates that both TNFS and TNFS Factory perform the best with this choice.
Denote A the sieve space, and Q the finite field size. Intuitively, relaying on
the bound on the norms in Section 2.3, if one sets κ to 2, then the product
of the norms of a sieve element in both number fields has order of magnitude
N2 := A3Q1/2. On the other hand, the order of magnitude is equal to N3 :=
A9/2Q1/6 if κ is set to 3. Hence, the ratio of the two order of magnitudes is
N2/N3 = A−3/2Q1/3. For our example, Q is approximately 21024, and the sieve
space A is certainly smaller than 2100, hence, N2/N3 is greater than 2190. In
short, the choice η = 2 and κ = 3 gives smaller norms of the sieve elements. Let
p be a prime number such that p6 has roughly 1024 bits.

28 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

Polynomial selection. Previous records as in [MGP21] and [Rob22], suggest that
Conjugation is the best method to select the polynomials in practice, see Sec-
tion 3.2. Our analysis supports this suggestion and indicates that it should be
the best method in practice for TNFS Factory as well. Let h ∈ Z[X] a degree 2
irreducible polynomial with small coefficients, and f0 and f1 in Z[X] of respective
degrees 6 and 3, output by Conjugation. Based on the properties of the poly-
nomials output by Conjugation, and on polynomials used in previous records,
we make the assumption that ∥h∥∞ = 1, ∥f0∥∞ = 1, and ∥f1∥∞ =

√
p. For

instance, in the previous record [MGP21] on Fp6
0
, the polynomials had infinite

norms respectively equal to 1, 1, and approximately 1.0043×√
p0. The number

fields Q(ι), K0 := Q(ι, α0) and K1 := Q(ι, α1), as in Diagram 4 are defined with
h, f0 and f1, where ι, α0 and α1 are their respective roots.

One-off for TNFS Factory and relation collection for TNFS: The Special-q tech-
nique [Pol93]. The aim of the one-off step in TNFS Factory is to find B-smooth
elements ϕ(x, ι) = a(ι)−b(ι)α0, where B is a smoothness bound, and a and b are
polynomials of degree at most η− 1. The aim of the relation collection in TNFS
is to find a(ι) and b(ι) of degrees at most η− 1 such that both a(ι)− b(ι)α0 and
a(ι)− b(ι)α1 are B-smooth. In both cases, a special-q technique should be used
to divide the search space into groups of elements that share a common factor
in K0 (or Ki depending on where we put the special-q), that is an ideal q.

For TNFS Factory, given an ideal q in say O0 the ring of integers of K0,
a sieve algorithm is applied to detect which of the elements (a(ι) − b(ι)α0)/q
are B-smooth. Furthermore, the sieve algorithm only considers vectors (a, b)
for which the 2η dimensional vector constitute of the coefficients of a and b has
an Euclidean norm smaller or equal than a given radius R. If the Euclidean
norm of (a, b) is written r, relaying on Section 2.3, we estimate the norm of
(a(ι) − b(ι)αi) by Ni(r) := rη deg(fi)∥fi∥η∞, for i = 0, 1. Moreover, we denote
V2η(r) the volume of the 2η-sphere of radius r, and ρ is the Dickman function.
In short, we estimate the number of B-smooth elements among all the elements
that are divisible by a special-q q of norm q by:

R−1∑
r=0

(V2η(r + 1)− V2η(r)) ρ

(
log(N0(r))− log(q)

log(B)

)
.

Thus, we estimate the total number of B-smooth elements i.e., the elements
to store, by the number of special-q considered times the number of smooth
elements per special-q . Furthermore, we estimate the cost of the one-off step
by the number of special-q considered times the cost of the sieve algorithm per
special-q, that we approximate to V2η(R) log log(B).

For TNFS, a sieve is performed in both number fields to detect elements
that are B-smooth in both number fields, i.e., elements that produce relations.
Another alternative is to perform a sieve algorithm on the side of the special-q,
and a batch algorithm (a product tree algorithm) to detect elements that are
smooth on the other side. The number of expected relations for a special-q q of
size q, put on, say K1, is:

Discrete Logarithm Factory 29

R−1∑
r=0

(V2η(r + 1)− V2η(r)) ρ

(
log(N0(r))

log(B)

)
ρ

(
log(N1(r))− log(q)

log(B)

)
.

