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FULL DEAUTONOMISATION BY SINGULARITY CONFINEMENT AS AN

INTEGRABILITY TEST

ALEXANDER STOKES1,†, TAKAFUMI MASE1, RALPH WILLOX1, AND BASILE GRAMMATICOS2

Abstract. Since its introduction, the method of full deautonomisation by singularity con-
finement has proved a strikingly effective way of detecting the dynamical degrees of birational
mappings of the plane. This method is based on an observed link between two a priori unrelated
notions: firstly the dynamical degree of the mapping and secondly the evolution of parameters
required for its singularity structure to remain unchanged under a sufficiently general deau-
tonomisation. We give a proof of this conjectured correspondence for a large class of birational
mappings of the plane via the spaces of initial conditions for their deautonomised versions. We
show that even for non-integrable mappings in this class, the surfaces forming these spaces have
effective anticanonical divisors and one can define a kind of period map similar to that in the
theory of rational surfaces associated with discrete Painlevé equations. This provides a bridge
between the evolution of coefficients in the deautonomised mapping and the induced dynamics
on the Picard lattice which encode the dynamical degree.

1. Introduction

The motivation for this paper stems from a number of observations of quite a remarkable
phenomenon which arises in the context of the singularity analysis of birational mappings of
the plane and which is related to their degree growth and, ultimately, to their integrability.
This phenomenon manifests itself as the dynamical degree of a mapping being reflected in the
characteristic polynomial for certain recurrences that the coefficients in the mapping have to
obey for the singularity structure of the mapping to remain unchanged under a sufficiently
general deautonomisation.

The first observations of this phenomenon can be traced back to so-called late-confining ver-
sions of discrete Painlevé equations [19], where singularities are still confined but not at the
first opportunity. For non-autonomous mappings obtained through this kind of late confine-
ment, as opposed to genuine discrete Painlevé equations, the dependence of the coefficients in
the mapping on the independent variable ceases to be additive, multiplicative or through the
arguments of elliptic functions, but rather the coefficients satisfy a recurrence relation whose
characteristic polynomial has the dynamical degree of the mapping as a root. Outside the con-
text of late confinement, it has been observed in many examples [25, 38, 15] that the minimal
polynomial governing the degree growth of the equation also appears in confinement conditions
on coefficients of the deautonomised mapping, though sometimes it is necessary to add to the
mapping extra terms which do not affect the singularity patterns.

This relationship between dynamical degree and confinement conditions was first conjectured
in [25] and, based on these and subsequent observations, the method of full deautonomisation by
singularity confinement was introduced in [15, 38] as a remarkably effective integrability detec-
tor, which works even when other methods based on singularity analysis [17, 26, 37] fail. This
correspondence between coefficient evolution and degree growth clearly requires explanation,
and it is this problem that we address in this paper.
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Singularity confinement was proposed in [14] as a discrete counterpart to the Painlevé prop-
erty of ordinary differential equations. The Painlevé property requires that if a solution develops
a movable singularity, i.e. one whose location in the complex plane depends on initial conditions,
then this does not induce multivaluedness which would obstruct the meaningful definition of a
general solution for the equation. In the discrete case we are interested similarly in singularities
which appear spontaneously when iterating the system, and require them to disappear after
finitely many further iterations, i.e. the singular behaviour is confined to finitely many iterates
and does not propagate. In the years after its introduction singularity confinement has been
used to great effect as an integrability criterion, in particular to isolate deautonomised versions
of known autonomous integrable systems. In particular, many discrete Painlevé equations were
found [34, 13] by applying the method to Quispel-Roberts-Thompson (QRT) mappings [30, 31].

It is important to note, however, that singularity confinement is not a necessary criterion for
integrability, in that there exist mappings with unconfined singularities which are integrable
through linearisation. This is true even in the continuous case where there are linearisable
differential equations which do not have the Painlevé property [36]. But most importantly, it is
also not a sufficient condition since there exist examples in which all singularities are confined
but the dynamics are chaotic, the most famous example being that due to Hietarinta and Viallet
[20]. We shall work with a definition of integrability of birational mappings in terms of their
dynamical degree, or equivalently algebraic entropy [4], following the idea that integrability in
the discrete case is associated with slow growth in complexity under the dynamics, as evident
in Arnol’d’s notion of topological entropy [1, 2], Veselov’s ideas of polynomial growth of certain
characteristics [43], and related notions of entropy considered by Friedland [10] following from
work with Milnor [11]. Recall that for a second-order equation defining a birational mapping

φ : (xn, yn) 7→ (xn+1, yn+1), the limit limk→∞
(
degφk

)1/k
is called the (first) dynamical degree

of the mapping, in which degφk is the degree as a rational function of initial conditions of
the k-times composition of φ. The limit limk→∞

1
k log

(
degφk

)
is used mainly in the integrable

systems community under the name ‘algebraic entropy’ [4]. These concepts can be similarly
defined for non-autonomous equations defining families of birational mappings, and we say that
a mapping, autonomous or not, is integrable if its algebraic entropy is zero or if its dynamical
degree is one.

In the years since the realisation that singularity confinement is not sufficient for integrability,
thankfully, a complete classification of mappings of the plane was obtained, according to their
degree growth and whether they have the singularity confinement property in the sense of a
space of initial conditions, both in the autonomous case by Diller and Favre [7] and in the non-
autonomous case by one of the authors [24]. In particular if a non-autonomous mapping with
the singularity confinement property has unbounded degree growth, then it must either fit into
the framework of discrete Painlevé equations [39] or be non-integrable. Therefore for singularity
confinement to function as an integrability test, it needs only be combined with something that
reliably detects the dynamical degree. We will show that full deautonomisation does exactly
this.

We will illustrate singularity confinement and the phenomena described above through the
example

xn+1 + xn−1 =
1

x2n
, (1.1)

which is a QRT mapping belonging to Class I in the classification of [32] (see also [35] for a
derivation and [16, Appendix] for an easily consultable list). The definition of the singularity
confinement property for such an equation, when recast as a mapping of the projective plane P2,
is that it is birationally conjugate to an automorphism. I.e., that one can perform a sequence
of blow-ups and possibly blow-downs to obtain a rational surface on which the mapping is
regularised as an automorphism. Phrased on the level of the equation itself, as it originally was
in [14], a singularity is constituted by an iteration from some initial condition that results in
a loss of a degree of freedom, in the sense that the iterate takes a value at which the inverse
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mapping is undefined. As already mentioned above, ‘singularity confinement’ refers to the
situation where finitely many further iterations lead the singularity to disappear, with the lost
degree of freedom being recovered.

For example, while iterating the equation above, if some iterate xn takes the value 0 while
xn−1 = u is some finite constant, then the value of the subsequent iterate is xn+1 =∞ irrespec-
tive of the precise value of u. This constitutes a loss of degree of freedom in the sense that the
one-parameter family of pairs (xn−1, xn) = (u, 0) all lead to the same value (xn, xn+1) = (0,∞).
In terms of the iteration mapping (xn−1, xn) 7→ (xn, xn+1), this is nothing but the curve given
by xn = 0 being contracted to a point, i.e. a curve being blown down by the mapping.

Computing further we find that xn+2 = 0 but then, crucially, see that the value of the next
iterate xn+3 = 1

x2n+2
− xn+1 is not defined, with the point (xn+1, xn+2) = (∞, 0) being an

indeterminacy of the mapping. The way in which singularity confinement is verified, is to take
xn = ε for some small parameter ε which leads to

xn−1 = u, xn = ε, xn+1 =
1

ε2
− u, xn+2 = −ε+O(ε2), xn+3 = u+O(ε). (1.2)

Then, defining the values of iterates as the limits of the above as ε→ 0, we have

xn−1 = u, xn = 0, xn+1 =∞2, xn+2 = 0, xn+3 = u, (1.3)

in which xn+1 = ∞2 means the iterate is of order 1/ε2 as above. In singularity confinement
parlance we say that the lost degree of freedom is recovered through the reappearance of u in
the value of xn+3, and that the singularity is confined. The results of the above calculation
are then summarized by saying that equation (1.1) admits the (confined) singularity pattern
{0,∞2, 0}.

To demonstrate the use of singularity confinement in the deautonomisation procedure, let us
consider the following generalisation of mapping (1.1)

xn+1 + xn−1 =
an + bnxn

x2n
, (1.4)

where the n-dependence of the functions an, bn is to be determined by requiring that the
singularity structure of (1.4) is the same as in the autonomous case. As above, some iterate xn
taking the value 0 constitutes a singularity of the mapping (1.4), so we let xn = ε and xn−1 = u,
and compute

xn = ε,

xn+1 =
an
ε2

+
bn
ε
− u,

xn+2 = −ε+
bn+1

an
ε2 +O(ε3),

xn+3 =
an+2 − an

ε2
−
(
bn+2 −

2an+2bn+1

an
+ bn

)
1

ε
+O(1).

(1.5)

In order for the singularity to be confined in the same way as above, the singular part of the
expansion of xn+3 in ε must vanish, so we must have an+2 = an for all n, as well as

bn+2 − 2bn+1 + bn = 0. (1.6)

Solving these ‘confinement’ conditions we find

xn+1 + xn−1 =
α+ βn

xn
+

(−1)nγ + δ

x2n
, (1.7)

for some constants α, β, γ, δ, which reduces to a known example of a discrete Painlevé equation
[33]. More relevant to the present paper is the fact that the characteristic polynomial of the
linear recurrence (1.6) is t2 − 2t+ 1, which has no roots larger than one.

In the deautonomisation which led to the mapping (1.7), we required that the evolution of
coefficients be such that the deautonomised mapping admits the exact same confined singularity
pattern {0,∞2, 0}. However it is possible to choose an, bn such that the singularity associated
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with the value 0 is confined but after more iterations rather than at the earliest opportunity, a
notion called late confinement [15]. In particular, calculating further along the lines above but
assuming that the previous confinement conditions do not hold, we find

xn = ε,

xn+1 =
an
ε2

+
bn
ε
− u,

xn+2 = −ε+
bn+1

an
ε2 +O(ε3),

xn+3 =
an+2 − an

ε2
−
(
bn+2 −

2an+2bn+1

an
+ bn

)
1

ε
+O(1),

xn+4 = ε+
anbn+3 − an+2bn+1 + anbn+1

an(an+2 − an)
ε2 +O(ε3),

xn+5 =
An
ε2
−
(
Bn + 2An

(
bn+1

an
+

bn+3

an − an+2

))
1

ε
+O(1),

(1.8)

where An = an+4 − an+2 + an and Bn = bn+4 − 2bn+3 + bn+2 − 2bn+1 + bn. Therefore we have
an opportunity to confine the singularity at a later stage, by ensuring that the singular powers
of ε in xn+5 vanish, such that we have singularity confinement with the singularity pattern
{0,∞2, 0,∞2, 0}. In this case the confinement conditions are given by the pair of recurrences

an+4 − an+2 + an = 0, bn+4 − 2bn+3 + bn+2 − 2bn+1 + bn = 0, (1.9)

whose characteristic polynomial(
t4 − t2 + 1

) (
t4 − 2t3 + t2 − 2t+ 1

)
, (1.10)

has six roots of modulus one, as well as a pair λ, λ−1 where

λ =
1 +
√
2 +

√
−1 + 2

√
2

2
∼= 1.8832. (1.11)

The mapping (1.4) with coefficients satisfying (1.9) but otherwise generic is indeed non-integrable
with dynamical degree given by this largest root λ of the characteristic polynomial, which can
be proved by a number of methods, e.g. [41, 17, 37].

More generally, consider the mapping

xn+1 + xn−1 =
1

x2mn
, (1.12)

for some integer m ≥ 1, which is known [15, 37] to have dynamical degree m+
√
m2 − 1. Similar

analysis as above shows that this mapping admits the confined singularity pattern
{
0,∞2m, 0

}
.

If we proceed to deautonomise, by taking

xn+1 + xn−1 =
an
x2mn

, (1.13)

we see by similar calculations to those for them = 1 case above, that for the pattern
{
0,∞2m, 0

}
to persist we must require the confinement condition an+2 = an. Note that this is the same
condition as for the m = 1 case which, most importantly, does not give any information on the
dynamical degree of the mapping. However, in performing these calculations with xn = ε one
notices that adding terms 1

xj
, j = 1, . . . , 2m− 1 to the right-hand side of (1.12) does not affect

the leading behaviours xn+1 ∼ 1
ε2m

, xn+2 ∼ ε, and hence that there still is an opportunity to
confine at the next iterate. Doing so leads to the ‘full deautonomisation’ of the mapping (1.12)
given by

xn+1 + xn−1 =
a
(2m)
n

x2mn
+

2m−1∑
i=2

a
(i)
n

xin
+
bn
xn
. (1.14)
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The confinement conditions on the coefficients a
(i)
n and bn required for this mapping to admit

the singularity pattern
{
0,∞2m, 0

}
are

a
(i)
n+2 = (−1)ia(i)n , i = 2, . . . , 2m, bn+2 − 2mbn+1 + bn = 0. (1.15)

The characteristic polynomial for the recurrence satisfied by bn is

t2 − 2mt+ 1, (1.16)

whose largest root λ = m+
√
m2 − 1 coincides with the dynamical degree of the mapping. It is

worth emphasizing that this is also the dynamical degree of the non-autonomous mapping with
coefficients that obey (1.15).

The remarkable connection that is observed here between degree growth and evolution of
coefficients is what we aim to explain in this paper. The key to this explanation is offered by
an extension of the notion of ‘period mapping’, originally introduced for integrable mappings of
the plane. In the non-autonomous case, the singularity confinement property of a family φn of
birational mappings of the plane is equivalent to the existence of a space of initial conditions: a
family of rational surfaces to which the mappings lift to isomorphisms (cf. Definition 2.4). In the
theory of rational surfaces associated with discrete Painlevé equations due to Sakai [39], there is
a known bridge between parameter evolution and degree growth, namely the interaction between
dynamics on the Picard lattice of the surfaces and a kind of period map, whose construction
goes back to the work of Looijenga [23]. This bridge relies on, amongst other things, the fact
that the surfaces providing the space of initial conditions for the mapping have an effective
anticanonical divisor, i.e. the fact that they admit a zero-free rational two-form .

In fact the question of the existence of effective anticanonical and, more generally, antipluri-
canonical divisors (here meaning a divisor representing some negative multiple of the canonical
class) appears frequently in the study of automorphisms of algebraic surfaces and their dy-
namics [3, 6, 8, 9, 12, 18, 27, 45]. In particular, a conjecture of Gizatullin (communicated to
Harbourne by Dolgachev and Looijenga [18]) stated that if a rational surface X has an auto-
morphism φ of infinite order, then X must have an effective antipluricanonical divisor. In all
counterexamples to this conjecture presented by Harbourne [18], φ has zero entropy and the
pair (X,φ) is non-minimal in the sense that there exists a birational morphism π : X → X ′ such
that π ◦ φ ◦ π−1 is an automorphism of X ′ but π is not an isomorphism. McMullen then posed
in [27, Section 12] a refined version of the conjecture, by asking whether for minimal (X,φ),
φ being of infinite order is sufficient to guarantee that X has an effective antipluricanonical
divisor. For certain classes of φ coming from group actions the conjecture is true [45], but
these also have zero entropy, i.e. also correspond to integrable mappings. A negative answer to
McMullen’s question was given by Bedford and Kim [3] who constructed a family of mappings
which give automorphisms of infinite order with nonzero entropy, on rational surfaces which
admit no effective antipluricanonical divisor.

In this paper we show that in a large class of non-autonomous mappings, namely those that
preserve rational two-forms (hence including all mappings of QRT-type), even in non-integrable
cases the space of initial conditions can be chosen via minimisation so that the surfaces are
anticanonical, i.e. have effective anticanonical divisors. Then a period map exists and can be
used to show that the evolution of coefficients under deautonomisation must correspond to the
dynamics on the Picard lattice and thus encodes the dynamical degree. The main results of the
paper can be summarised in the following theorem, which provides a justification of the method
of full deautonomisation by singularity confinement as an integrability test.

Theorem 1.1. If an autonomous mapping has a space of initial conditions and unbounded
degree growth, and preserves a rational two-form, the period map parametrisation of the coef-
ficients in a sufficient deautonomisation gives a linear system of difference equations for their
evolution, whose characteristic polynomial has the dynamical degree of the mapping as a root.

There are some subtle technical points relating to the applicability of the method of full
deautonomisation as an integrability detector that we should point out here. The first is that,
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when applying the method to an autonomous mapping which preserves a rational two-form,
so whose space of initial conditions is within the scope of Theorem 2.23 on effectiveness of the
anticanonical divisor, one must ascertain the extent to which the mapping must be generalised
via the addition of extra terms in order for the confinement conditions to reliably detect the
dynamical degree. While it is possible to define a sufficiently general deautonomisation in terms
of families of surfaces forming the space of initial conditions (cf. Definition 2.30), in order to
make it possible to address this question directly on the level of the equations themselves, we
provide the reader with sufficiently general deautonomisations for QRT-type classes I-VI in
Appendix B.