The total number of expected relations is the number of special-q times the
number of expected relations per special-q . The cost of the relation collection
step is the number of special-q times 2V2η(R) log log(B) if a sieve is performed
on both sides. If a sieve is performed on one side and a batch on the other, then
we estimate the cost of the relation collection by the number of special-q times
V2η(R) log log(B) plus a quasi-linear cost in the number of smooth elements
output by the sieve.

computation per field for TNFS Factory and linear algebra for TNFS. The com-
putation per field for TNFS Factory starts by detecting which of the stored
elements from the one-off are B-smooth. This can be done using a product tree
(batch technique) with cost quasi-linear in the number of the stored elements.
The total number of relations produced is estimated by:

R−1∑
r=0

(V2η(r + 1)− V2η(r)) ρ

(
log(N0(r))− log(q)

log(B)

)
ρ

(
log(N1(r))

log(B)

)
.

Then a sparse linear algebra phase computes the discrete logarithms of the fac-
tor basis for a cost that we estimate being equal to (2Li(B))2, where Li is the
logarithmic integral function. Indeed, the factor basis size is taken to be approx-
imately equal to 2Li(B), since the logarithmic integral function evaluated on x
estimates the number of prime numbers smaller than x. Moreover, the sparse
linear algebra is quadratic in the factor basis size.

After the collection of relations, TNFS enters a sparse linear algebra phase
with a cost that we estimate to (2Li(B))2 again.

We do not estimate the cost of the individual logarithm step for the compu-
tation per field step of Factory, nor for TNFS. This cost should be negligible,
and roughly the same for both algorithms. Indeed, previous records and the
asymptotic analysis in Appendix A support this statement.

Best parameters. For TNFS Factory, we search for the parameters that minimize
the cost of the computation per field, under the condition of having enough rela-
tions, i.e., more relations than the factor basis size that is estimated to 2Li(B).
We denote [sp − qmin, sp − qmax] the range of the special-q space. The best
parameters we found are:

R = 196, sp− qmin ≈ 235.76, sp− qmax ≈ 238.32, B = 233.

As a consequence, the estimated cost of the one-off is 267.77, and the estimated
cost of the computation per field is 260.84.

30 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

For TNFS without Factory, we search for the parameters that minimize the
sum of the costs of the relation collection and the linear algebra steps, under
the condition of having enough relations. Sieving on both sides gave the better
estimated cost. In short, the best parameters we found are:

R = 138, sp− qmin ≈ 233.74, sp− qmax ≈ 236.30, B = 235.

The estimated cost of TNFS is therefor 264.44.

What is the value of these estimations? Estimating the practical cost of NFS and
its variants is a very difficult problem and we do not claim to get precise results
in this section, far from it. A better approach would be computing "good" poly-
nomials, sampling on special-q ideals and sieve elements, and trying to estimate
the different costs by extrapolating the costs on these samples. This approach
demands large efforts and is left for an independent future work.

On the one hand, experiments on recent records showed that our estimation
of the norms sizes are rather accurate. On the other hand, we equalize many
unknown constants to 1 when estimating the cost of the sieve and the sparse lin-
ear algebra algorithms. Nevertheless, by estimating the cost of TNFS and TNFS
Factory in the same manner, we get costs that are comparable. In that sens,
since 267.77/(264.44−260.84) ≈ 11, our estimation suggests that when considering
some tens of finite fields Fp6 of size 1024 bits, the TNFS Factory algorithm is
more advantageous than applying the TNFS algorithm on each of the target
finite fields.

6 Conclusion

The Factory variant for NFS brings a shift in the attacker’s approach by targeting
a specific size, such as 1024 bits, rather than a particular finite field. Through a
costly one-time computation, the attacker gains the ability to efficiently target
finite fields of the same size. Furthermore, the flexibility provided by the potential
trade-off between the costs of the one-time computation and the computation per
field enables accommodation of the available computation power and memory.
This allows for better optimization based on the specific resources at hand. This
technique can be leveraged to accelerate discrete logarithm computations for
desired finite field sizes in software like Sage or Magma.

A drawback of Factory in practical usage is its subexponential memory com-
plexity. The required table for storage grows subexponentially in size. However, if
the attacker has prior knowledge of the specific finite fields being targeted (not
just their size), it is possible to employ a batch technique for directly testing
sieve elements for smoothness, as extensively explored in [BL14] for the Factor-
ing Factory algorithm. In such cases, the memory requirements for Factory are
equivalent to those for NFS and its variants.