A second subtle point, which also has implications for the implementation of the method,
arises on the level of geometry. The family of examples constructed by Bedford and Kim [3]
show that a period map construction, as we will present here, might not be possible for just
any, general, birational mapping with a space of initial conditions because the existence of
an effective anticanonical divisor is not guaranteed in the general setting. Therefore, in such
examples, any hope of reading off the dynamical degree for the mapping from confinement
conditions on coefficients in the mapping must be given up. The problem being that finding a
linearisation of the conditions on the coefficients that might lead to a characteristic polynomial
that encodes the dynamical degree is pretty much impossible, as is to be expected given the
absence of a period map parametrisation of the coefficients in the mapping. This is similar to
cases where the anticanonical divisor is effective, but for which the geometry is such that the
parametrisation of its coefficients by the period map is highly non-trivial. This is the case in,
for example, elliptic discrete Painlevé equations or QRT-type mappings of Class VIII, though
for these mappings there are ways to overcome these difficulties and obtain an appropriate
parametrisation of coefficients and therefore a linearisation of the confinement conditions such
that full deautonomisation by singularity confinement still works [16].

1.1. Outline of the paper. Readers interested in the utilisation of the method as an inte-
grability test can proceed first to Sections 3-6, and additionally see Appendix B for details of
sufficiently general deautonomisations for QRT classes I-V, before referring to Section 2 for the
geometric theory behind it. Readers interested in the geometry of the space of initial conditions
may proceed to Section 2 for the setup and proofs of the main results relating to anticanonical
divisors and the period map and to Appendix A for a local classification of the anticanonical
divisors of rational surfaces associated with non-integrable mappings. They can then consult
Sections 3-6 for concrete examples.

2. Geometry

In this Section we give a rigorous formulation and justification for the full deautonomisation
procedure as a detector of the dynamical degree of a mapping that possesses a space of initial
conditions. We first recall the definition of the singularity confinement property, for a second-
order mapping, in the sense of the existence of a space of initial conditions for the mapping, in
both the autonomous and non-autonomous cases. We then review the known classifications of
autonomous and non-autonomous mappings according to their degree growth and according to
whether they have a space of initial conditions, and deduce which cases full deautonomisation
should be shown to discern between. Next we outline the period map defined for complex ratio-
nal surfaces with effective anticanonical divisor, which will be the main tool in our formulation.
For this tool to be applicable in the cases we need, we must prove Theorem 2.23, which states
that in a wide class of mappings – including deautonomised versions of all those in the classifi-
cation of QRT-type mappings in [32] (or [35]) – if a mapping with a space of initial conditions
is non-integrable, then the surfaces forming this space still have effective anticanonical divisors.
We then show that coefficients in a non-autonomous mapping can always be parametrised by
appropriate computation of the period map, in a way that linearises their evolution and such
that the characteristic polynomial of the linearised recurrences will have the dynamical degree
of the mapping as a root.
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Most of the setup for this Section is given in [24, Appendix A], but we recall the relevant
parts here in order to make the present paper self-contained. In what follows we work over C
and use the following notation and conventions:

• X : a smooth projective rational surface.
• Div(X) : the group of divisors on X.
• ∼ : linear equivalence of divisors.
• Pic(X) : the Picard group of X, which is isomorphic to Div(X)/ ∼. We often use the
same symbol for an element of Pic(X) as for its corresponding linear equivalence class
of divisors and we write the group operation on Pic(X) additively.

• [D] : the linear equivalence class of D ∈ Div(X). We will generally use calligraphic
script to indicate classes of divisors, i.e. D = [D].

• |F| : the linear system of F ∈ Pic(X).
• Pic+(X) = {F ∈ Pic(X) | F = [F ] where F ∈ Div(X) is effective}: the set of effective
classes.

• D1 · D2 : the intersection number of the divisors D1 and D2. This is well-defined on
linear equivalence classes and we use the same notation for the intersection number
D1 · D2 of D1, D2 ∈ Pic(X).

• (D)2 = (D)2 : the self-intersection number of D ∈ Div(X) or D = [D] ∈ Pic(X).
• KX ∈ Pic(X) : the canonical bundle or canonical divisor class of X.
• div(ω) ∈ Div(X) : the divisor of a rational two-form ω on X, so [div(ω)] = KX .
• OPn(1) ∈ Pic(Pn) : the twisting sheaf corresponding to the class of a hyperplane in Pn.
• PicQ(X) = Pic(X)⊗Q, PicR(X) = Pic(X)⊗ R, PicC(X) = Pic(X)⊗ C.
• ρ(X) : the Picard number of X, which is equal to rankPic(X) since X is rational.
• H i(X,D) : the i-th cohomology group of the divisor D on X.
• hi(D) = hi(X,D) = dimH i(X,D).
• b1 = rankH1(X;Z) : the first Betti number.
• hp,q = dimHq(X,Ωp) : the Hodge numbers.
• ga(C) = dimH1(C,OC) : the arithmetic genus of an irreducible curve C.

2.1. Spaces of initial conditions for birational mappings of the plane. The singular-
ity confinement property of a second-order system of difference equations defining a birational
mapping of the plane is equivalent to the existence of a space of initial conditions. The ter-
minology ‘space of initial conditions’ or ‘space of initial values’ originates in Okamoto’s work
[29] using blow-ups to construct augmented phase spaces on which Hamiltonian forms of the
Painlevé differential equations are regularised. Solutions of these equations can be globally
defined by analytic continuation from any point in the space, hence the term space of initial
conditions. The same terminology continues to be used in the discrete case to describe rational
surfaces on which birational mappings are regularised in an analogous way. In the autonomous
case this means that the birational mapping becomes an automorphism of the surface. In the
non-autonomous case the n-dependence in the coefficients means that the equation becomes
a family of mappings, for which a space of initial conditions is a family of rational surfaces
between which the mappings become isomorphisms.

2.1.1. Autonomous case. Consider an autonomous second-order discrete equation

(xn+1, yn+1) = (f(xn, yn), g(xn, yn)), (2.1)

where f , g are rational functions of their arguments with coefficients independent of n, such
that the mapping (xn, yn) 7→ (f(xn, yn), g(xn, yn)) is birational. By taking (xn, yn) as an affine
chart we can extend this to a birational mapping

φ : P2 99K P2, (2.2)

where here and from this point onwards we use dashed arrows to denote birational mappings
between surfaces, with solid arrows being morphisms. Note that scalar three-point equations
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xn+1 = F (xn, xn−1) with F homographic in xn−1, such as the examples considered in the
previous section, can be brought to this form by setting yn = xn−1.

Definition 2.1 (space of initial conditions for an autonomous mapping). We say that an
autonomous equation defining a mapping φ as above has a space of initial conditions if there
exists a rational surface X and a birational map π : X 99K P2 such that φ̃ := π−1 ◦ φ ◦ π is an
automorphism of X:

X X

P2 P2.

φ̃

π π

φ

The automorphism φ̃ then induces, by pullback and pushforward, linear transformations of
Pic(X) which we denote by φ̃∗ and φ̃∗ = (φ̃∗)−1 respectively. These maps are lattice automor-
phisms of Pic(X), i.e. Z-module automorphisms which preserve the symmetric bilinear form
given by the intersection product, they fix KX and preserve effectiveness of divisor classes.

2.1.2. Non-autonomous case. In the non-autonomous case, consider a second-order discrete
system (xn+1, yn+1) = (fn(xn, yn), gn(xn, yn)), defining a family of mappings

φn : P2 99K P2. (2.3)

In addition to a family of rational surfaces Xn on which φn conjugates to an isomorphism
Xn → Xn+1, for each value of n, in the non-autonomous case it is necessary to include in the
definition of a space of initial conditions some extra conditions in order to formulate a general
theory. This is because allowing for arbitrary n-dependence in the mappings and surfaces leads
to many pathological examples and prevents us from making any meaningful statements in
general; see [24] for a detailed discussion of this. In order to state the definition we will work
with for non-autonomous mappings we require the following.

Definition 2.2 (basic rational surface). A basic rational surface is a rational surface that admits
P2 as a minimal model, i.e. there exists a birational morphism from X to P2. Such a surface
can be obtained from P2 by a finite number of blow-ups, without the need for blow-downs.

Definition 2.3 (geometric basis). Let X be a basic rational surface and (e(0), . . . , e(r)) a Z-basis
for Pic(X). We call (e(0), . . . , e(r)) a geometric basis if there exists a composition of blow-ups

π = π(1) ◦ · · · ◦ π(r) : X → P2 such that e(0) = π∗OP2(1), where e(i) is the class of the total

transform (under π(i+1) ◦ · · · ◦ π(r)) of the exceptional curve of π(i) for i = 1, . . . , r. In this case

we say that (e(0), . . . , e(r)) is the geometric basis of Pic(X) corresponding to π.

Definition 2.4 (space of initial conditions for a non-autonomous mapping; without blow-
downs). A space of initial conditions for a non-autonomous mapping φn : P2 99K P2 consists of
sequences (Xn)n and (πn)n, where each Xn is a rational surface and πn is a birational morphism

πn : Xn → P2 written as a sequence of blow-ups πn = π
(1)
n ◦ · · · ◦ π(r)n , such that the following

conditions hold:

• The mappings φn become isomorphisms φ̃n := π−1
n+1 ◦ φn ◦ πn as in Figure 1.

• Let en = (e
(0)
n , . . . , e

(r)
n ) be the geometric basis for Pic(Xn) corresponding to πn. Then

the matrices of φ̃∗
n : Pic(Xn+1) → Pic(Xn) with respect to these bases do not depend

on n.
• The set of effective classes in Pic(Xn) in terms of the basis (e

(0)
n , . . . , e

(r)
n ) does not

depend on n, i.e. if
∑

i a
(i)e

(i)
n ∈ Pic(Xn) is effective, then

∑
i a

(i)e
(i)
k ∈ Pic(Xk) is

effective for any k.

Using the geometric bases en we may identify all Pic(Xn) with a single Z-module

Pic(X ) =
r∑
i=0

Ze(i), (2.4)
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· · · Xn−1 Xn Xn+1 · · ·

· · · P2 P2 P2 · · · ,

φ̃n−1

πn−1

φ̃n

πn πn+1

φn−1 φn

Figure 1. Space of initial conditions for a non-autonomous mapping; without
blow-downs

via
ιn : Pic(X ) −→ Pic(Xn),

ιn(e
(i)) = e(i)n ,

(2.5)

where (for reasons that will become clear when we discuss deautonomisation) we use X to
distinguish this module from the Picard group of a single surface X. Denote the map induced
by φ∗

n, for any n, by Φ : Pic(X ) → Pic(X ), which is well-defined because of the conditions in
Definition 2.4:

Pic(X ) Pic(X )

Pic(Xn) Pic(Xn+1).

ιn ιn+1

Φ

φ̃∗
n

The canonical class in each Pic(Xn) is identified with the element

KX := ι−1
n (KXn) = −3e(0) + e(1) + · · ·+ e(r), (2.6)

and the intersection form on Pic(Xn) can be used to equip Pic(X ) with the symmetric bilinear
form defined by

e(i) · e(j) =


+1 (i = j = 0)

−1 (i = j ̸= 0)

0 (i ̸= j).

(2.7)

We will refer to Pic(X ) equipped with this bilinear form as the Picard lattice of the space of
initial conditions Xn. Then Φ is a lattice automorphism of Pic(X ) that fixes the element KX .
It also preserves effectiveness in the sense that if F ∈ Pic(X ) is such that ιn+1(F) is an effective
class on Xn+1, then ιn ◦ Φ(F) is an effective class on Xn.

While all the examples we will study in Sections 3-6 will have spaces of initial conditions
as defined above, our main general results will rely on the notion of minimality of a space of
initial conditions, which requires us to give a more general definition allowing blow-downs in
the construction of Xn from P2.

Definition 2.5 (space of initial conditions for a non-autonomous mapping; allowing blow-
downs). A space of initial conditions for a non-autonomous mapping φn, allowing blowdowns,
consists of sequences (Xn)n, (Yn)n, (πn)n, (ρn)n, and (σn)n, with

• Xn a rational surface with birational morphism πn : Xn → P2, written as a sequence of

blow-ups as πn = π
(r)
n ◦ · · · ◦ π(1)n ,

• Yn a rational surface with birational morphism ρn : Yn → P2, written as a sequence of

blow-ups as ρn = ρ
(s)
n ◦ · · · ◦ ρ(1)n ,

• σn : Yn → Xn a birational morphism written as sequences of blow-ups as σn = σ
(s−r)
n ◦

· · · ◦ σ(1)n ,

such that the following conditions hold:

• The mappings φ̃n := σn+1 ◦ ρ−1
n+1 ◦ φn ◦ ρn ◦ σ−1

n : Xn → Xn+1 are isomorphisms as in
Figure 2.
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• Let fn = (f
(0)
n , . . . , f

(s)
n ) be the geometric basis for Pic(Yn) corresponding to ρn. Then

the set of effective classes in Pic(Yn) in terms of the basis fn does not depend on n.

• Let en = (e
(0)
n , . . . , e

(r)
n ) be the geometric basis for Pic(Xn) corresponding to πn. Then

the set of effective classes in Pic(Xn) in terms of the basis en does not depend on n.

• Let F
(j)
n ∈ Pic(Yn) be the class of (the total transform of) the exceptional curve con-

tracted by σ
(j)
n , for j = 1, . . . , s− r. Then the expression for F

(j)
n in terms of the basis

fn does not depend on n.

• The expression for σ∗n(e
(i)
n ) in the basis fn for Pic(Yn) does not depend on n.

• The matrices of φ̃∗
n : Pic(Xn+1) → Pic(Xn) with respect to the bases en+1 and en do

not depend on n.

· · · Yn−1 Yn Yn+1 · · ·

· · · Xn−1 Xn Xn+1 · · ·

· · · P2 P2 P2 · · ·

· · · P2 P2 P2 · · ·

σn−1

ρn−1

σn

ρn

σn+1

ρn+1

φ̃n−1

πn−1 πn

φ̃n

πn+1

φn−1 φn

Figure 2. Space of initial conditions for a non-autonomous mapping; allowing
blow-downs

If a mapping has a space of initial conditions as above then we may still define the Picard
lattice Pic(X ) by identification of all Pic(Xn) via the geometric bases corresponding to πn, with
the lattice automorphism Φ of Pic(X ) defined as above.

Remark 2.6. The key feature of the more general Definition 2.5 of a space of initial conditions is
that σn may contract curves on Yn which ρn does not, in which case the mapping πn+1◦φ̃n◦π−1

n :
P2 99K P2 will not coincide with φn, but rather be conjugate to it by a birational coordinate
change on P2.

2.1.3. Minimisation of a space of initial conditions. Allowing for blow-downs in the definition
of a space of initial conditions means we can introduce the notion of a minimal space of initial
conditions for a given non-autonomous mapping.

Definition 2.7 (minimisation of a space of initial conditions). Let φn : P2 99K P2 be a non-
autonomous mapping with a space of initial conditions allowing blow-downs as in Definition
2.5. A minimisation of the space of initial conditions consists of sequences (X ′

n)n and (µn)n
with

• X ′
n a rational surface

• a birational morphism µn : Xn → X ′
n which is a sequence of blow-ups µn = µ

(1)
n ◦· · ·◦µ(r

′)
n

such that the following conditions hold:

• For every n, the map φ̃′
n := σ−1

n+1 ◦ φ̃n ◦ σn : X ′
n → X ′

n+1 is an isomorphism.

• Let en = (e
(0)
n , . . . , e

(r)
n ) be the geometric basis for Pic(Xn) corresponding to πn, and

let E
(k)
n ∈ Pic(Xn) be the class of (the total transform of) the exceptional divisor

contracted by µ
(k)
n for k = 1, . . . , r′. Then the expression for E

(k)
n in terms of the basis

en is independent of n.
• There exist birational morphisms π′n : X ′

n → P2 such that the geometric bases corre-
sponding to π′n satisfy the requirements for X ′

n to form a space of initial conditions for
φn in the sense of Definition 2.5.
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We give a diagram showing the birational mappings involved in minimisation of a space of
initial conditions in Figure 3.

· · · Yn−1 Yn Yn+1 · · ·

· · · Xn−1 Xn Xn+1 · · ·

· · · X ′
n−1 X ′

n X ′
n+1 · · ·

· · · P2 P2 P2 · · ·

· · · P2 P2 P2 · · ·

· · · P2 P2 P2 · · ·

ρn−1

σn−1

ρn

σn

ρn+1

σn+1

πn−1

µn−1

πn

µn

πn+1

µn+1

π′
n−1 π′

n π′
n+1

φn−1 φn

Figure 3. Minimisation of a space of initial conditions

Definition 2.8 (minimal space of initial conditions). For a space of initial conditions Xn, we
say that a minimisation is trivial if the maps µn are isomorphisms. If there does not exist any
nontrivial minimisation, then we say the space of initial conditions is minimal.

Whether a space of initial conditions can be minimised or not is characterised by the following.