Discrete Logarithm Factory 31

References

ABD+15. David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Em-
manuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, San-
tiago Zanella-Béguelin, and Paul Zimmermann. Imperfect forward secrecy:
How Diffie-Hellman fails in practice. In 22nd ACM Conference on Com-
puter and Communications Security, October 2015.

AP22. Haetham Al Aswad and Cécile Pierrot. Individual discrete logarithm with
sublattice reduction. IACR Cryptol. ePrint Arch., 2022:912, 2022.

Bar13. Razvan Barbulescu. Algorithmes de logarithmes discrets dans les corps finis.
PhD thesis, Université de Lorraine, 2013.

BB06. Anca Iuliana Bonciocat and Nicolae Ciprian Bonciocat. Some classes of
irreducible polynomials. Acta Arithmetica, 123:349–360, 2006.

BGG+20. Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Em-
manuel Thomé, and Paul Zimmermann. Comparing the difficulty of factor-
ization and discrete logarithm: A 240-digit experiment. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2020, Part II, LNCS, pages
62–91. Springer, Heidelberg, August 2020.

BGGM15. Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François
Morain. Improving NFS for the discrete logarithm problem in non-prime
finite fields. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, pages 129–155. Springer,
Heidelberg, April 2015.

BGJT14. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé.
A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields
of small characteristic. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 1–16. Springer, Heidel-
berg, May 2014.

BL14. Daniel J. Bernstein and Tanja Lange. Batch NFS. In Antoine Joux and
Amr M. Youssef, editors, SAC 2014, volume 8781 of LNCS, pages 38–58.
Springer, Heidelberg, August 2014.

BLP93. J. P. Buhler, A. K. Lenstra, and C. Pomerance. Factoring integers with
the number field sieve. In A. K. Lenstra and H. W. Lenstra, Jr., editors,
The development of the number field sieve, volume 1554 of Lecture Notes
in Math., pages 50–94. Springer–Verlag, 1993.

BP14. Razvan Barbulescu and Cécile Pierrot. The multiple number field sieve for
medium and high characteristic > finite fields. Cryptology ePrint Archive,
Report 2014/147, 2014. https://eprint.iacr.org/2014/147.

CEP83. E. Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem of Op-
penheim concerning “factorisatio numerorum”. Journal of Number Theory,
17(1):1–28, 1983.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zksnarks with universal and
updatable SRS. In Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part
I, volume 12105 of Lecture Notes in Computer Science, pages 738–768.
Springer, 2020.

https://eprint.iacr.org/2014/147

32 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

Cop93. Don Coppersmith. Modifications to the number field sieve. Journal of
Cryptology, 6:169–180, 1993.

Cop94. Don Coppersmith. Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Math. Comp., 62(205):333–350, 1994.

DM21. Gabrielle De Micheli. Discrete Logarithm Cryptanalyses : Number Field
Sieve and Lattice Tools for Side-Channel Attacks. Theses, Université de
Lorraine, May 2021.

FGHT17. Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé. A
kilobit hidden SNFS discrete logarithm computation. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, vol-
ume 10210 of LNCS, pages 202–231. Springer, Heidelberg, April / May
2017.

GKZ14. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Breaking ‘128-
bit secure’ supersingular binary curves - (or how to solve discrete logarithms
in F24·1223 and F212·367). In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 126–145. Springer,
Heidelberg, August 2014.

GMT16. Aurore Guillevic, François Morain, and Emmanuel Thomé. Solving discrete
logarithms on a 170-bit MNT curve by pairing reduction. In Roberto Avanzi
and Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages
559–578. Springer, Heidelberg, August 2016.

Gor93. Daniel M. Gordon. Discrete logarithms in GF(P) using the number field
sieve. SIAM J. Discret. Math., 6(1):124–138, 1993.

Gré17. Laurent Grémy. Computations of discrete logarithms sorted by date, 2017.
https://dldb.loria.fr/.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of
Lecture Notes in Computer Science, pages 305–326. Springer, 2016.

Gui18. Aurore Guillevic. Faster individual discrete logarithms in finite fields of
composite extension degree. CoRR, abs/1809.06135, 2018.

Gui19. Aurore Guillevic. Faster individual discrete logarithms in finite fields of
composite extension degree. Mathematics of Computation, 88(317):1273–
1301, January 2019.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. Cryptology ePrint Archive, Paper 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

JLSV06. Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren.
The number field sieve in the medium prime case. In Cynthia Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 326–344. Springer,
Heidelberg, August 2006.

JP14. Antoine Joux and Cécile Pierrot. The special number field sieve in Fpn

- application to pairing-friendly constructions. In Zhenfu Cao and Fang-
guo Zhang, editors, PAIRING 2013, volume 8365 of LNCS, pages 45–61.
Springer, Heidelberg, November 2014.

KB16. Taechan Kim and Razvan Barbulescu. Extended tower number field sieve:
A new complexity for the medium prime case. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 543–571. Springer, Heidelberg, August 2016.

https://dldb.loria.fr/
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953

Discrete Logarithm Factory 33

KBL14. Thorsten Kleinjung, Joppe W. Bos, and Arjen K. Lenstra. Mersenne fac-
torization factory. In Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science,
pages 358–377. Springer, 2014.

KJ17. Taechan Kim and Jinhyuck Jeong. Extended tower number field sieve with
application to finite fields of arbitrary composite extension degree. In Serge
Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages 388–408.
Springer, Heidelberg, March 2017.

KR20. Biswajit Koley and A Satyanarayana Reddy. An irreducible class of poly-
nomials over integers. arXiv preprint arXiv:2004.00233, 2020.

KW22. Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in
quasi-polynomial time in finite fields of fixed characteristic. Journal of
the American Mathematical Society, 35:581–624, 2022.

LLL82. A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring Polynomials with
Rational Coefficients. Mathematische Annalen, 261:515–534, 1982.

LLMP90. Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M.
Pollard. The number field sieve. In 22nd ACM STOC, pages 564–572. ACM
Press, May 1990.

Mat03. Dimitry Matyukhin. On asymptotic complexity of computing discrete loga-
rithms over GF(p). Discrete Mathematics and Applications, 13:27–50, 2003.

MGP21. Gabrielle De Micheli, Pierrick Gaudry, and Cécile Pierrot. Lattice enu-
meration for tower NFS: A 521-bit discrete logarithm computation. In
Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Singapore, December 6-
10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in Computer
Science, pages 67–96. Springer, 2021.

Pie15. Cécile Pierrot. The multiple number field sieve with conjugation and gen-
eralized Joux-Lercier methods. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 156–170.
Springer, Heidelberg, April 2015.

Pol93. John M. Pollard. The Lattice Sieve. In Arjen K. Lenstra and Hendrik W.
Lenstra, editors, The development of the number field sieve, pages 43–49,
Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

Rob22. Oisín Robinson. An implementation of the extended tower number field
sieve using 4d sieving in a box and a record computation in fp4. CoRR,
abs/2212.04999, 2022.

SL96. Peter Stevenhagen and Hendrik Willem Lenstra. Chebotarëv and his den-
sity theorem. The Mathematical Intelligencer, 18:26–37, 1996.

SS16a. Palash Sarkar and Shashank Singh. A general polynomial selection method
and new asymptotic complexities for the tower number field sieve algorithm.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 37–62. Springer, Heidelberg, Decem-
ber 2016.

SS16b. Palash Sarkar and Shashank Singh. New complexity trade-offs for the (mul-
tiple) number field sieve algorithm in non-prime fields. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of
LNCS, pages 429–458. Springer, Heidelberg, May 2016.

34 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

SS19. Palash Sarkar and Shashank Singh. A unified polynomial selection method
for the (tower) number field sieve algorithm. Advances in Mathematics of
Communications, 13(3):435–455, 2019.

TCG19. The Trusted Computing Group. Trusted Platform Module, 2019. Lat-
est version Nov. 2019. https://trustedcomputinggroup.org/resource/
tpm-library-specification/.

A Complexity of the Individual Logarithm step in
Factory

The individual logarithm step is the last one in NFS and its variants, and also the
last one inside the computation per field phase in Factory, coupled or not with
other variants. We prove in this Appendix that the complexity of the individual
logarithm step is negligible compared to the rest of the computation per field
step for all the variants we studied. Hence, the complexities announced and
recapitulated in Table 3 are indeed the whole asymptotic complexities of the
computation per field step. The individual logarithm step consists of two main
steps: the smoothing and the descent step.