Lemma 2.9 ([24]). If there exist a finite set of elements of Pic(X ) corresponding to mutually
disjoint exceptional curves of the first kind which are permuted by Φ, then blowing down these
curves provides a nontrivial minimisation of the space of initial conditions.

2.2. Degree growth and entropy for birational mappings of the plane. Hereafter, the
definition of integrability of a birational mapping of the plane we will work with is that its
algebraic entropy vanishes, or equivalently that its dynamical degree is one. For a birational
map f from P2 to itself, written in homogeneous coordinates as

f : P2 99K P2,

(x0 : x1 : x2) 7→ (f0(x0, x1, x2) : f1(x0, x1, x2) : f2(x0, x1, x2)) ,
(2.8)

where f0, f1, f2 are homogeneous polynomials of the same degree with no common factors, its
degree deg f is defined as the common degree of the polynomials fi.

Definition 2.10 (dynamical degree, algebraic entropy [4]). For a mapping φn : P2 99K P2, the
numbers

d = lim
k→∞

(
degφ(k)

)1/k
, and ε = lim

k→∞

1

k
log

(
degφ(k)

)
, (2.9)

where φ(k) = φn+k−1 ◦ · · ·φn+1 ◦ φn, are called the dynamical degree and algebraic entropy [4]

respectively. Note that in the autonomous case φn = φ and φ(k) = φk, and the definition of d
coincides with that of the (first) dynamical degree of a dominant rational self-map of P2.

Remark 2.11. If instead of P2 we consider equations as birational mappings of P1 × P1 the
degrees of iterates are in general different but their rate of growth is the same. Therefore the
dynamical degree and algebraic entropy of a mapping (xn, yn) 7→ (xn+1, yn+1) does not depend
on the choice of compactification of C2. In fact, it is often more convenient to use P1 × P1

for calculation in particular examples as we will do in Sections 3-6, but we will use P2 in this
Section for the general theory.

The kinds of mappings with a space of initial conditions between which full deautonomisation
should be shown to distinguish are provided by the following classifications.
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2.2.1. Autonomous case. In [7], Diller and Favre classified bimeromorphic self-maps of compact
surfaces according to the rate of growth of their spectral radii under iteration. Restating some
of their results in the language of birational maps, as studied in discrete integrable systems,
yields the following.

Proposition 2.12 (Diller-Favre [7]). An autonomous birational mapping φ of the plane belongs
to one of the following types:

type (1): The degree of φn is bounded.
This type of mapping has a space of initial conditions.

type (2): The degree of φn grows linearly.
This type of mapping does not have a space of initial conditions.

type (3): The degree of φn grows quadratically.
This type of mapping has a space of initial conditions, which is a rational elliptic surface.

type (4): The degree of φn grows exponentially and φ has a space of initial conditions.
The surface X providing the space of initial conditions has rankPic(X) > 10.

type (5): The degree of φn grows exponentially and φ does not have a space of initial
conditions.

2.2.2. Non-autonomous case. If a mapping, autonomous or not, has a space of initial conditions
then the dynamical degree is encoded in the induced dynamics on its Picard lattice.

Lemma 2.13 (Takenawa [41]). If a non-autonomous mapping φn has a space of initial condi-

tions, the degree of φ(k) is given by

degφ(k) = Φke(0) · e(0), (2.10)

so the dynamical degree of the mapping is given by the largest eigenvalue of Φ, and the algebraic
entropy by its logarithm. Similarly if an autonomous mapping φ has a space of initial conditions
then the dynamical degree is given by the largest eigenvalue of φ∗.

Using the above fact and the work of Diller-Favre [7], one of the authors obtained the following
classification of non-autonomous mappings with a space of initial conditions.

Proposition 2.14 ([24]). A non-autonomous mapping of the plane with a space of initial
conditions belongs to one of the following three types according to the Jordan normal form of Φ:

type (a):

Φ ∼

 µ1
. . .

µr+1

 ,

where µi are all roots of unity. In particular Φl = id for some l > 0 so the degree growth
of the mapping is bounded.

type (b):

Φ ∼



1 1
1 1

1
µ1

. . .

µr−2


,

where µi are all roots of unity. In this case the degree grows quadratically.
type (c):

Φ ∼


λ

1
λ

µ1
. . .

µr−1

 ,
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where λ > 1 is a reciprocal quadratic integer or a Salem number, and |µi| = 1. In this
case the degree grows exponentially and the dynamical degree is λ.

We can partially distinguish between the different types above according to rankPic(X ) as
follows

Proposition 2.15 ([24]). If rankPic(X ) ≤ 10, then the mapping belongs to either type (a) or
type (b) of Proposition 2.14.

For type (b), when the degree growth is quadratic, one of the authors also showed [24] that
a minimal space of initial conditions is formed of generalised Halphen surfaces as defined by
Sakai as follows.

Definition 2.16 (generalised Halphen surface [39], Sakai surface). A rational surface X is
called a generalised Halphen surface if it has an effective anticanonical divisor D ∈ | − KX | of
canonical type, i.e if D =

∑
imiDi, mi > 0, is its decomposition into irreducible components

then [Di] · KX = 0 for all i. A generalised Halphen surface has dim | − KX | being equal to
either 1 or 0. In the first case X is a rational elliptic surface and in the second case X has a
unique anticanonical divisor. The latter is the type of surface which forms the spaces of initial
conditions for discrete Painlevé equations, and we call such X a Sakai surface.

From Proposition 2.14 we see that if a non-autonomous mapping has a space of initial con-
ditions and unbounded degree growth, then it must either be a discrete Painlevé equation or
non-integrable. So to put the full deautonomisation method on a rigorous footing we need to
show that confinement conditions on a sufficiently general deautonomisation distinguish between
these two cases.

Remark 2.17. The restriction to basic rational surfaces in the Definitions 2.4 and 2.5 of a space
of initial conditions is justified for surfaces associated with mappings of type (b) or (c), since
in both cases the surfaces will have infinitely many exceptional curves of the first kind, so by a
theorem of Nagata [28] they must be basic rational surfaces.

2.3. Deautonomisation. We now define what it means for a non-autonomous mapping to be
a deautonomisation of an autonomous one with reference to the space of initial conditions and
dynamics on the Picard lattice.

Definition 2.18 (deautonomisation). Consider a family of mappings φn : P2 99K P2 with a
space of initial conditions as above. Consider also an autonomous mapping ψ : P2 99K P2 with
a space of initial conditions in the sense of Definition 2.1 being a basic rational surface Y with
rankPic(Y ) = rankPic(X ). Consider a birational morphism (given by a sequence of blow-ups)

and denote the geometric basis corresponding to that morphism by (f (0), . . . , f (r)). We say that
φn is a deautonomisation of ψ if under the identification

κ : Pic(X )→ Pic(Y ),

e(i) 7→ f (i),
(2.11)

the following two conditions hold:

• If F ∈ Pic(X ) represents an effective class ιn(F) in Pic(Xn), then κ(F) ∈ Pic(Y ) is also
effective.

• The linear maps Φ and ψ∗ coincide under the identification, i.e. the following diagram
commutes:

Pic(Xn) Pic(Xn+1)

Pic(X ) Pic(X )

Pic(Y ) Pic(Y ).

φ̃∗
n

κ

ιn

Φ

κ

ιn+1

ψ∗
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Remark 2.19. This definition is consistent with that of [5] formulated in the context of deau-
tonomising QRT mappings to obtain discrete Painlevé equations. The notion of deautonomisa-
tion there involves a choice of fibre from the elliptic fibration of the space of initial conditions
for a QRT mapping, which then becomes the unique anticanonical divisor of the surface after
allowing locations of centres of blow-ups to move. In particular, a different choice of singular
fibre will lead to a different choice of which classes stay effective after deautonomisation, and
therefore corresponds to a different way of injecting Pic+(Xn) into Pic+(Y ) via κ◦ ι−1

n , but this
does not change Φ nor the degree growth of the deautonomised mappings.

The crucial fact that we will use for the remainder of the paper is the following

Lemma 2.20. If φn is a deautonomisation of an autonomous mapping in the sense of Definition
2.18, then it has exactly the same degree growth, dynamical degree and algebraic entropy.

2.4. Period map for rational surfaces with effective anticanonical divisor. In this
Subsection, let X be a rational surface with an effective anticanonical divisor D =

∑
imiDi ∈

| − KX |. Denote the sublattice of Pic(X) spanned by the classes Di = [Di] of the irreducible
components of D by

Q =
∑
i

ZDi. (2.12)

Its orthogonal complement is another sublattice, which we denote

Q⊥ = {F ∈ Pic(X) | F · Di = 0 ∀ i } , (2.13)

on which the period map will give a C-valued function. When X is a Sakai surface, Q⊥ is
isomorphic to the root lattice of an affine root system and the values of the period map on a
basis of simple roots are called the root variables. These appear as n-dependent parameters in
discrete Painlevé equations [39].

Begin by taking a rational 2-form ω on X such that −divω = D. Let the support of D be
Dred =

⋃
iDi, so ω defines a holomorphic symplectic form on X−Dred. This gives the mapping

χ̂ : H2(X −Dred;Z)→ C,

Γ 7→
∫
Γ
ω.

(2.14)

In order to use this to define a period map on Q⊥, we begin with the long exact sequence of
relative singular homology for the pair (X,X −Dred), which includes the following:

H3(X;Z)→ H3(X,X −Dred;Z)
∂∗−→ H2(X −Dred;Z)

i∗−→ H2(X;Z) j∗−→ H2(X,X −Dred;Z).
Here i∗ comes from the natural injection of cycles on X −Dred into X, while j∗ is induced by
the quotient of cycles on X by cycles on X −Dred. We manipulate this exact sequence using
the following facts:

• Lefschetz duality for the pair (X,X −Dred) gives

Hk(X,X −Dred;Z) ∼= H4−k(Dred;Z). (2.15)

• Poincaré duality for Dred gives

H1(Dred;Z) ∼= H1(Dred;Z). (2.16)

• Under Poincaré duality for X, we have

H3(X;Z) ∼= H1(X;Z) = 0, (2.17)

because b1 = rankH1(X;Z) =
∑

p+q=1 h
p,q = h1,0 + h0,1 = 2h0,1 = 0, since X being

rational implies that h0,1 = 0.
• Lefschetz duality as above gives H2(X,X −Dred;Z) ∼= H2(Dred;Z) ∼= Q, so under the
Poincaré duality H2(X;Z) ∼= H2(X;Z), in the long exact sequence above we have

ker j∗ ∼= Q⊥, (2.18)

which is why the orthogonal complement of Q is significant in this construction.
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Using these facts, from the sequence above we obtain

0→ H1(Dred;Z)→ H2(X −Dred;Z)→ Q⊥ → 0, (2.19)

which through the mapping χ̂ on H2(X −Dred;Z) gives the following.

Definition 2.21 (period map [23, 39]). For X with effective anticanonical divisor D and choice
of a rational two-form ω on X with −divω = D, the above construction gives

χ : Q⊥ → C mod χ̂(H1(Dred;Z)), (2.20)

which we call the period map of X. One can define χ as a C-valued function by making a
normalisation of the value of χ̂ on H1(Dred;Z) if this is nontrivial.

2.4.1. Computation of the period map. The computation of the period map proceeds along
the same lines as in [23, Chapter I, Section 5] and [39, Lemma 21], which we recall here for
completeness. The first step in the procedure is guaranteed to be possible for generalised
Halphen surfaces, but for surfaces associated with non-integrable mappings does not come
automatically either because the existence of an effective anticanonical divisor is not guaranteed
or, even if this does exist, it is not obvious how to describe Q⊥ as a root lattice; we will address
this later in this Section.

For an element α ∈ Q⊥ which can be expressed as the difference of the classes of two
exceptional curves of the first kind,

α = [C1]− [C0], (2.21)

the computation of χ(α) is done as follows:

• Find the unique component Dk of the anticanonical divisor which intersects both C1

and C0, with multiplicity one, i.e. Dk such that

C1 ·Dk = C0 ·Dk = 1, and C1 ·Dj = C0 ·Dj = 0 for j ̸= k. (2.22)

This unique component is guaranteed to exist by Riemann-Roch, Serre duality and the
genus formula, as explained in [23, Chapter I, Section 0].

• Denote the points of intersection of these curves with Dk as Dk ∩C1 and Dk ∩C0. The
value of χ(α) is then computed using the residue formula (see [23, Chapter I, Section 5]
for details) as

χ(α) = 2πi

∫ Dk∩C1

Dk∩C0

ResDk
ω. (2.23)

It is important to note that the integral (2.23) will be computed in coordinates and therefore
detects parameters in the mapping, which is fundamental to understanding the mechanism
behind the full deautonomisation method.

2.4.2. Dynamics of the values of the period map. The crucial property of the period map for
our purposes is how it interacts with the linear dynamics on Pic(X ). Take some linearly inde-
pendent subset {αi} ⊂ Q⊥ ⊂ Pic(X ) whose span is closed under Φ, and let Mi,j be the matrix
representation of Φ with respect to this, i.e.

Φ(αi) =
∑
j

Mi,jαj . (2.24)

For each n, take ωn to be a rational 2-form on Xn chosen such that φ̃∗
n(ωn+1) = ωn. Then if we

denote by χn and χn+1 the period maps defined by ωn and ωn+1 on Xn and Xn+1 respectively,
and the values of the period map of Xn by ai(n) = χn

(
ι−1
n (αi)

)
, then we have

ai(n+ 1) =
∑
j

Mi,jai(n), (2.25)

since χn+1

(
ι−1
n+1(αi)

)
= χn

(
φ̃∗
n ◦ ι−1

n+1(αi)
)
= χn

(
ι−1
n ◦ Φ(αi)

)
=

∑
jMi,jχn

(
ι−1
n (αi)

)
. The

second equality comes from the fact that φ̃∗
n(ωn+1) = ωn, and that φ̃n is biholomorphic and

acts as a change of variables for the integrals.
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The fact that the representation in (2.25) is given by exactly the same matrix as in (2.24)
provides the sought after bridge between parameter evolution and dynamics on Pic(X ).

2.5. The question of existence of an effective anticanonical divisor. For Sakai surfaces
associated with discrete Painlevé equations the existence of an effective anticanonical divisor is
built into the definition. However, to carry out the period map construction in the non-integrable
case, we must deal with the question of the existence of an effective anticanonical divisor on the
surface Xn from a space of initial conditions for a mapping of type (c) in Proposition 2.14.

We will need the following fact relating to a space of initial conditions for a non-integrable
mapping, the proof of which is found in [24].

Lemma 2.22 ([24, Lemma 4.15]). For a mapping of type (c) in Proposition 2.14, denote by
v ∈ PicR(X ) the dominant eigenvector corresponding to the eigenvalue λ > 1 of Φ. Then the
intersection product is negative definite on v⊥ ∩ Pic(X ).

Using techniques similar to those in [9] and [24], we have the following,

Theorem 2.23. Let φn : P2 99K P2 be a non-autonomous, non-integrable mapping which has a
space of initial conditions, i.e. a mapping of type (c) in Proposition 2.14. Suppose there exists
a sequence of rational 2-forms ωn on P2 and constants cn ∈ C∗ such that

φ∗
n ωn+1 = cn ωn. (2.26)

Denoting the lift of ωn to Xn by ω̃n = (ρn ◦ σ−1
n )∗ω = (σn)∗ ◦ (ρn)∗ω, with its divisor having

irreducible decomposition

div(ω̃n) =
∑
i

m
(n)
i D

(n)
i , (2.27)

then if under the identification of all Pic(Xn) into the Picard lattice Pic(X ) we have, for all n,

ι−1
n (D

(n)
i ) = ι−1

n+1(D
(n+1)
i ), (2.28)

there exists a minimal space of initial conditions formed by surfaces which have effective anti-
canonical divisors.

Remark 2.24. In particular, if an autonomous mapping ψ : P2 99K P2 is such that ψ∗ω = c ω
for some rational two-form ω on P2 and some c ∈ C∗, then any deautonomisation of it satisfies
the conditions in Theorem 2.23.

Proof of Theorem 2.23. Let the space of initial conditions for the mapping φn be as in Definition
2.5. Let the decomposition of div(ω̃n) on Xn into effective and anti-effective parts be

div(ω̃n) = D+
n −D−

n , (2.29)

where D+ and D− are effective divisors. Note that −div(ω̃n) being effective is equivalent to
D+
n = 0.
The idea now is to show that if −div(ω̃n) is not effective then the space of initial conditions

is not minimal. Indeed suppose D+
n ̸= 0 and lets its decomposition into irreducible components

be

D+
n =

∑
i

miC
(n)
i , (2.30)

where mi > 0 and C
(n)
i are irreducible curves on Xn. Denote the classes of these by [C

(n)
i ] ∈

Pic(Xn). Then according to our assumptions the expressions for [C
(n)
i ] in terms of the geometric

basis for Pic(Xn) corresponding to πn do not depend on n and we have the following well-defined
elements of Pic(X ):

D+
i = ι−1

n ([C
(n)
i ]), D+ =

∑
i

miι
−1
n ([D]+i ). (2.31)

We will show that there exists some D+
i that corresponds to the class of an exceptional curve

of the first kind and which is periodic under Φ, and that its orbit gives a collection of classes of
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exceptional curves of the first kind which are mutually disjoint, so by Lemma 2.9 the space of
initial conditions is not minimal.