A.1 Smoothing step

The smoothing step consists in reducing the computation of the discrete log-
arithm of the target to the discrete logarithm of another element that is B̃-
smooth once lifted to one of the number fields, where B̃ = LQ(2/3, cB̃) > B.
The smoothing step was improved for finite fields of composite extension de-
gree in [Gui18,AP22]. The following lemma recapitulates the complexity of the
smoothing step for all the Factory variants:

Lemma 9. In all NFS Factory variants, the running time of the smoothing step
in Fpn to output an element B̃-smooth is Lpn(1/3, C = 31/3(23/27)2/3), where
B̃ = Lpn(2/3, cB̃) with cB̃ = (1/3)1/3(27/23)2/3. The approximated values are:
C ≈ 1.30, and cB̃ ≈ 0.77.

Proof. The lemma is a direct consequence of Corollary 6.4 and Corollary 6.5
in [Gui18], where substituting e and d by 1 is valid for all our Factory variants.

The complexity of the smoothing step is thus negligible compared to the com-
plexity of the computation per field step in all Factory variants.

A.2 Descent step

This paragraph is inspired from [Bar13], where the descent step is presented for
NFS Factory in prime finite fields. We adapt the idea to other characteristic sizes
and to the different variants coupled with Factory.

After the smoothing step, the target is B̃-smooth with B̃ = LQ(2/3, cB̃) > B,
where cB̃ is as in Lemma 9. Thanks to the previous steps, we know the virtual

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

Discrete Logarithm Factory 35

logarithms of the prime ideals in K0 that are both factors of the target and of
norm smaller than B. It remains to compute the virtual logarithms of the prime
ideals in K0 that are factors of the target but of norm between B and B̃. Let
q be such a prime ideal, that is of degree one, and denote q its norm. Define
the special-q lattice Lq of dimension 2η over Z, and of determinant q, that
corresponds to the elements (a(ι), b(ι)) such that (a(ι) − b(ι)α0) is divisible by
q in K0. Using the LLL algorithm, compute (u0, . . . , u2η−1) a basis of Lq where
∥ui∥∞ = Õ(p1/(2η)) for i = 0, . . . , 2η − 1. Let ξ ∈ (0, 1) a positive real number
smaller than one, to be determined later. The first step of the descent step
consists in finding (a(ι), b(ι)) ∈ Lq such that :

– N0(b(ι)−a(ι)α0)
q is qξ-smooth.

– and Ni (b(ι)− a(ι)α1) is qξ-smooth.

This permits to express the virtual logarithm of q as a linear combination of
virtual logarithms of prime ideals of norms smaller than qξ. To recover the virtual
logarithm of q, it is sufficient to repeat the process on each of the ideals in the
linear combination until they are all in the factor basis.

We start by proving that the first step of the descent, i.e., finding (a(ι), b(ι))
as above, is the dominant step of the descent in terms of complexity. To descend
the ideal q to the factor basis, we construct a tree where the root is q and
the leaves are ideals in the factor basis. Each ideal that descends due to a pair
(a(ι), b(ι)) introduces at most log2(N0(b(ι)−a(ι)α0)+log2(Ni(b(ι)−a(ι)α1) new
nodes. By Corollary 6.4 in [Gui18], both norms are smaller than Q. Hence, the
arity of the tree is less than 2 log2 Q, and its depth is smaller than the smallest
integer k such that ξk log B̃ ≤ logB. Hence, k = O((log logQ)). The number
of nodes in the tree is less than (2 log2(Q))k = exp(O(log log(Q)2)). Denote C
the complexity of the first descent of q. We prove in the following paragraph
that C = LQ(1/3). Hence, the complexity of descending q to the factor basis is
dominated by exp(O(log log(Q)2))·C = C. This process is applied on all the prime
factors of the target that are not in the factor basis, their number is in O(logQ).
In short, the complexity of the descent step is the complexity of descending q,
that is the complexity of finding (a(ι), b(ι)) as described above.