The fact that φ∗
n preserves the two-form ωn in the sense of (2.26) implies that φ̃∗

nω̃n+1 = cn ω̃n,
and φ̃∗

n (div(ω̃n+1)) = div(ω̃n). Further, since φ̃n is an isomorphism, for any irreducible curve
C on Xn we have

ord(C,div(ω̃n)) = ord(φ̃n(C), div(ω̃n+1)), (2.32)

which allows us to deduce that Φ must permute the D+
i in a way that preserves their multiplicity

in the canonical class. In particular there exists a permutation σ such that Φ(D+
i ) = D

+
σ(i), so

all D+
i are in the part of Pic(X ) periodic under Φ. Denoting by ℓ the order of the permutation

σ, we have

D+
i · v = Φℓ(D+

i ) · Φ
ℓv = λℓ

(
D+
i · v

)
, (2.33)

and since λ > 1 we deduce that D+
i ∈ v⊥∩Pic(X ) for every i, so the intersection form is negative

definite on the sublattice spanZ
{
D+
i

}
⊂ Pic(X ). This allows us to deduce that at least one

of the D+
i must correspond to an exceptional curve of the first kind, as follows. Taking the

intersection of D+ with the canonical class in Pic(X ) we have

D+ · KX = D+ · D+ −D+ · D− ≤ D+ · D+ < 0,

where the last inequality comes from the intersection form being negative definite on the span
of the D+

i . Since D+ corresponds to an effective class we then have that some D+
i satisfies

D+
i · KX < 0. Since D+

i ∈ v⊥ ∩ Pic(X) we also deduce D+
i · D

+
i < 0. The genus formula then

allows us to deduce that D+
i must correspond to an exceptional curve of the first kind.

It remains to be shown that the elements of Pic(X ) in the orbit of this D+
i under Φ are

mutually orthogonal. Letting k ∈ Z be such that ΦkD+
i = D+

j ̸= D
+
i , we again use the negative

definiteness of the intersection form on the span of the D+
i to show that

0 >
(
D+
i +ΦkD+

i

)2
= −2 + 2D+

i · Φ
kD+

i =⇒ 1 > D+
i · Φ

kD+
i ≥ 0, (2.34)

so D+
i ·ΦkD

+
i = 0 and the orbit of D+

i gives a collection of mutually disjoint exceptional curves
of the first kind which are permutated by the mapping.

Finally we note that after a minimisation, performed by blowing down these curves, we still
have a space of initial conditions for the same φn in the sense of Definition 2.5, and we can
apply the above procedure as many times as is necessary to obtain a minimal space of initial
conditions formed of anticanonical surfaces. Note that the procedure is guaranteed to terminate
since a space of initial conditions for a non-integrable mapping must have rankPic(X ) > 10
according to Proposition 2.15.

□

2.6. Bases for the orthogonal sublattice. The next problem which must be addressed is
ensuring that on surfaces associated with non-integrable mappings, one can find appropriate
elements of Q⊥ on which to compute the period map. For the remainder of this Section we
assume all surfaces have effective anticanonical divisors.

Definition 2.25 (root basis of Q⊥). Suppose a Z-basis {αi} for Q⊥ is such that each αi can be
expressed as the difference of two classes of exceptional curves of the first kind αi = [C1

i ]− [C0
i ]

and the numbers ci,j = 2
αi·αj

αi·αi
form the entries of a generalised Cartan matrix as defined in [21].

Then we call this a root basis for Q⊥. Following [39], we will refer to the values of the period
map on a root basis as root variables.

For each type of generalised Halphen surface in his classification, Sakai [39] found a root
basis with a corresponding generalised Cartan matrix that is of affine type. In [41], Takenawa
constructed the space of initial conditions for the Hietarinta-Viallet mapping [20], which has
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an effective anticanonical divisor. Takenawa was also able to find a root basis in this case,
corresponding to the generalised Cartan matrix 2 −2 −2

−2 2 −2
−2 −2 2

 , (2.35)

which is of hyperbolic type H
(3)
71 [44]. Takenawa also constructed an example with root basis

corresponding to the matrix  2 −3 −3
−3 2 −3
−3 −3 2

 , (2.36)

which is of neither finite, affine, nor hyperbolic type.
For non-integrable mappings it is not immediately clear that we can always find a root basis,

but for the purpose of full-deautonomisation it will be sufficient to show that one can always
construct a linearly independent subset of Q⊥ that is closed under Φ and whose span includes
the dominant eigenvector. To this end we define the following.

Definition 2.26 (sufficient subset of Q⊥). For a space of initial conditions constructed from a
mapping with unbounded degree growth, suppose a linearly independent subset {βj} of Q⊥ is
such that the following two conditions hold:

• Each βj can be expressed as the difference of two classes of exceptional curves of the
first kind C1

j and C0
j , i.e. ιn(βj) = [C1

j ]− [C0
j ],

• Φ preserves spanZ{βj}.
If additionally the following requirement is met, which depends on whether the mapping is of
type (b) or (c) of Proposition 2.14, then we call {βj} a sufficient subset:

• type (c) : The dominant eigenvector v ∈ PicR(X ) of Φ is contained in spanR{βj},
• type (b) : Some element in PicR(X ) which is a generalised eigenvector for the eigenvalue
1 of Φ, but not an eigenvector, is contained in spanR{βj}.

For non-autonomous mappings of type (b) of Proposition 2.14, it was shown in [24] that they
correspond to Sakai surfaces, for which we can always find a sufficient subset in Q⊥. However, in
order to show that we can always find a sufficient subset for mappings of type (c) in Proposition
2.14 we will require the following Lemma consisting of several results from [26].

Lemma 2.27 ([26]). Denote the periodic part of Pic(X ) under Φ by

PΦ = {F ∈ Pic(X ) | ∃ m ∈ Z \ {0} such that Φm(F) = F} , (2.37)

and let µΦ(t) ∈ Q[t] denote the minimal polynomial of Φ as a linear transformation of Pic(X )/PΦ.
If there exists F ∈ Pic(X )/PΦ, F ̸= 0, such that a polynomial ψ(t) ∈ Q[t] satisfies

ψ[Φ]F = 0 mod PΦ, (2.38)

then ψ(t) shares a factor with µΦ(t). For mappings of type (c) in Proposition 2.14, µΦ(t) is
precisely the minimal polynomial of λ, the dominant eigenvalue of Φ, over Q. We denote this
minimal polynomial as µλ(t).

We will also require the following result, which follows from the classification of the anti-
canonical divisors for spaces of initial conditions for non-integrable mappings (Theorem A.17)
that is given in Appendix A.

Proposition 2.28. Consider a mapping φn which is non-integrable, i.e. of type (c) in Propo-
sition 2.14, with a minimal space of initial conditions provided by surfaces Xn which are anti-
canonical, i.e. Xn has an effective anticanonical divisor D =

∑
jmjDj. Then, there exists j

such that

• mj = 1,
• Xn has an exceptional curve of the first kind C such that C ·Di = δi,j.
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We are now ready to prove the following.

Proposition 2.29. For a minimal space of initial conditions for a non-integrable mapping, i.e.
of type (c) in Proposition 2.14, one can always find a sufficient subset of Q⊥.

Proof. Let the surfaces forming the space of initial conditions be Xn, with D =
∑

jmjDj as

the effective anticanonical divisor of Xn. Then let [C] ∈ Pic(Xn) be the class of the exceptional
curve C of the first kind as in Proposition 2.28, which intersects exactly one component Dj of
the anticanonical divisor D =

∑
jmjDj . The element of Dk = ι−1

n [Dk] ∈ Pic(X ) corresponding
to this class must lie in PΦ, so let ℓ ∈ Z≥0 be the smallest nonnegative integer such that
Φℓ(Dk) = Dk. Furthermore, let C = ι−1

n [C] be the element of Pic(X ) corresponding to the
exceptional curve of the first kind C, which cannot lie in PΦ because of the minimality of the
space of initial conditions. Then we can construct a sufficient subset as follows. First let

β0 = (Φℓ − 1)C, (2.39)

which by construction corresponds to the difference of two classes of exceptional curves of the
first kind. Then let β1 = Φβ0, β2 = Φβ1 and so on until the process terminates and some

βh+1 is a linear combination of β0, . . . , βh, say Φβh +
∑h

i=0 aiβi = 0. Then {β0, . . . , βh} by
construction satisfies the first two conditions in Definition 2.26, so it remains only to show that
v ∈ spanR{β0, . . . , βh}. From the construction of this subset we have that

ψ[Φ](Φℓ − 1)C = 0, (2.40)

where ψ(t) = (th+1+
∑h

i=0 ait
i) ∈ Q[t]. Since we are in the third case of Proposition 2.14, Lemma

2.27 implies that ψ has µλ(t), the minimal polynomial over Q of the dominant eigenvalue of Φ, as
a factor. Therefore the characteristic polynomial of the restriction of Φ to spanR {β0, . . . , βh} has
µλ(t) as a factor, so the dominant eigenvector v is contained in spanR {β0, . . . , βh} as required.

□

Definition 2.30 (sufficient deautonomisation). Consider a deautonomisation φn of an au-
tonomous mapping ψ in the sense of Definition 2.18, with space of initial conditions given by
surfaces Xn. For a sufficient subset {β1, . . . , βr} of Q⊥, consider the Z-linear map

χ : spanZ{β1, . . . , βr} → (C mod χ̂(H1(Dred;Z)))r ,
β 7→ χXn (ιn(β)) ,

(2.41)

where χXn is the period map of Xn. If χ is injective, then we call the deautonomisation
sufficient. This means that the linear system for the evolution with n, of the values of χ on
the sufficient subset, will have the same characteristic polynomial as that of Φ restricted to
spanZ{β1, . . . , βr}.

In the case of type (c) mappings this characteristic polynomial will have (t − λ) as a factor
(where λ is the dominant eigenvalue of Φ), whereas for type (b) mappings it has (t − 1)2 as a
factor.

The construction of a sufficient deautonomisation depends significantly on the form in coor-
dinates of the autonomous mapping. For mappings that take the form of mappings belonging
to classes I-VI in the QRT-type classification, we give procedures for constructing sufficient
deautonomisations in Appendix B. If a deautonomisation is sufficient in the above sense, this
means that the evolution of values of the period map on the sufficient subset is guaranteed to
give a characteristic polynomial with the dynamical degree of the mapping as a root, and we
have the following main result of the paper.

Theorem 2.31. If an autonomous mapping has a space of initial conditions and unbounded
degree growth, and preserves a rational two-form, it has a minimal space of initial conditions
formed of anticanonical surfaces. Then the period map parametrisation of the coefficients in a
sufficient deautonomisation gives a linear system of difference equations for their evolution, the
characteristic polynomial of which has the dynamical degree of the mapping as a root.
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3. A family of mappings of QRT Class III form

The first example we will illustrate in detail deals with a family of mappings that are of the
form of mappings in QRT class III, i.e.

(xn+1 + xn) (xn + xn−1) = f(xn), (3.1)

where f is rational. From this point on we will make use of notation such as

xn−1 =
¯
x, xn = x, xn+1 = x̄, (3.2)

to denote up- and down-shifts in n of both variables and parameters.
We consider the family of equations

(x̄+ x) (x+
¯
x) =

∏m
i=0(x

2 − a2i )∏m
j=1(x

2 − b2j )
, (3.3)

where ai ∈ C\{0}, i = 0, . . .m and bj ∈ C\{0}, j = 1, . . .m, for m ∈ Z≥1. Singularities of the
mapping correspond to zeroes of the numerator or denominator of the rational function on the
right-hand side of (3.3), and calculating along the same lines as in the examples in Section 1
we find that all of these singularities are confined and we have the singularity patterns

{±ai,∓ai} , and {±bj ,∞,∓bj} . (3.4)

3.1. Full deautonomisation by singularity confinement. In this case it turns out that the
following deautonomisation suffices to detect the dynamical degree of the mapping

(x̄+ x) (x+
¯
x) =

∏m
i=0 (x− ai) (x− di)∏m
j=1 (x− bj) (x− cj)

. (3.5)

Here ai, bj , cj , di are now n-dependent and will be required to evolve such that the structure
of confined singularities persists. We shall now derive these evolutions explicitly.

First consider the singularities that correspond to zeroes of the numerator of the right-hand
side of (3.5). In order to have the same kind of confinement behaviour of these singularities
as the patterns {±ai,∓ai} in the autonomous case, we require singularities which appear when
some iterate x takes a value for which the numerator of the right-hand side vanishes, to lead
to a next iterate x̄ that is a zero of the numerator of the up-shifted version of the equation.
Considering first the singularity x = ak, for some k ∈ {0, . . . ,m} with

¯
x = u free, we introduce

a small parameter ε and compute

¯
x = u, x = ak + ε, x̄ = −ak +O(ε), (3.6)

and similarly for the singularity x = dk,

¯
x = u, x = dk + ε, x̄ = −dk +O(ε). (3.7)

For these singularities to be confined in the same way after deautonomisation we impose that
x = ak leads to x̄ = d̄k, and x = dk leads to x̄ = āk, which requires the confinement conditions

d̄k = −ak, āk = −dk, (3.8)

for which it can be verified by direct calculation that we indeed have the confined singularity
patterns {ak, d̄k} and {dk, āk}. This is tantamount to requiring that the lines blown down by
the mapping (

¯
x, x) 7→ (x, x̄) are sent to indeterminacies of the next iteration (x, x̄) 7→ (x̄, ¯̄x).

For the singularities x = bk and x = ck we have

¯
x = u,

x = bk + ε,

x̄ =

∏
i(bk − ai)(bk − di)

(bk + u)
∏
j ̸=k(bk − bj)

∏
j(bk − cj)

ε−1 +O(1),

¯̄x = −bk +
m∑
j=1

(b̄j + c̄j) +
m∑
i=0

(āi + d̄i) +O(ε),

(3.9)
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and a similar evolution for x = ck + ε obtained from (3.9) by interchanging the roles of bk and
ck. We require that these singularities are confined in the same way as in the autonomous case,
namely through ¯̄x taking a value which is a root of the denominator of the right-hand side in

the twice up-shifted version of (3.5), corresponding to an indeterminacy (∞, ¯̄bj) or (∞, ¯̄cj) of
the mapping (x̄, ¯̄x) 7→ (¯̄x, ¯̄̄x). Which of these indetermacies the singularities x = bk, x = ck
are confined through can be chosen, without loss of generality, to correspond to the patterns

{bk,∞, ¯̄ck} and {ck,∞, ¯̄bk} via the conditions

¯̄ck = −bk +
m∑
j=1

(b̄j + c̄j) +
m∑
i=0

(āi + d̄i),

¯̄bk = −ck +
m∑
j=1

(b̄j + c̄j) +
m∑
i=0

(āi + d̄i).

(3.10)

For the purpose of full deautonomisation in this case it is sufficient (as explained in Appendix
B) to take the parameters in the numerator of the right-hand side of (3.5) to be constant, after
which the conditions (3.8) require

ai = −di ∈ C\{0}, for all n. (3.11)

Then the remaining confinement conditions (3.10) give a linear system for the evolution of
b = (b1, . . . , bm)

T , c = (c1, . . . , cm)
T :

b̄
c̄
b
c

 =


1m 1m 0 −Im
1m 1m −Im 0
Im 0 0 0
0 Im 0 0




b
c

¯
b

¯
c

 , (3.12)

where Im is the m×m identity matrix, and 1m is the m×m matrix with all entries being equal
to one. The matrix on the right-hand side is similar under column permutations to

M =

(
12m −I2m
I2m 0

)
, (3.13)

so the characteristic polynomial of the linear system (3.12) coincides, up to cyclotomic factors,
with that of M , which can be computed as a block determinant to be

det(M − t I4m) =
(
t2 + 1

)2m−1
(t2 − 2mt+ 1). (3.14)

Therefore we see that the characteristic polynomial has as a root

λ = m+
√
m2 − 1, (3.15)

which by the results of Section 2 we can conclude to be the dynamical degree of the original
equation (3.3), as we will go on to demonstrate in detail.

3.2. Space of initial conditions. We now illustrate how the mechanism by which the dy-
namical degrees of the family of mappings (3.3) were obtained above, fits into the framework of
Section 2, beginning with the construction of the space of initial conditions for the autonomous
mapping. We take the mapping initially on P1 × P1 (see Remark 2.11) and perform a sequence
of blowups to regularise it as an automorphism. We do this in the usual way by introducing
X = 1/x, Y = 1/y so P1 × P1 is covered by the four affine charts (x, y), (X, y), (x, Y ) and
(X,Y ) and the equation (3.3) defines via y =

¯
x the mapping

φ : P1 × P1 99K P1 × P1,

(x, y) 7→ (x̄, ȳ),

x̄ = −x+

∏m
i=0(x

2 − a2i )
(x+ y)

∏m
j=1(x

2 − b2j )
, ȳ = x.