Complexity of the descent step for NFS Factory and its variants. For
µ = (µ0, . . . , µ2η−1) of infinite norm S, we look for "good" (a(ι), b(ι)) of the form
µ0u0 + . . . µ2η−1u2η−1, either by sieving or ECM tests. Hence, ∥(a(ι), b(ι))∥∞ =

Õ(Sq1/(2η)). We take S2η := LQ(1/3, s) for a positive s to be chosen. From the
bound in Section 2.3, we get Ni(a(ι)−b(ι)αi) = Õ((S2η)deg(fi)/2∥fi∥η∞qdeg(fi)/2),
for i = 0, 1. We assume the two following usual heuristics. The probability of each
of the norms being qξ-smooth is the same as for a random integer of the same
size, and the qξ-smoothness probability of both norms are independent. Under
these assumptions, the probability that both norms are qξ-smooth is greater
than the probability of a random integer of size the product of the norms being

36 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

qξ-smooth. Besides, the product of the norms divided by q is of size

N = Õ
(
(S2η)(deg(f)+deg(f1))/2∥f∥η∞∥f1∥η∞q(deg(f)+deg(f1))/2−1

)
.

Denote q = LQ(αq, cq), where 1/3 ≤ αq ≤ 2/3, with cq > c if αq = 1/3, and cq <

cB̃ if αq = 2/3, since B < q < B̃. Hence, qξ = LQ(αq, ξcq). The complexity of a
qξ-smoothness test by ECM is LQ(αq/2, (2αqξcq)

1/2). It is negligible compared
to LQ(1/3) whenever αq < 2/3, and is equal to LQ(1/3, (4ξcq/3)

1/2) if αq = 2/3.

Large characteristic descent step for Factory. Plugging the properties of the
polynomials output by the GJL polynomial selection, with η = 1, we get N =
Õ((S2)(2d+1)/2Q1/(d+1)q(2d+1)/2−1. Hence, N = LQ(2/3, s/γ+ γ+ cq/γ) if αq =
1/3, and N = LQ(αq + 1/3, cq/γ) if αq > 1/3. The asymptotic complexity of
the descent step is the inverse of the probability of N being qξ-smooth (see
Section 2.3) times the cost of ECM. Thus this complexity is:

– LQ

(
1
3 ,

s
3γξcq

+ γ
3ξcq

+ 1
3ξγ

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
3ξγ

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
3ξγ +

√
4ξcq
3

)
, if αq = 2

3 .

When q is small, i.e., αq = 1/3, the complexity of the descent grows as qξ

decreases, it is maximal when ξcq = c. Furthermore, the space of search of (a, b)
has to be equal to the inverse of the probability of N being qξ-smooth, which
translates into s = s/(3γξc) + γ/(3ξc) + 1/(3ξγ) after equalizing ξcq and c.
Thus, s = (γ2ξ + c)/((3cγ − 1)ξ). Taking for instance ξ = 0.999, we get the
complexity of the descent in approximately LQ(1/3, 1.19), which is negligible
compared to the smoothing step. The complexity of the descent when αq is
between 1/3 and 2/3 is upper bounded by the complexity when q is of large size,
i.e., αq = 2/3. In this last case, the complexity grows as q grows, it is maximal
when cq = cB̃ . Hence, the complexity is upper bounded by LQ(1/3, 1/(3ξγ) +

(4cB̃ξ/3)
1/2). By minimizing the last quantity in ξ, we get ξ = 1/(3cB̃γ

2)1/3. In
short, the complexity of descending q is approximately LQ(1.3, 1.28), which is
also negligible compared to the smoothing step. In conclusion, the complexity of
the descent step in NFS Factory for large characteristic finite fields is negligible
compared to the complexity of the smoothing step.

The analysis giving the best parameter choices for the other variants follow
the same idea. We omit the optimization details. Table 11 recapitulates the
asymptotic complexities for the individual logarithm step in all the variants.

Boundary case descent step for Factory. We target finite fields Fpn
i

where p =
LQ(2/3, cp), with cp a positive constant. When the polynomial selection method
used is GJL, the complexity analysis of the descent step is the same as for NFS
Factory in large characteristic. It is negligible compared to the smoothing step.

Discrete Logarithm Factory 37

Algorithm Characteristic Smoothing Descent computation per field
Large 1.30 1.28 1.64

NFS Factory Boundary case Figure 12
Medium 1.30 1.43 1.73

TNFS Factory Medium 1.30 1.28 1.37
SNFS Large 1.30 1.06 1.39

Medium Table 13
STNFS Factory Medium Table 14

Table 11. Asymptotic complexities of the individual logarithm step and the computa-
tion per field step in NFS Factory and its variants. This table recap an approximation
of c when the complexities are expressed as LQ(1/3, c). For NFS at the boundary case,
the complexity depends on the finite field size. We refer to a figure plotting these com-
plexities. For SNFS in medium characteristic (with or without Tower), the complexities
depend on an integer λ. We refer to tables giving the complexities for various values
of λ.