(3.16)
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In order to regularise this as an automorphism we require blowups of points given in coordinates
by

a±i : (x, y) = (±ai,∓ai), b±i : (x, y) = (∞,±bi), b̃±i : (x, y) = (±bi,∞), (3.17)

after which we have the rational surface X as shown in Figure 4.

y =∞

x =∞x+ y = 0

b̃+1 b̃−1 · · · b̃+m b̃−m

b+1

b−1

...

b−m
b+m

a+0
a−0

a+m
a−m

. .
.

P1 × P1

π

D2

D3
D1

B̃+
1 B̃−

1
· · ·

B̃+
m B̃−

m

B+
1

B−
1

...

B+
m

B−
m

A+
0

A−
0

A+
m

A−
m. .

.

X

Figure 4. Space of initial conditions for Class III example (autonomous).

Denoting the composition of the blow-ups by π : X → P1 × P1 and the exceptional divisors
by A±

i = π−1(a±i ), B
±
j = π−1(b±j ), B̃

±
j = π−1(b̃±j ), we have

Pic(X) = ZHx + ZHy +
m∑
i=0

(ZA+
i + ZA−

i ) +

m∑
j=1

(ZB+j + ZB−j + ZB̃+j + ZB̃−j ), (3.18)

where Hx = π∗(OP1(1)× 1) and Hy = π∗(1×OP1(1)) correspond to classes of lines of constant
x and y respectively, and we have used calligraphic script to indicate classes of exceptional
divisors. Note that, as guaranteed by Theorem 2.23, the surface X has effective anticanonical
divisor given by D = D1 +D2 +D3, where D1, D2, D3 are the proper transforms of the curves
given by x+ y = 0, y =∞, and x =∞ respectively. This is the pole divisor of the two-form on
X given in the original coordinates by dx∧dy

x+y , which is preserved by the mapping.

Through calculations in charts, we find that the mapping acts by pullback on Pic(X) as
follows.

φ∗ :


Hx 7→ (2m+ 1)Hx +Hy −

m∑
i=0

A+
i −

m∑
i=0

A−
i −

m∑
j=1

B̃+j −
m∑
j=1

B̃−j ,

Hy 7→ Hx, A±
i 7→ Hx −A

∓
i , B±j 7→ Hx − B̃

±
j , B̃±j 7→ B

∓
j .

(3.19)

While it is possible to compute the characteristic polynomial of the matrix of φ∗ with respect
to this basis for Pic(X), it will be more convenient to do this in terms of the root basis we will
introduce after deautonomisation.

3.3. Space of initial conditions for deautonomised version. In what follows we will use
a straightforward adaptation of the formulation of the space of initial conditions for a non-
autonomous mapping of Section 2 to account for families of surfaces obtained by blow-ups from
P1 × P1, rather than P2 (see Remark 2.11). In particular the notions of geometric bases for
Pic(Xn) and identification of Picard groups into a single Z-module via ιn : Pic(X ) → Pic(Xn)
are defined when Xn is obtained by blow-ups from P1 × P1 in the natural way.

Consider the deautonomised equation (3.5) defining the mapping

φn : P1 × P1 99K P1 × P1,

(x, y) 7→ (x̄, ȳ),

x̄ = −x+

∏m
i=0(x− ai)(x− di)

(x+ y)
∏m
j=1(x− bj)(x− cj)

, ȳ = x,

(3.20)
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subject to the confinement conditions derived above, namely

āi = −di, d̄i = −ai,

b̄k = −
¯
ck +

m∑
j=1

(bj + cj) +

m∑
i=0

(ai + di),

c̄k = −
¯
bk +

m∑
j=1

(bj + cj) +

m∑
i=0

(ai + di).

(3.21)

To construct the space of initial conditions we introduce the surface Xn obtained by blowing
up P1 × P1 at the following points, as shown in Figure 5:

ai : (x, y) = (ai,−ai), ei : (x, y) = (di,−di), i = 0, . . . ,m,

bj : (x, y) = (∞,
¯
bj), cj : (x, y) = (∞,

¯
cj),

b̃j : (x, y) = (bj ,∞), c̃j : (x, y) = (cj ,∞), j = 1, . . . ,m.

(3.22)

Denoting the composition of the blow-ups by πn : Xn → P1 × P1, and the exceptional divisors
by Ai = π−1

n (ai), Ei = π−1
n (ei), Bj = π−1

n (bj), Cj = π−1
n (cj), B̃j = π−1

n (b̃j), C̃j = π−1
n (c̃j), we

identify all Pic(Xn) into a single Z-module

Pic(X ) = ZHx + ZHy +
m∑
i=0

(ZAi + ZEi) +
m∑
j=1

(ZBj + ZCj + ZB̃j + ZC̃j), (3.23)

where ιn(Hx) = π∗n(OP1(1) × 1), ιn(Ai) = [Ai] and so on. The intersection product gives the
symmetric bilinear form on Pic(X ) defined by Hx · Hy = 1, Hx · Hx = Hy · Hy = 0, with all
generators that correspond to exceptional divisors of blow-ups being of self-intersection −1 and
orthogonal to all other generators. Each surface Xn has an effective anticanonical divisor given
by D = D1 + D2 + D3 ∈ | − KXn |, where D1, D2, D3 are the proper transforms of the curves
given by x+ y = 0, y =∞, and x =∞ respectively.

y =∞

x =∞x+ y = 0

b̃1 c̃1 · · · b̃m c̃m

b1

c1

...

cm

bm

a0
e0

am
em

. .
.

P1 × P1

πn

D2

D3
D1

B̃1 C̃1
· · ·

B̃m C̃m

B1

C1

...

Cm

Bm

A0
E0

Am
Em. .

.

Xn

Figure 5. Space of initial conditions for Class III example (deautonomised).

Proposition 3.1. With the confinement conditions (3.21), the mapping φn becomes an iso-
morphism φ̃n = π−1

n+1 ◦ φn ◦ πn : Xn → Xn+1, and its pullback induces the following lattice

automorphism Φ = ι−1
n ◦ φ∗

n ◦ ιn+1 of Pic(X ):

Φ :


Hx 7→ (2m+ 1)Hx +Hy −

m∑
i=0

Ai −
m∑
i=0

Ei −
m∑
j=1

B̃j −
m∑
j=1

C̃j , Hy 7→ Hx,

Ai 7→ Hx − Ei, Ei 7→ Hx −Ai, Bj 7→ Hx − B̃j , Cj 7→ Hx − C̃j ,

B̃j 7→ Cj , C̃j 7→ Bj .

(3.24)
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Remark 3.2. This means that the mapping (3.5) with the confinement conditions (3.21) is a
deautonomisation of (3.3) in the sense of Definition 2.18, via

κ : Pic(X )→ Pic(X),

Ai 7→ A+
i , Ei 7→ A−

i , Bj 7→ B+j , Cj 7→ B−j , B̃j 7→ B̃+j , C̃j 7→ B̃−j .
(3.25)

3.4. Root basis and period map. With the space of initial conditions and linear transfor-
mation Φ in hand, we now calculate the period map of Xn and confirm the mechanism by which
the dynamical degree appeared in the confinement conditions. We take the rational two-form
to be that given in the initial affine charts for P1 × P1 by

ω = k
dx ∧ dy
x+ y

= −k dX ∧ dy
X(1 +Xy)

= −k dx ∧ dY
Y (xY + 1)

= k
dX ∧ dY

XY (X + Y )
, (3.26)

with k ∈ C∗ being arbitrary at this stage, and denote its lift to Xn under πn by

ω̃n = π∗nω. (3.27)

We have −div(ω̃n) = D1+D2+D3, and the elements of Pic(X ) corresponding to the irreducible
components are

D1 = Hx+Hy−
m∑
i=0

Ai−
m∑
i=0

Ei, D2 = Hy−
m∑
j=1

B̃j−
m∑
j=1

C̃j , D3 = Hx−
m∑
j=1

Bj−
m∑
j=1

Cj , (3.28)

so we denote their span and its orthogonal complement respectively by

Q = spanZ {D1,D2,D3} , Q⊥ = {F ∈ Pic(X ) | F · Di = 0} . (3.29)

To find a root basis for Q⊥ in the sense of Definition 2.25, we note that when m = 1, Xn

becomes a Sakai surface of (additive) type A
(1)∗
2 in Sakai’s classification scheme so we can use

the root basis there, which is formed of simple roots for an affine root system of type E
(1)
6 (see

[39, Appendix A] or [22, 8.2.16]). It turns out that this choice can be generalised to the m > 1
case as follows.

Proposition 3.3. We have a root basis for Q⊥ ⊂ Pic(X ) given by

Q⊥ =

2m∑
i=0

Zαi +
2m−1∑
j=1

Zβj +
2m−1∑
j=1

Zγj + Zε1 + Zε2, (3.30)

where
ε1 = Hy −A0 − B1, ε2 = Hx −A0 − B̃1,

α0 = A0 − E0,
α1 = E0 −A1,

α2 = A1 − E1,
...

α2m−1 = Em−1 −Am,
α2m = Am − Em,

β1 = B1 − C1,
β2 = C1 − B2,
β3 = B2 − C2,
...

β2m−2 = Cm−1 − Bm,
β2m−1 = Bm − Cm,

γ1 = B̃1 − C̃1,

γ2 = C̃1 − B̃2,

γ3 = B̃2 − C̃2,
...

γ2m−2 = C̃m−1 − B̃m,

γ2m−1 = B̃m − C̃m.

(3.31)

Proof. In this case KX ̸∈ Q⊥ and we have no overlap between Q and Q⊥, so since rankPic(X ) =
6m + 4 we need to find 6m + 1 elements to construct a root basis. We begin by taking the
obvious choices of differences of pairs of classes of exceptional divisors intersecting the com-
ponents D1, D2, D3, which provides 6m − 1 elements and leads to α0, . . . , α2m, β1, . . . , β2m−1

and γ1, . . . , γ2m−1 as above. For the additional two elements required to form a root basis, we
take cues from the known choice in the m = 1 case and set ε1 to be the difference of the class
Hy−A0 of the proper transform of the line y = −a0 and the class B1 of B1, which both intersect
D3. Similarly we choose ε2 to be the difference of the class Hx − A0 of the proper transform
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of the line x = a0 and the class B̃1 of B̃1, which both intersect D2. The fact that these choices
lead to a root basis in the sense of Definition 2.25 is immediate, and in Figure 6 we present the
graph corresponding to the generalised Cartan matrix given by the intersection numbers of the
elements, i.e. nodes corresponding to elements, with edges joining them if the pair of elements
has intersection 1. We remark that this graph already appeared in the work of Looijenga [23] as
the intersection configuration of a root basis for a surface with an anticanonical cycle of length
three - this root basis will appear again in a way more directly related to Looijenga’s work in
Section 4. □

β2m−1

. . .
β1 ε1 α0 ε2 γ1

. . .
γ2m−1

α1

α2

...

α2m

Figure 6. Intersection diagram of root basis for Q⊥ in Class III example

We now compute the period mapping on this basis via the procedure outlined in Section
2. Note that in this case Dred is the union of three copies of P1 meeting at a single point
so H1(Dred;Z) = 0, and the only normalisation we need in order to define χ as a C-valued
function is a choice of the constant k appearing in ω as in (3.26). A convenient choice leads to
the following, in which the period map is that on Xn and we slightly abuse notation by writing
αi etc. when more precisely we mean their corresponding elements ιn(αi) ∈ Pic(Xn).

Lemma 3.4. The root variables for the root basis in Proposition 3.3 are given by

χ(α0) = a0 − d0,
χ(α1) = d0 − a1,
χ(α2) = a1 − d1,
χ(α3) = d1 − a2,

...

χ(α2m−1) = dm−1 − am,
χ(α2m) = am − dm,

χ(ε1) = −a0 −
¯
b1,

χ(β1) =
¯
b1 −

¯
c1,

χ(β2) =
¯
c1 −

¯
b2,

χ(β3) =
¯
b2 −

¯
b2,

...

χ(β2m−2) =
¯
cm−1 −

¯
bm,

χ(β2m−1) =
¯
bm −

¯
cm,

χ(ε2) = −a0 + b1,

χ(γ1) = −b1 + c1,

χ(γ2) = −c1 + b2,

χ(γ3) = −b2 + c2,

...

χ(γ2m−2) = −cm−1 + bm,

χ(γ2m−1) = −bm + cm.

(3.32)

Proof. In order to compute the period mapping using the procedure outlined in Section 2, we
first note that the residues of ω̃n along the components of the anticanonical divisor D are given
in coordinates by

ResD1 ω̃n = Ress=0 k
dx ∧ ds

s
= −kdx,

ResD2 ω̃n = ResY=0−k
dx ∧ dY
Y (xY + 1)

= kdx,

ResD3 ω̃n = ResX=0−k
dX ∧ dy
X(1 +Xy)

= −kdy,

(3.33)

where s = x + y. To calculate χ(αi) for i = 0, . . . , 2m we note that we can express Aj − Ek =
[Aj ]− [Ek] as the difference of two exceptional curves of the first kind which intersect D1, which
is the proper transform of the line x + y = 0. Therefore using the residue computed above we
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have

χ(Aj − Ek) = 2πi

∫ Aj∩D1

Ek∩D1

ResD1 ω̃n = 2πi

∫ x=aj

x=dk

−kdx = −2πik(aj − dk). (3.34)

Similarly we find

χ(B̃j − C̃k) = 2πi

∫ B̃j∩D2

C̃k∩D2

ResD2 ω̃n = 2πi

∫ x=bj

x=ck

kdx = 2πik(bj − ck),

χ(Bj − Ck) = 2πi

∫ Bj∩D3

Ck∩D3

ResD3 ω̃n = 2πi

∫ x=
¯
bj

y=
¯
ck

−kdy = −2πik(
¯
bj −

¯
ck),

(3.35)

which allows us to deduce the values of χ on all elements of the root basis except for ε1 and ε2,
but these are computed similarly. For example for ε1, we use its expression as the difference of
classes Hy−A0 and B1 of exceptional curves intersecting D3, and note that Hy−A0 corresponds
to the proper transform of the line y = −a0 so we compute

χ(ε1) = 2πi

∫ y=−a0

y=
¯
b1

−kdy = 2πik(a0 +
¯
b1), (3.36)

and ε2 is dealt with similarly. Finally we choose k such that 2πik = −1, and we have the
result. □

With this lemma in hand, we can compute how the values of the period map on the root
basis evolve with n as dictated by the confinement conditions (3.21). Denoting vectors of
elements of the root basis by αe = (α0, α2, . . . , α2m)

T , αo = (α1, α3, . . . , α2m−1)
T , βo =

(β1, β3, . . . , β2m−1)
T , βe = (β2, β4, . . . , β2m)

T , γo = (γ1, γ3, . . . , γ2m−1)
T , and γe = (γ2, γ4, . . . , γ2m)

T ,
the following is obtained by direct calculation.

Proposition 3.5. The evolution with n of the root variables for the surface Xn is given by

χ̄ =MΦ · χ, (3.37)

where χ = (χ(ε1), χ(ε2), χ(αo), χ(αe), χ(βe), χ(βo), χ(γe), χ(γo) )
T ,

χ̄ =
(
χ̄(ε̄1), χ̄(ε̄2), χ̄(ᾱo), χ̄(ᾱe), χ̄(β̄e), χ̄(β̄o), χ̄(γ̄e), χ̄(γ̄o)

)T
,

and MΦ =



0 −1 ∗ ∗ ∗ ∗ ∗ ∗
1 2m ∗ ∗ ∗ ∗ ∗ ∗
0 0 −Im+1 ∗ 0 0 0 0
0 0 0 Im 0 0 0 0
0 0 0 0 0 0 −Im 0
0 0 0 0 0 0 0 −Im
0 0 0 0 Im ∗ 0 0
0 0 0 0 0 Im 0 0


(3.38)

and where χ, χ̄ are the period maps of the surfaces Xn, Xn+1 respectively, and bars on root
basis elements indicate their counterparts in Pic(Xn+1) under the identification ιn+1.

As expected, the evolution of the root variables is given by exactly the same matrix as that
of Φ on Q⊥ with respect to the root basis. Indeed, by direct computation using the expressions
in Proposition 3.3 for the root basis in terms of generators of Pic(X ) and Φ as it appears in
Proposition 3.1, we see that the evolution of the root basis for Q⊥ under Φ takes the form

Φ : δ 7→MΦ δ, (3.39)

where δ = (ε1, ε2,αo,αe,βe,βo,γe,γo)
T . Further, it can be verified by direct calculation that

all elements of the root basis aside from ε1 and ε2 are in the periodic part PΦ of Pic(X ) under Φ,
so the minimal polynomial with the dynamical degree of the mapping as a root can be obtained
as follows.
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Proposition 3.6. The transformation of Q⊥/PΦ, induced by Φ is given with respect to the
basis {ε1 + PΦ, ε2 + PΦ} by the matrix (

0 −1
1 2m

)
, (3.40)

whose characteristic polynomial is (t2 − 2mt + 1). In particular the dynamical degree of the

mapping is equal to the largest root λ = m+
√
m2 − 1 of this polynomial.

Remark 3.7. The fact that, in order to read off the dynamical degree of the mapping from
the confinement conditions (3.21), it was sufficient to keep ai and di constant as in (3.11) is
precisely because the root variables that are fixed because of this choice, correspond to elements
of Q⊥∩PΦ. Keeping these parameters fixed still gives a sufficient deautonomisation in the sense
of Definition 2.30.

4. A family of mappings of QRT Class IV form

We next consider the family of mappings of the form

(x̄x− 1) (x
¯
x− 1) =

∏m
i=0(x− ai)(x− a

−1
i )∏m

j=1(x− bj)(x− b
−1
j )

, (4.1)

where ai ∈ C\{0}, i = 0, . . .m and bj ∈ C\{0}, j = 1, . . .m, for m ∈ Z≥1. Similarly to
the example in Section 3, we have singularities corresponding to zeroes of the numerator and
denominator of the rational function on the right-hand side of (4.1), and these are confined

with singularity patterns
{
a±1
i , a∓1

i

}
, and

{
b±1
j ,∞, b∓1

j

}
.

4.1. Full deautonomisation by singularity confinement. To determine the dynamical
degree of the mapping (4.1), we take only a sufficient deautonomisation (see Appendix B) given
by

(x̄x− z) (x
¯
x−

¯
z) =

∏m
i=0(x− ai)(x− di)∏m
j=1(x− bj)(x− cj)

, (4.2)

where the n-dependence of z, ai, di is to be determined, and the rest of the parameters on the
right-hand side are taken to be constant:

b̄j = bj , c̄j = cj . (4.3)

For the singularities x = bj , and x = cj to be confined in the same way as in the autonomous
mapping (4.1) we can choose to require patterns {bj ,∞, cj} and {cj ,∞, bj}, which for constant
bj and cj leads to

cj = b−1
j , for j = 1, . . . ,m. (4.4)

Hence these patterns are exactly the same as in the autonomous case, i.e.
{
b±1
j ,∞, b∓1

j

}
. We

enforce confinement of the singularities x = ai and x = di respectively through the patterns
{ai, d̄i} and {di, āi}, by imposing the conditions

āi =
z

di
, d̄i =

z

ai
. (4.5)

Finally we note that to properly deautonomise equation (4.1), we must ensure x = 0 is not
a singularity. To see that this is the case before deautonomisation, note that at x = 0 the
right-hand side of (4.1) is equal to 1, so when recast as a mapping (4.10) a cancellation occurs
so that there is no factor of x in the denominator of the rational function giving x̄. To preserve
this property under deautonomisation we require

z
¯
z =

m∏
i=0

aidi, (4.6)
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so in particular from this condition and its up-shifted version we have

z̄z =

m∏
i=0

āid̄i =

m∏
i=0

(zd−1
i )(za−1

i ) =
z2m+1

¯
z

, (4.7)

from which we deduce the equation governing the n-dependence of z to be

z̄
¯
z = z2m. (4.8)

Note that this constraint is multiplicative, as opposed to the additive constraint found for
the mappings in Section 3. However, upon linearisation it leads to the same characteristic
polynomial as in Section 3:

t2 − 2mt+ 1, (4.9)

the largest root of which is again λ = m+
√
m2 − 1, which we will confirm to be the dynamical

degree of the mapping (4.1).

4.2. Space of initial conditions. We now construct the space of initial conditions for the
autonomous equation (4.1), recast as the mapping

φ : P1 × P1 99K P1 × P1,

(x, y) 7→ (x̄, ȳ),

x̄ =
1

x
+

∏m
i=0(x− ai)(x− a

−1
i )

x(xy − 1)
∏m
j=1(x− bj)(x− b

−1
j )

, ȳ = x,

(4.10)

and we will recycle notation for blow-up points, exceptional divisors, etc. from Section 3. For
this mapping we blow up the points

a±i : (x, y) = (a±1
i , a∓1

i ), b±i : (x, y) = (∞, b±1
i ), b̃±i : (x, y) = (b±1

i ,∞), (4.11)

after which we have the rational surface X as shown in Figure 7. This surface has effective
anticanonical divisor D = D1+D2+D3 ∈ |−KX |, where D1, D2, D3 are the proper transforms
of the curves given by xy = 1, y = ∞, and x = ∞ respectively. This is the pole divisor of the
two-form on X given in the original coordinates by dx∧dy

xy−1 , which is preserved by the mapping.

y =∞

x =∞

xy = 1
b̃+1 b̃−1 · · · b̃+m b̃−m

b+1

b−1

...

b−m
b+ma+0

a−0

a+m
a−m

. . .

P1 × P1

π

D2

D3

D1
B̃+

1 B̃−
1
· · ·

B̃+
m B̃−

m

B+
1

B−
1

...

B+
m

B−
mA+

0
A−

0

A+
m
A−
m

. . .

X

Figure 7. Space of initial conditions for Class IV example (autonomous).

Through calculations in charts, we find that the mapping acts by pullback on Pic(X) in
exactly the same way as the example from Class III studied in Section 3, as given by (3.19).
While this immediately implies that the dynamical degree must also be the same, the way in
which the confinement conditions must be linearised before the characteristic polynomial for Φ
can be read off in this case is different. This is related to the geometry of the anticanonical
divisor D as we will show below.
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4.3. Space of initial conditions for deautonomised version. Consider the deautonomised
equation (4.2), with confinement conditions as derived above, defining the mapping

φn : P1 × P1 99K P1 × P1,

(x, y) 7→ (x̄, ȳ),

x̄ =
z

x
+

∏m
i=0(x− ai)(x− di)

x(xy −
¯
z)

∏m
j=1(x− bj)(x− b

−1
j )

, ȳ = x,

(4.12)

with parameters satisfying

b̄i = bi, āi =
z

di
, d̄i =

z

ai
, z

¯
z =

m∏
i=0

aidi. (4.13)

We construct the surface Xn by blowing up P1×P1 at the following points, as shown in Figure
8:

ai :(x, y) = (ai,
¯
za−1

i ), ei : (x, y) = (di,
¯
zd−1

i ), i = 0, . . . ,m

b±j :(x, y) = (∞, b±1
j ), b̃±j : (x, y) = (b±1

j ,∞), j = 1, . . . ,m.
(4.14)

We identify all Picard groups of the surfaces Xn into the single lattice Pic(X ) as before and
obtain the following.

Proposition 4.1. With the confinement conditions (4.13), the mapping φn in (4.12) becomes
an isomorphism φ̃n = π−1

n+1 ◦φn ◦πn : Xn → Xn+1, and its pullback induces the following lattice

automorphism Φ = ι−1
n ◦ φ∗

n ◦ ιn+1 of Pic(X ):

Φ :


Hx 7→ (2m+ 1)Hx +Hy −

m∑
i=0

Ai −
m∑
i=0

Ei −
m∑
j=1

B̃+j −
m∑
j=1

B̃−j , Hy 7→ Hx,

Ai 7→ Hx − Ei, Ei 7→ Hx −Ai, B±j 7→ Hx − B̃
±
j , B̃±j 7→ B

∓
j .

(4.15)

y =∞

x =∞

xy =
¯
z

b̃+1 b̃−1 · · · b̃+m b̃−m

b+1

b−1

...

b−m
b+m

a0
e0

am
em

. . .

P1 × P1

πn

D2

D3

D1
B̃+

1 B̃−
1
· · ·

B̃+
m B̃−

m

B+
1

B−
1

...

B+
m

B−
mA0

E0

Am
Em

. . .

Xn

Figure 8. Space of initial conditions for Class IV example (deautonomised).

4.4. Root basis and period map. Again we calculate the period map of Xn and confirm the
mechanism by which the dynamical degree appeared in the confinement conditions, including
the linearisation that was required to obtain a difference equation from which the minimal
polynomial for the dynamical degree could be read off. The rational two-form preserved by the
mapping in this case is given in charts for P1 × P1 by

ωn = k
dx ∧ dy
xy −

¯
z

= −k dX ∧ dy
X(y −X

¯
z)

= −k dx ∧ dY
Y (x− Y

¯
z)

= k
dX ∧ dY

XY (1−XY
¯
z)
, (4.16)

with k ∈ C∗, and we again denote its lift to Xn under πn by

ω̃n = π∗nωn. (4.17)
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Direct calculation shows that the two-form is preserved by the mapping, i.e.,

dx̄ ∧ dȳ
x̄ȳ − z

=
dx ∧ dy
xy −

¯
z
, (4.18)

and even though ωn on P1 × P1 depends on n, we are still within the remit of Theorem 2.23.
Indeed Xn has effective anticanonical divisor −div(ω̃n) = D1 +D2 +D3, and the elements of
Pic(X ) corresponding to the irreducible components are given by

D1 = Hx +Hy −
m∑
i=0

Ai −
m∑
i=0

Ei, D2 = Hy −
m∑
j=1

B̃+j −
m∑
j=1

B̃−j , D3 = Hx −
m∑
j=1

B+j −
m∑
j=1

B−j .

(4.19)
Defining the subsets Q,Q⊥ ⊂ Pic(X ) as above, we find the same root basis as in Section 3, but
changes in notation mean that Bj and Cj are replaced with B+j and B−j respectively, and their
tilded versions similarly, i.e.

ε1 = Hy −A0 − B+1 , ε2 = Hx −A0 − B̃+1 ,

α0 = A0 − E0,
α1 = E0 −A1,

α2 = A1 − E1,
...

α2m−1 = Em−1 −Am,
α2m = Am − Em,

β1 = B+1 − B
−
1 ,

β2 = B−1 − B
+
2 ,

β3 = B+2 − B
−
2 ,

...

β2m−2 = B−m−1 − B
+
m,

β2m−1 = B+m − B−m,

γ1 = B̃+1 − B̃
−
1 ,

γ2 = B̃−1 − B̃
+
2 ,

γ3 = B̃+2 − B̃
−
2 ,

...

γ2m−2 = B̃−m−1 − B̃
+
m,

γ2m−1 = B̃+m − B̃−m.

(4.20)

In particular the generalised Cartan matrix for this basis is the same as in Section 3 encoded by
the graph in Figure 6. The key difference between this example and that of the previous section
is the parametrisation by the period map of the coefficients in the mapping and the centres of
blow-ups, because of the fact that the anticanonical divisor is a cycle and H1(Dred;Z) ∼= Z. In
particular the period map is defined by the surface only modulo χ̂(H1(Dred;Z)) ∼= Z, which can
be seen in terms of the residues of ω̃n along the irreducible components,

ResD1 ω̃n = Ress=0 k
dx ∧ ds
xs

= −kdx
x
,

ResD2 ω̃n = ResY=0−k
dx ∧ dY
Y (x− Y

¯
z)

= k
dx

x
,

ResD3 ω̃n = ResX=0−k
dX ∧ dy
X(y −X

¯
z)

= −kdy
y
,

(4.21)

where s = xy −
¯
z. Note that evaluating integrals of these residues will lead to logarithmic

functions of parameters in the mapping. Computing along the same lines as in the proof of
Lemma 3.4 and imposing appropriate normalisations of both k and the value χ̂(ℓ) for a generator
ℓ of H1(Dred;Z) as in [39], we find the following.
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Lemma 4.2. The root variables of Xn for the root basis above are related to the parameters in
the mapping (4.12) according to

eχ(α0) = a0d
−1
0 ,

eχ(α1) = d0a
−1
1 ,

eχ(α2) = a1d
−1
1 ,

eχ(α3) = d1a
−1
2 ,

...

eχ(α2m−1) = dm−1a
−1
m ,

eχ(α2m) = amd
−1
m ,

eχ(ε1) =
¯
za−1

0 b−1
1 ,

eχ(β1) = b21

eχ(β2) = b−1
1 b−1

2 ,

eχ(β3) = b22,

...

eχ(β2m−2) = b−1
m−1b

−1
m ,

eχ(β2m−1) = b2m,

eχ(ε2) = a−1
0 b1,

eχ(γ1) = b−2
1 ,

eχ(γ2) = b1b2,

eχ(γ3) = b−2
2 ,

...

eχ(γ2m−2) = bm−1bm,

eχ(γ2m−1) = b−2
m .

(4.22)

The evolution of the root variables is again given by the matrix of Φ with respect to the root
basis, and we can also explain how the evolution of the parameter z gave the scalar difference
equation (4.8) from which the dynamical degree could be read off after linearisation. Expressing

¯
z in terms of the root variables of Xn we have

¯
z = eχ(ε1)−χ(ε2)+χ(β1), (4.23)

and in light of this we introduce
v1 = ε1 − ε2 + β1,

v2 = Φ(v1),
(4.24)

and see that

Φ(v2) = −v1 + 2mv2 +G, (4.25)

where G = 2β1−
∑2m−1

j=2 (2m− j)βj +2γ1−
∑2m−1

j=2 (2m− j)γj . Noting that all βj , γj are in the

intersection of Q⊥ with the periodic part PΦ of Pic(X ) under Φ, we can verify the matrix of
the induced transformation of Q⊥/PΦ with respect to the basis {v1 + PΦ, v2 + PΦ} to be(

0 1
−1 2m

)
, (4.26)

so again we can read off the dynamical degree from its characteristic polynomial. The fact
that this characteristic polynomial appeared so neatly from the evolution of z is because in our
chosen deautonomisation the parameters bj are kept constant, which leads to

eχ(G) = 1, (4.27)

and therefore, through the period map, equation (4.25) becomes

z̄ = eχ̄(v̄2) = e−χ(v1)+2mχ(v2)+χ(G) = z2m
¯
z−1, (4.28)

which is precisely the confinement condition from which we read off the dynamical degree.

5. A family of mappings of QRT Class I form

The next example we will consider is the family of equations (1.12) introduced in the Intro-
duction, namely

x̄+
¯
x =

1

x2m
, (5.1)

where m ∈ Z≥1, which are of the form of Class I QRT-type mappings. This mapping admits
the confined singularity pattern {0,∞2m, 0}, and if we take the deautonomisation

.x̄+
¯
x =

1

x2m
− b

x
, (5.2)
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the n-dependence of b required for the singularity confinement to persist is b̄ − 2mb +
¯
b = 0,

from which we can read off minimal polynomial t2 − 2mt + 1 for the dynamical degree of the
mapping (5.1), namely

λ = m+
√
m2 − 1. (5.3)

5.1. Space of initial conditions. The space of initial conditions for equation (5.1) was con-
structed in [26], which we recall here with some added details which will be necessary for
deautonomisation and the computation of the period map. Consider the mapping

φ : P1 × P1 99K P1 × P1,

(x, y) 7→ (x̄, ȳ),

x̄ =
1− yx2m

x2m
, ȳ = x,

(5.4)

defined by equation (5.1). In contrast to the examples studied above, here, to construct the
space of initial conditions we will have to blow up infinitely near points, i.e. those lying on the
exceptional divisors of previous blow-ups. For this reason we will need to introduce notation
for charts covering exceptional divisors according to the following convention: after blowing up
a point pi given in some affine chart (x, y) by

pi : (x, y) = (x∗, y∗), (5.5)

the exceptional divisor Ei of the blowup of pi is covered by two affine coordinate charts (ui, vi)
and (Ui, Vi) given by

x = uivi + x∗, y = vi + y∗,

ui =
x− x∗
y − y∗

, vi = y − y∗,
and

x = Vi + x∗, y = UiVi + y∗,

Ui =
y − y∗
x− x∗

, Vi = x− x∗.
(5.6)

In particular the exceptional divisor Ei has in these charts the local equations vi = 0 and Vi = 0.
For the case at hand we require 8m blow-ups in total, 4m each over the points (x, y) =

(0,∞) and (x, y) = (∞, 0) which we outline now. Firstly letting p1 : (x, y) = (0,∞) and
introducing coordinates for the exceptional divisor as above we require first 2m blowups of
points pk+1 : (Uk, Vk) = (0, 0) for k = 1, . . . 2m − 1. Note that each of these points pk+1 lies
on the proper transform of the line y = ∞ under the blowups of p1, . . . , pk. Then we find
the point p2m+1 : (U2m, V2m) = (1, 0) away from the proper transform of y = ∞, and after
blowing this up we require another sequence of blow-ups of points p2m+2, . . . , p4m given in
coordinates by p2m+k+1 : (uk, vk) = (0, 0), k = 1, . . . , 2m − 1, though these points are away
from the proper transforms of y = ∞ or any of the previous exceptional divisors. Similarly
for p̃1 : (x, y) = (∞, 0) we initially blow up 2m points on the proper transform of the line
x = ∞ given by p̃k+1 : (ũk, ṽk) = (0, 0), where we have used tildes to denote the coordinates
introduced in blowing up points p̃i to distinguish them from those coming from blow-ups of pi.
Then similarly we find p̃2m+1 : (ũ2m, ṽ2m) = (1, 0) followed by a sequence p̃2m+2, . . . , p̃4m given
by p̃2m+k+1 : (ũk, ṽk) = (0, 0), k = 1, . . . , 2m − 1. The resulting surface is shown in Figure 9,

where Ei and Ẽi are exceptional divisors from the blow-ups of pi and p̃i respectively, and we
have introduced notation Di, D̃i for the curves which will be shown to be the components of an
anticanonical divisor of X whose classes in Pic(X) are

D0 = Hy −
2m∑
i=1

Ei, Di = Ei − Ei+1, i = 1, . . . , 4m− 1,

D̃0 = Hx −
2m∑
i=1

Ẽi, D̃i = Ẽi − Ẽi+1, i = 1, . . . , 4m− 1.