When using Conjugation, instead of looking for a "good" (a, b) in Lq, we look
for a "good" vector of dimension t̃, where t̃ is a positive integer greater than or
equal to two. Hence, η = 1, the dimension of Lq is t̃ and its determinant is q.
We need to adapt the formula given for N at the beginning of this Appendix
and use instead the formula at the beginning of Section 4.1 with the properties
of the polynomials output by Conjugation. In short, taking S t̃ = LQ(1/3, s),
we get N = Õ((S t̃)3n/t̃Q(t̃−1)/(2n)q3n/t̃−1). Hence N = LQ(2/3, 3s/(t̃cp) + (t̃ −
1)cp/2 + 3cq/(t̃cp)) if αq = 1/3, and N = LQ(αq + 1/3, 3cq/(t̃cp)) if αq > 1/3.
The complexity of the descent step is then:

– LQ

(
1
3 ,

s
ξcqcp t̃

+
(t̃−1)cp
6ξcq

+ 1
ξt̃cp

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
ξt̃cp

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
ξt̃cp

+
√

4ξcq
3

)
, if αq = 2

3 .

Figure 12 plots the asymptotic complexities of different parts of Factory: the
smoothing step, the descent step for both small and large q, and the computation
in each step. We see that both the descent step and the smoothing step are
negligible with regard to the computation per field.

Medium characteristic descent step for Factory. Here the analysis is quite close
from the one at the boundary case for Conjugation. Again, we look for a "good"
vector of dimension t̃, where t̃ is taken equal to δ̃n(log(Q)/ log log(Q))−1/3.
Hence, η = 1, the dimension of Lq is t̃ and its determinant is q. Taking S t̃ =

LQ(1/3, s), we get N = Õ((S t̃)3n/t̃Q(t̃−1)/(2n)q3n/t̃−1). Hence we can write the
norm N = LQ(2/3, 3s/δ̃+ δ̃/2+3cq/δ̃) if αq = 1/3, and N = LQ(αq+1/3, 3cq/δ̃)
if αq > 1/3. The asymptotic complexity of the descent step depends on the size
of q, it is:

38 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

Fig. 12. Asymptotic complexities of some steps inside NFS Factory at the bound-
ary case. Target finite fields have characteristic p such that p = Lpn(2/3, cp). This
graph shows how c varies as a function of cp when the complexities are expressed as
Lpn(1/3, c).

– LQ

(
1
3 ,

s
ξcq δ̃

+ δ̃
6ξcq

+ 1
ξδ̃

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
ξδ̃

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
ξδ̃

+
√

4ξcq
3

)
, if αq = 2

3 .

The hardest q to descend is the one of small size with a complexity in ap-
proximately LQ(1/3, 1.43). The descent step has a complexity that is dominant
compared to the smoothness step, but negligible compared to the computation
per field step.

Medium characteristic descent step for TNFS Factory. We consider Conjugation
for the polynomial selection. We get N = Õ((S2η)3κ/2Q1/(2κ)q3κ/2−1). Hence,
N = LQ(2/3, 3s/(2cκ)+cκ/2+3cq/(2cκ)) if αq = 1/3 and N = LQ(2/3, 3cq/(2cκ))
if αq > 1/3. The complexity of the descent step is:

– LQ

(
1
3 ,

s
2ξcqcκ

+ cκ
6ξcq

+ 1
2ξcκ

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
2ξcκ

)
, if 1

3 < αq < 2
3 .

Discrete Logarithm Factory 39

– LQ

(
1
3 ,

1
2ξcκ

+
√

4ξcq
3

)
, if αq = 2

3 .

The hardest q to descend is the one of large size with a complexity in approx-
imately LQ(1/3, 1.28), which is negligible compared to the complexity of the
smoothness step.

Large characteristic descent step for SNFS Factory. Plugging the properties
of the polynomials given by the Joux-Pierrot polynomial selection, we get the
norm N = Õ((S2)n(λ+1)/2Q1/(λn)qn(λ+1)/2−1). Hence, N = LQ(2/3, s/(2cλ) +
cλ + cq/(2λ)) if αq = 1/3, and N = LQ(αq + 1/3, cq/(2λ)) if αq > 1/3. The
complexity of the descent step is:

– LQ

(
1
3 ,

s
6ξcqcλ

+ cλ
3ξcq

+ 1
6ξcλ

)
, if αq = 1

3 .