(5.7)

The fact that the mapping becomes an automorphism of X is verified by calculation in charts.
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D̃0
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D̃4m−1

Ẽ4m

X

Figure 9. Space of initial conditions for Class I example

5.2. Space of initial conditions for deautonomised version. We take the deautonomised
mapping (5.2) as

φn : P1 × P1 → P1 × P1,

(x, y) 7→ (x̄, ȳ),

x̄ =
1− bx2m−1 − yx2m

x2m
, ȳ = x,

(5.8)

with the confinement condition
b̄− 2mb+

¯
b = 0. (5.9)

The points to be blown up to construct the surface Xn that provides a space of initial conditions
for mapping (5.8), are given by the same expressions in coordinates as for the autonomous case
with the exception of the final points p4m and p̃4m, which for the non-autonomous mapping are

p4m : (u4m−1, v4m−1) = (b, 0), p̃4m : (ũ4m−1, ṽ4m−1) = (
¯
b, 0). (5.10)

Denoting again the exceptional divisors arising from the blow-ups by Ei = π−1
n (pi) and Ẽi =

π−1
n (p̃i), we identify all Pic(Xn) into the single Z-module

Pic(X ) = ZHx + ZHy +
4m∑
i=1

ZEi +
4m∑
i=1

ZẼi, (5.11)

where [Ei] = ιn(Ei) and [Ẽi] = ιn(Ẽi).

Proposition 5.1. With the confinement condition (5.9), the mapping φn in (5.8) becomes an
isomorphism φ̃n = π−1

n+1 ◦ φn ◦ πn : Xn → Xn+1, and its pullback induces the following lattice

automorphism Φ = ι−1
n ◦ φ∗

n ◦ ιn+1 of Pic(X ):

Φ :

{
Hx 7→ 2mHx +Hy −

4m∑
i=1

Ei, Hy 7→ Hx, Ei 7→ Ẽi, Ẽi 7→ Hx − E4m+1−i. (5.12)

5.3. Root basis and period map. The rational two-form ω on P1 × P1 preserved by φn is
given by

ω = kdx ∧ dy = −kdx ∧ dY
Y 2

= −kdX ∧ dy
X2

= k
dX ∧ dY
X2Y 2

, (5.13)

where k ∈ C∗, and we denote its lift to Xn by ω̃n = π∗nω. The pole divisor of ω̃n is effective and

is given in terms of the curves Dj , D̃j by

−div ω̃n = 2D0+
2m∑
j=1

jDj+
2m−1∑
j=1

(2m− j)D2m+j+2D̃0+
2m∑
j=1

jD̃j+
2m−1∑
j=1

(2m− j)D̃2m+j . (5.14)
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To construct a root basis in this case we perform a similar procedure to that outlined in the
proof of Proposition 2.29. The singularity pattern {0,∞2m, 0} corresponds to the movement of
the following exceptional curves of the first kind under the mapping according to

[x = 0] −→ Ẽ4m −→ E4m −→ [y = 0], (5.15)

where [x = 0] and [y = 0] indicate proper transforms under the blowups. Passing to Pic(X ) we
have

Hx − E1
Φ←−−−− Ẽ4m

Φ←−−−− E4m
Φ←−−−− Hy − Ẽ1, (5.16)

so we take Hy − Ẽ1 and see that the component of D it intersects corresponds to D̃1 = Ẽ1 − Ẽ2,
which has period 4 under Φ, so we compute

Φ4(Hy − Ẽ1) = 2mHx +Hy −
4m∑
i=1

Ei − Ẽ1. (5.17)

and obtain an element of Q⊥ given by

α1 = (Φ4 − 1)(Hy − Ẽ1) = 2mHx −
4m∑
i=1

Ei. (5.18)

Applying Φ to α1 we see that a root basis can be found as follows.

Proposition 5.2. We have a root basis for Q⊥ given by

α1 = 2mHx −
4m∑
i=1

Ei, α2 = 2mHy −
4m∑
i=1

Ẽi. (5.19)

In Figure 10 we give the intersection diagram of the irreducible components of the anticanon-
ical divisor as well as the diagram corresponding to the generalised Cartan matrix formed by
the numbers ci,j = 2

αi·αj

αi·αi
, which here is(

2 −2m
−2m 2

)
. (5.20)

In particular in the m = 1 case Xn is a Sakai surface of type D
(1)
7 , and the the root basis in

Proposition 5.2 is a basis of simple roots for an affine root system of type A
(1)
1

|α|2=4

, where the

non-standard length of roots does not affect the fact that the matrix with entries ci,j = 2
αi·αj

αi·αi

becomes the usual generalised Cartan matrix of type A
(1)
1 .

D2m

D0 D̃0

D̃2m

D̃2m+1
. . .
D̃4m−1

D̃2m−1

. . .

D̃1

D2m+1
. . .

D4m−1

D2m−1

. . .

D1

α1 α2

2m

Figure 10. Intersection diagrams of anticanonical divisor components and root
basis for Class I example

The evolution of the root basis under Φ is given by

Φ :

(
α1

α2

)
7→

(
0 −1
1 2m

)(
α1

α2

)
, (5.21)

and we see the factor (t2 − 2mt+ 1) from the characteristic polynomial of Φ on Pic(X ) as the
characteristic polynomial of its restriction to Q⊥, and we can deduce that the dynamical degree
of the mapping is λ = m +

√
m2 − 1. To see this on the level of the confinement condition on
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b we use the expressions for the root basis as differences of classes of exceptional curves of the
first kind and find the root variables for the root basis in Proposition 5.2 to be

χ(α1) =
¯
b, χ(α2) = −b. (5.22)

Therefore the confinement condition b̄ = 2mb−
¯
b corresponds to evolution of the root variables

according to the same matrix as Φ on the root basis as in (5.21), i.e.

χ̄(ᾱ1) = b = −χ(α2), χ̄(ᾱ2) = −b̄ =
¯
b− 2mb = χ(α1) + 2mχ(α2), (5.23)

and we see how the parameter evolution reflects the dynamical degree.

6. A family of Class V-type mappings with short patterns

The last example we will study in detail is one to which other integrability tests based on
singularity analysis cannot be applied directly. Consider the autonomous equation(

x̄+ x− 2z

x̄+ x

)(
x+

¯
x− 2z

x+
¯
x

)
=

(
(x− z)2 − a21

) (
(x− z)2 − a22

)
(x2 − b21)(x2 − b22)

, (6.1)

where the parameters z, ai, bj are constants. This mapping has the singularity confinement
property, with singularity patterns

{z ± ai, z ∓ ai}, {±bj ,∓bj}, (6.2)

for i, j = 1, 2. Because of the absence of singularity patterns of length ≥ 3, neither Halburd’s
method [17] nor its ‘express’ version [37] can be used to compute the dynamical degree of
this mapping - see [37, Section 5] for an explanation of why this is the case. However full
deautonomisation is still effective, as we will demonstrate.

6.1. Full deautonomisation by singularity confinement. To illustrate full deautonomisa-
tion here we will consider the family of non-autonomous mappings(

x̄+ x− 2z

x̄+ x

)(
x+

¯
x− 2

¯
z

x+
¯
x

)
=

∏m
i=1(x− z − ai)(x− z − di)∏m

j=1(x
2 − b2j )

, (6.3)

for some integer m ≥ 1, where z, ai and di are allowed to evolve with n but bj are kept constant:

b̄j = bj . (6.4)

The family of mappings (6.3) contains a sufficient deautonomisation of the autonomous equation
(6.1) when m = 2. We will show that full deautonomisation can be used to determine the
dynamical degrees of the whole family of non-autonomous mappings (6.3), which in particular
recovers that of the autonomous case (6.1).

With the parameters bj constant we automatically have the singularity patterns {±bj ,∓bj},
but in order for the remaining singularities to be confined similarly to the autonomous case we
must require the confinement conditions

z̄ + āi = z − di, z̄ + d̄i = z − ai, (6.5)

under which the mapping admits the singularity patterns {z + ai, z̄ + d̄i} and {z + di, z̄ + āi}.
To completely preserve the singularity structure and obtain a deautonomisation of the mapping
in the sense of Definition 2.18 we must also ensure that x = ∞ is not a singularity, just as in
the case of the autonomous mapping (6.1). This requires, at each n the constraint

2z + 2
¯
z −

m∑
i=1

(z + ai)−
m∑
i=1

(z + di) = 0. (6.6)

Similarly to in Section 4 we combine this condition and its up-shift to find

z̄ − 2(m− 1)z +
¯
z = 0, (6.7)

from which we read off the characteristic polynomial t2 − 2(m− 1)t+ 1 with largest root

λ = m− 1 +
√
m(m− 2), (6.8)
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which is equal to the dynamical degree of the mapping when m ≥ 2. When m = 1 the mapping
is periodic, with period 4, and therefore has bounded degree growth.

6.2. Space of initial conditions for non-autonomous mapping. The non-autonomous
equation (6.3) defines the mapping

φn : P1 × P1 99K P1 × P1,

(x, y) 7→ (x̄, ȳ),

x̄ = −x− 2z(x+ y − 2
¯
z)g(x)

(x+ y)(f(x)− g(x)) + 2
¯
zg(x)

, ȳ = x,

where f(x) =
m∏
i=1

(x− z − ai) (x− z − di) , g(x) =
m∏
j=1

(
x2 − b2j

)
,

(6.9)

subject to the confinement conditions derived previously:

z̄ + āi = z − di, z̄ + d̄i = z − ai, 2z + 2
¯
z −

m∑
i=1

(z + ai)−
m∑
i=1

(z + di) = 0. (6.10)

The points to be blown up to construct the space of initial conditions are given by

ai : (x, y) = (
¯
z + ai,

¯
z − ai), ei : (x, y) = (

¯
z + di,

¯
z − di) b±j : (x, y) = (±bj ,∓bj), (6.11)

and we denote the exceptional divisors by Ai = π−1(ai), Ei = π−1(ei), and B
±
i = π−1(b±i ). The

surface Xn has an effective anticanonical divisor D = D1 +D2, where D1 and D2 are the two
rational curves given in coordinates by

D1 : x+ y = 0, D2 : x+ y −
¯
z = 0, (6.12)

which intersect at a single point (x, y) = (∞,∞) with multiplicity two. These correspond to
the elements of Pic(X )

D1 = Hx +Hy −
m∑
i=1

B+i −
m∑
i=1

B−i , D2 = Hx +Hy −
m∑
i=1

Ai −
m∑
i=1

Ei, (6.13)

where Ai = ιn([Ai]), Ei = ιn([Ei]), and B±i = ιn([B
±
i ]); we give a schematic representation of

Xn in Figure 11.

y =∞

x =∞

b+1 b−1
b+2

b−2

b+m

b−m

. .
.

a1

e1

a2

e2

amem

P1 × P1

πn

D1

B+
1
B−

1
B+

2
B−

2

B+
m

B−
m

D2

A1

E1

A2

E2

AmEm

. .
.

. .
.

Xn

Figure 11. Space of initial conditions for Class V example (deautonomised).
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Proposition 6.1. With the confinement conditions (6.10), the mapping φn in (6.9) becomes
an isomorphism φ̃n = π−1

n+1 ◦φn ◦πn : Xn → Xn+1, and its pullback induces the following lattice

automorphism Φ = ι−1
n ◦ φ∗

n ◦ ιn+1 of Pic(X ):

Φ :


Hx 7→ 2mHx +Hy −

m∑
i=1

(Ai + Ei)−
m∑
j=1

(B+j + B−j ),

Hy 7→ Hx, Ai 7→ Hx − Ei, Ei 7→ Hx −Ai, B±i 7→ Hx − B
∓
i .

(6.14)

The characteristic polynomial of Φ as written in Proposition 6.1 can be verified to have a
factor of t2 − 2(m − 1)t + 1, meaning that the dynamical degree of the mapping is equal to
1 if m = 1 or m = 2, and otherwise is equal to the largest root λ > 1 of this polynomial as
in (6.8). We remark this family of mappings contains all three types from the classification in
Proposition 2.14. When m = 2 the autonomous mapping preserves an elliptic fibration, with its

deautonomisation being a discrete Painlevé equation of (additive) surface type A
(1)∗
1 [39], and

when m = 1 the degree growth of the equation is bounded.

6.3. Root basis and period map. The non-autonomous mapping preserves the n-dependent
two-form ωn on P1 × P1 given by

ωn = k
¯
z

dx ∧ dy
(x+ y)(x+ y −

¯
z)
, (6.15)

where k ∈ C∗, since under the mapping φn given by (6.9) we have

kz
dx̄ ∧ dȳ

(x̄+ ȳ)(x̄+ ȳ − z)
= k

¯
z

dx ∧ dy
(x+ y)(x+ y −

¯
z)
. (6.16)

The anticanonical divisor in this case is then

−div ω̃n = D = D1 +D2, (6.17)

and the fact that D1 and D2 intersect at a single point with multiplicity two means that
H1(Dred;Z) = 0, which is reflected in the parametrisation of the coefficients by root variables
being additive.

Proposition 6.2. We have a root basis for Q⊥ given by

Q⊥ =
4m−1∑
i=0

Zαi, (6.18)

where
α0 = Hx −Hy,

α1 = E1 − E2, α2 = E2 − E3, . . . αm−1 = Em−1 − Em,
αm = Em −A1,

αm+1 = A1 −A2, αm+2 = A2 −A3, . . . α2m−1 = Am−1 −Am,
α2m = Hy −Am − B+1 ,

α2m+1 = B+1 − B
+
2 , α2m+2 = B+2 − B

+
3 , . . . α3m−1 = B+m−1 − B

+
m,

α3m = B+m − B−1 ,
α3m+1 = B−1 − B

−
2 , α3m+2 = B−2 − B

−
3 , . . . α4m−1 = B−m−1 − B

−
m.

(6.19)

We give the intersection diagram of this root basis in Figure 12, which when m = 2 reduces

to the Dynkin diagram associated with the symmetry type E
(1)
7 of the corresponding discrete

Painlevé equation.

Remark 6.3. The diagram in Figure 12 also appeared in the work of Looijenga [23] through
the root basis for a rational surface with an anticanonical cycle of length two, i.e. two rational
curves intersecting at two distinct points each with multiplicity one. In a way similar to how the
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examples in Sections 3 and 4 share the same intersection diagram of their root bases but have
additive and multiplicative natures of their root variables due to differing ranks of H1(Dred;Z),
the example in the present section has a multiplicative counterpart. Explicitly the family of
non-autonomous mappings is given by(

x̄x− z2

x̄x− 1

)(
x
¯
x− z2

x
¯
x− 1

)
=

∏m
i=1(xz

−1 − ai)(xz−1 − a−1
i )∏m

j=1(x− bj)(x− b
−1
j )

, (6.20)

and it has the form of Class VI mappings in the QRT-type classification. The confinement
conditions, space of initial conditions and period map for this multiplicative counterpart of the
present example can be worked out along the same lines as in the other sections.

α1 α2

. . .
α2m

. . .
α4m−1

α0

Figure 12. Intersection diagram of root basis for Q⊥ in Class V example

The evolution of the root basis under Φ as in Proposition 6.1 can be computed to be

Φ :

 α0

α2m

α

 7→
 2m− 1 2m ∗

−1 −1 ∗
0 0 U

 α0

α2m

α

 (6.21)

where α = (α1, . . . , α2m−1, α2m+1, . . . , α4m−1)
T and U is a known square matrix of size 4m− 2

satisfying U2 = I4m−2. We therefore see the factor t2 − 2(m − 1)t + 1 in the characteristic
polynomial of Φ as expected and confirm the dynamical degree of the original mapping and its
deautonomised version as read off from the confinement conditions.

To compute the period map we note that the residues of ω̃n along the components of the
anticanonical divisor are given in coordinates by

ResD1 ω̃n = Ress1=0 k
¯
z
dx ∧ ds1
s1(s1 −

¯
z)

= kdx,

ResD2 ω̃n = Ress2=0 k
¯
z
dx ∧ ds2
(s2 +

¯
z)s2

= −kdx,
(6.22)

where s1 = x+ y and s2 = x+ y−
¯
z. Therefore, with k chosen for convenience to be 1, the root

variables of Xn for the root basis in Proposition 6.2 are related to the parameters in the mapping
(6.9) as follows, and the evolution of these root variables with the confinement conditions can
be checked directly to match with the action of Φ on the root basis.