– LQ

(
1
3 ,

1
6ξcλ

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

1
6ξcλ

+
√

4ξcq
3

)
, if αq = 2

3 .

The hardest q to descend is the one of large size with a complexity in approx-
imately LQ(1/3, 1.06), which is negligible compared to the complexity of the
smoothness step.

Medium characteristic descent step for SNFS Factory. We look for a "good"
vector of dimension t̃, where t̃ is taken equal to δ̃n(log(Q)/ log log(Q))−1/3.
Therefor, η = 1, the dimension of Lq is t̃ and its determinant is q. We use
the formula for N of Section 4.1, with the properties of the polynomials out-
put by the Joux-Pierrot method. Writting S t̃ = LQ(1/3, s), we obtain N =

Õ((S t̃)n(λ+1)/t̃Q(t̃−1)/(λn)qn(λ+1)/t̃−1). Hence, N = LQ(2/3, s(λ + 1)/δ̃ + δ̃/λ +

(λ + 1)cq/δ̃) if αq = 1/3, and N = LQ(αq + 1/3, (λ + 1)cq/δ̃) if αq > 1/3. The
complexity of the descent step is:

– LQ

(
1
3 ,

s(λ+1)

3ξcq δ̃
+ δ̃

3ξcqλ
+ λ+1

3ξδ̃

)
, if αq = 1

3 .

– LQ

(
1
3 ,

λ+1
3ξδ̃

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

λ+1
3ξδ̃

+
√

4ξcq
3

)
, if αq = 2

3 .

As previously, the hardest q to descend is the one of large size. Table 13 presents
approximate values of the complexity for various values of λ. The complexity of
the descent step is always dominant compared to the smoothing step, but still
negligible compared to the computation per field step.

Medium characteristic descent step for STNFS Factory. With Joux-Pierrot se-
lection and the usual notations, we get, N = Õ((S2η)κ(λ+1)/2Q1/(λκ)qκ(λ+1)/2−1).
Hence, N = LQ(2/3, (λ + 1)s/(2cκ) + cκ/λ + (λ + 1)cq/(2cκ)) if αq = 1/3, and
N = LQ(αq + 1/3, (λ + 1)cq/(2cκ)) if αq > 1/3. The complexity of the descent
step depends on λ, it is:

40 Haetham Al Aswad, Cécile Pierrot, and Emmanuel Thomé

λ Smoothing Descent computation per field
λ = 2 1.43 1.30 1.73
λ = 3 1.46 1.30 1.58
λ = 4 1.33 1.30 1.64
λ = 5 1.36 1.30 1.57

Table 13. Asymptotic complexities for different part of medium characteristic SNFS
Factory. These complexities are expressed as LQ(1/3, c) and only an approximation of
c is given. The individual logarithm phase, that consists of the smoothing step and the
descent step, is always negligible with regard to the other steps in the computation per
field.

– LQ

(
1
3 ,

s(λ+1)
6ξcqcκ

+ cκ
3ξcqλ

+ λ+1
6ξcκ

)
, if αq = 1

3 .

– LQ

(
1
3 ,

λ+1
6ξcκ

)
, if 1

3 < αq < 2
3 .

– LQ

(
1
3 ,

λ+1
6ξcκ

+
√

4ξcq
3

)
, if αq = 2

3 .

The hardest q to descend is the one of large size. Table 14 presents approx-
imate values of the complexity for different small values of λ. We see that the
asymptotic complexity of both the descent step is negligible compared to the
complexity of the smoothing step. Note that both the smoothing and the de-
scent are negligible with regard to the computation in each field when λ is lower
of equal to 4, but when λ = 5 the smoothing step starts to be dominant.

λ Descent Smoothing computation per field
λ = 2 1.26 1.30 1.37
λ = 3 1.04 1.30 1.38
λ = 4 1.06 1.30 1.30
λ = 5 1.08 1.30 1.31

Table 14. Asymptotic complexities for different part of medium characteristic STNFS
Factory. These complexities are expressed as LQ(1/3, c) and only an approximation of
c is given. The dominant step is indicated in bold.

	Discrete Logarithm Factory