χ(α0) = 2
¯
z,

χ(α1) = −d1 + d2, χ(α2) = −d2 + d3, . . . χ(αm−1) = −dm−1 + dm,

χ(αm) = −dm + a1,

χ(αm+1) = −a1 + a2, χ(αm+2) = −a2 + a3, . . . χ(α2m−1) = −am−1 + am,

χ(α2m) = −
¯
z + am − b1,

χ(α2m+1) = b1 − b2, χ(α2m+2) = b2 − b3, . . . χ(α3m−1) = bm−1 − bm,
χ(α3m) = bm + b1,

χ(α3m+1) = −b1 + b2, χ(α3m+2) = −b2 + b3, . . . χ(α4m−1) = −bm−1 + bm.

(6.23)

The parameter z that satisfies the recurrence whose characteristic polynomial encodes the dy-
namical degree corresponds to the root variable χ(α0). Computing the action of Φ on α0 we
find

(Φ2 − 2(m− 1)Φ + 1)α0 = 0, (6.24)
38



which through the period mapping gives the confinement condition on z, and we see again how
the dynamical degree appears in the confinement conditions.

7. Conclusion

In summary, in this paper we have provided an explanation (as summarised in Theorem 1.1)
of the correspondence between confinement conditions for a vast class of birational mappings
of the plane and their dynamical degree. As we explained, this correspondence underlies the
efficacy of the method of full deautonomisation by singularity confinement, as an integrability
test for such mappings. While the problem of effectiveness of the anticanonical divisor class
means that the method is not guaranteed to work for birational mappings in general, examples
with a space of initial conditions but no effective anticanonical divisor are rare, and Theorem
2.23 can be regarded as an affirmative answer to a non-autonomous counterpart to the conjecture
initially posed by Gizatullin, in the case of mappings preserving a rational two-form.

Another interpretation of the results in this paper is as a generalisation of Takenawa’s attempt
[42] towards a version of the Sakai theory of discrete Painlevé equations for non-integrable
mappings, involving rational surfaces associated via Q⊥ to root systems of indefinite type. In
particular non-integrable mappings from the class to which Theorem 2.23 applies provide a suite
of new examples with indefinite type root bases, extending some which appeared in Looijenga’s
study of rational surfaces with anticanonical cycle [23]. While we have not confirmed this, it is
natural to expect that the symmetry groups of the families of surfaces constructed in this paper
can be described in terms of the Weyl group associated to Q⊥. Further, while a classification
of the kinds of effective anticanonical divisors of surfaces forming the space of initial conditions
for non-integrable mappings cannot be given by a finite list as in the discrete Painlevé case, we
have given a local classification of the intersection configuration of irreducible components in
Appendix A.
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Appendix A. Classification of anticanonical divisors for confining
non-integrable mappings

In this Appendix we provide a classification of anticanonical divisors (Theorem A.17) for
spaces of initial conditions that correspond to non-integrable mappings, i.e. mappings with
dynamical degree greater than 1. As mentioned in [24], the theory of spaces of initial conditions
for mappings of the plane allows for two description that are, however, essentially the same.
While the description introduced in the main part of this paper is more intuitive, the other
one, by a rational surface and a Cremona isometry, is more compatible with the general theory
needed in such a classification. Therefore, in this appendix, we shall use the description by
Cremona isometries. The following are our assumptions and notations that we shall use in this
appendix:

• X is a rational surface.
• σ is a Cremona isometry. That is, σ is a Z-linear transformation of Pic(X) that satisfies

– σKX = KX ,
– (σF1) · (σF2) = F1 · F2 for any F1, F2 ∈ Pic(X),
– if F ∈ Pic(X) is effective, then so is σF .

• λ > 1: the maximum eigenvalue of σ, which is irrational.
• v ∈ PicR(X): the dominant eigenvector of σ, which we may assume is nef.
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• X is minimal as a space of initial conditions.
• The anticanonical class −KX is effective. That is, we have

D =
N∑
j=1

mjDj ∈ | − KX |,

where Dj ⊂ X is irreducible, mj ∈ Z>0 and Di ̸= Dj (i ̸= j).
• Dred = D1 ∪ · · · ∪DN .

Lemma A.1. D is connected.

Proof. The proof of [39, Proposition 6] is still valid in our case. □

Lemma A.2. ga(Dj) ≤ 1 for any j. Moreover, if D has a component Dj such that ga(Dj) ≥ 1,
then D = Dj. In particular, if D is not irreducible, then each component of D is a smooth
rational curve.

Proof. Take a geometric basis H, E1, . . . , EK ∈ Pic(X) and let π : X → P2 be the corresponding
blow-down. Using this basis, each [Dj ] is expressed as

[Dj ] = cj0H+ cj1E1 + · · ·+ cjKEN .
Here, cj0 ≥ 0 since Dj is effective. Moreover, since −KX = 3H− E1 − · · · − EK , we have

3 =
∑
j

mjcj0,

which implies cj0 ≤ 3.
From here on, we fix j. If cj0 = 0, then Dj is the strict transform of some exceptional curve of

π. Therefore, Dj is rational and ga(Dj) = 0. Let us consider the remaining case, i.e. cj0 = 1, 2, 3.
In this case, C := π(Dj) ⊂ P2 is a curve in P2 and its class is [C] = OP2(cj0). Therefore, by the
genus formula on P2, we have ga(C) =

1
2(cj0− 2)(cj0− 1) ≤ 1. Since taking the strict transform

of a curve with respect to a birational morphism does not increase its arithmetic genus, we
conclude that ga(Dj) ≤ ga(C) ≤ 1.

If ga(Dj) = 1, then cj0 = 3 and mj = 1. In this case, by the genus formula, we have

Dj ·
∑
i ̸=j

miDi = Dj · (−KX − [Dj ]) = 0,

which implies D = Dj since D is connected. □

Lemma A.3. If D is irreducible, then ga(D) = 1.

Proof. Since −KX − [D] = 0 in this case, we have ga(D) = 1 by the genus formula. □

Lemma A.4. If D is not irreducible and mj = 1, then Dj ·
∑

i ̸=jmiDi = 2.

Proof. In this case, ga(Dj) = 0 since D is not irreducible. By the genus formula, we have

2 = Dj · (−KX − [Dj ]) = Dj ·
∑
i ̸=j

miDi.

□

Lemma A.5. Dj is orthogonal to v for all j. Moreover, there exists ℓ ∈ Z>0 such that σℓ[Dj ] =
[Dj ] for all j.

Proof. Since v is nef and Dj is effective, we have

v · [Dj ] ≥ 0.

Multiplying both sides by mj and taking the sum for j, we have

v · (−KX) ≥ 0.
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However, Since v · (−KX) = 0, v ·Dj must be 0 for all j. Therefore, Dj ∈ v⊥ ∩ Pic(X). Since

σ preserves the intersection form on the lattice v⊥ ∩ Pic(X), which is negative definite, there

exists ℓ > 0 such that

(
σ
∣∣∣
v⊥∩Pic(X)

)ℓ
= idv⊥∩Pic(X). □

Lemma A.6. D2
j < 0.

Proof. Clear from Dj ∈ v⊥ ∩ Pic(X). □

Lemma A.7. Dj is not an exceptional curve of the first kind. In particular, D2
j ≤ −2.

Proof. Since X is minimal, there does not exist an exceptional curve of the first kind C such
that C ·v = 0 [24, Proposition 4.17]. Since Dj is orthogonal to v, Dj is not an exceptional curve
of the first kind. □

Lemma A.8. For any nontrivial linear combination F =
∑

j cj [Dj ] with cj ∈ R, we have

F 2 < 0.

Proof. The intersection form is negative definite on the lattice v⊥∩Pic(X). Therefore, the form
is negative definite on the real vector space V :=

(
v⊥ ∩ Pic(X)

)
⊗ R. Since F ∈ V \ {0}, we

have F 2 < 0. □

Lemma A.9. For any aj ∈ Z≥0, we have

h0

∑
j

ajDj

 = 1,

which implies that D is the only effective divisor that belongs to the class −KX . In particular,
σ acts on the set {D1, . . . , DN} as a permutation.

Proof. By Lemma A.8, the matrix (Di ·Dj)i,j is negative definite. Hence, we have h
0
(∑

j ajDj

)
=

1 [24, Proposition A.9]. □

Lemma A.10. Let E ⊂ X be an exceptional curve of the first kind. Then, there exists i such
that mjDj · E = δi,j. In particular, D has a component of multiplicity 1.

Proof. By the genus formula, we have E · (−KX) = 1. Since

1 =
∑
i

miDi · E

and miDi · E ≥ 0, there exists i such that mjDj · E = δi,j . □

Lemma A.11. Let mj = 1 and Dj ·Dk > 0. Then, only one of the following holds:

(1) Dj ·Dk = 1, mk = 1.
(2) Dj ·Dk = 1, mk = 2.
(3) Dj ·Dk = 2, mk = 1.

Proof. Clear from

0 < mkDj ·Dk ≤ Dj ·
∑
i ̸=j

miDi = 2.

□

Lemma A.12. If D1 ·D2 = 2 and m1 = m2 = 1, then D = D1 +D2. In this case, there are
only two possible configurations of D = D1 +D2:

(1) D1 and D2 intersect at a point with multiplicity 2.
(2) D1 and D2 intersect transversely at two points.
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Proof. By Lemma A.11, we have

2 = D1 ·D2 ≤
∑
i ̸=1

miD1 ·Di = 2,

which implies that D2 ·Di = 0 for all i ̸= 1, 2. Replacing D2 with D1, we have D1 ·Di = 0 for
all i ̸= 1, 2. Therefore, D1 +D2 is a connected component of D. Since D is connected, D must
coincide with D1 +D2. □

Lemma A.13. If D1 ·D2 = 1 and m1 = m2 = 1, then only the following types of configurations
are possible:

(1) D = D1 +D2 +D3 and the configuration has only one intersection:
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(2) N ≥ 3 and D = D1 + · · ·+DN forms a cycle of P1 (after reordering the indices):
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Proof. By Lemma A.11, we have

2 = D2 ·
∑
i ̸=2

miDi = D2 ·

D1 +
∑
i ̸=1,2

miDi

 = 1 +D2 ·
∑
i ̸=1,2

miDi,

which implies that D has only one component Dℓ other than D1, D2 such that D2 ·mℓDℓ = 1.
In particular, mℓ = 1 and D2 ·Dℓ = 1. We may assume that ℓ = 3.

If D1, D2, D3 intersect at one point, then none of D1, D2, D3 intersects D −D1 −D2 −D3.
Since D is connected, D must be D1 +D2 +D3 in this case.
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Let us consider the other possibilities, i.e. when D1 ∩D2 ∩D3 = ∅. In this case, D2 does not
intersect any Dj other than D1, D3. Using Lemma A.11 for j = 3, there exists a component Dℓ

other than D2, D3 such that D3 ·Dℓ = 1 and mℓ = 1. If ℓ = 1, then D = D1 +D2 +D3. If not,
we may assume that ℓ = 4.

Using Lemma A.11 for j = 4, there exists a component Dℓ other than D3, D4 such that
D4 · Dℓ = 1 and mℓ = 1. Repeating this procedure, one can find a sequence D1, D2, . . . , DN

that forms a cycle. □

Lemma A.14. Suppose that D has a cycle Dj1 , . . . , Djℓ for ℓ ≥ 3, i.e.

Dji ·Djk


> 0 (i = k ± 1 mod ℓ)

< 0 (i = j)

= 0 (otherwise)

for i, k = 1, . . . , ℓ. Then, D = Dj1 + · · · + Djℓ and the configuration of D must be one of
case (2) in Lemma A.13. Moreover, if rankH1(Dred;Z) ≥ 1 and D is not irreducible, then the
configuration of D must be either (2) of Lemma A.12 or one of (2) in Lemma A.13.

Proof. If mji = 1 for some i, then, by Lemma A.13, the configuration of D must be one of (2)
in Lemma A.13. Let us assume that mj1 , . . . ,mjℓ ≥ 2 and deduce a contradiction.

Take a geometric basis H, E1, . . . , EK ∈ Pic(X) and the corresponding blow-down π : X → P2.
Using this basis, each [Dji ] is expressed as

[Dji ] = ci0H+ ci1 + E1 + · · ·+ ciKEK .
Since Dji is effective, ci0 must be nonnegative. Since

[m1Dj1 + · · ·+mℓDjℓ ] ≤ [D] = −KX = 3H− E1 − · · · − EN ,
m1, . . . ,mℓ ≥ 2 and

[m1Dj1 + · · ·+mℓDjℓ ] = (m1c10 + · · ·+mℓcℓ0)H+ (E-part) ,
at most one of c10, . . . , cℓ0 is 1 and the others are 0.

Let us consider the case where c10 = 1, c20 = · · · = cℓ0 = 0. Let H = π(Dj1), which is a line
in P2. In this case, π(Dj2), . . . , π(Djℓ) are points on H and any intersection among Dj1 , . . . , Djℓ
is transversal. Therefore, when considered as a graph, Dj1 , . . . , Djℓ ⊂ X form a tree with Dj1

at its root, which contradicts the choice of Dj1 , . . . , Djℓ since if a tree graph consists of copies
of P1 and every intersection has multiplicity 1, then it does not have a cycle.

If c10 = · · · = cℓ0 = 0, then π(Dj1), . . . , π(Djℓ) are the same point of P2. Therefore,
Dj1 , . . . , Djℓ form a tree and any intersection has multiplicity 1, which leads to a contradic-
tion in the same way as above. □

Lemma A.15. If D1 · D2 ≥ 2, then D1 · D2 = 2 and m1 = m2 = 1. In particular, the
configuration of D is one of those in Lemma A.12.

Proof. Take a geometric basisH, E1, . . . , EK ∈ Pic(X) and the corresponding blow-down π : X →
P2. Using this basis, [D1] and [D2] are expressed as

[Di] = ci0H+ ci1 + E1 + · · ·+ ciKEK
for i = 1, 2. We may assume that c10 ≥ c20. Since ci0 ≥ 0 and m1c10 +m2c20 ≤ 3, we have
(c10, c20) = (0, 0), (1, 0), (1, 1), (2, 1), (2, 0) or (3, 0).

We show that only the cases (c10, c20) = (3, 0) and (2, 1) are possible. If c10 = c20 = 0, then
D1 and D2 are both the strict transforms of some exceptional curves of π. Therefore, D1 ·D2 = 0
or 1, which is a contradiction. If c10 = c20 = 1, then π(D1) and π(D2) are both lines in P2.
Therefore, π(D1) · π(D2) = 1, which contradicts the fact that π(D1) · π(D2) ≥ D1 ·D2 = 2. If
c10 = 1, 2 and c20 = 0, then π(D1) is a smooth curve in P2 and D2 is the strict transform of
some exceptional curve of π. Therefore, D1 ·D2 = 0 or 1, which is a contradiction. Therefore,
we have (c10, c20) = (3, 0), (2, 1). In particular, m1 must be 1.
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Next, we show that D1 ·D2 = 2. If (c10, c20) = (2, 1), then D1 ·D2 ≤ π(D1) ·π(D2) = 2. Since
D1 ·D2 ≥ 2 by the assumption, we have D1 ·D2 = 2. Let us consider the case (c10, c20) = (3, 0).
Let C = π(D1) ⊂ P2 and let P = π(D2) ∈ P2. Since c10 = 3, the arithmetic genus of C is 1.
Then, C is either a smooth elliptic curve, a rational curve with a node or a rational curve with
a cusp. In particular, for any Q ∈ C, the multiplicity of C at Q is at most 2. On the other
hand, the multiplicity of C at P is at least D1 ·D2 ≥ 2. Therefore, C has multiplicity 2 at P
and D1 ·D2 = 2.

Since D1 · D2 = 2 and m1 = 1, it follows from Lemma A.11 that mk = 1. Hence, the
configuration of D1 and D2 must be one of those in Lemma A.12. □

Lemma A.16. If D1, D2, D3 intersect at one point, then m1 = m2 = m3 = 1 and D =
D1 +D2 +D3. In particular, the configuration of D is (1) in Lemma A.13.

Proof. By Lemma A.15, we have

D1 ·D2 = D1 ·D3 = D2 ·D3 = 1.

Take a geometric basis H, E1, . . . , EK ∈ Pic(X) and the corresponding blow-down π : X → P2.
Using this basis, [D1], [D2], [D3] are expressed as

[Di] = ci0H+ ci1 + E1 + · · ·+ ciKEK
for i = 1, 2, 3. We may assume that c10 ≥ c20 ≥ c30.

First, we show that m1 or m2 is 1. Since ci0 ≥ 0 and m1c10 +m2c20 +m3c30 ≤ 3, we have

(c10, c20, c3,0) = (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0), (2, 1, 0) or (3, 0, 0).

If c10 = 0, then D1, D2, D3 are all the strict transforms of some exceptional curves of π, which
contradicts the assumption that D1, D2, D3 intersect at a point. If (c10, c20, c30) = (1, 0, 0), then
H := π(D1) ⊂ P2 is a line and P := π(D2) = π(D3) ∈ H ⊂ P2 is a point. In this case, since H
has multiplicity 1 at P , it is impossible for D1, D2, D3 to intersect at one point, which is again
a contradiction. Therefore, we have c1 + c2 ≥ 2, which implies that either m1 or m2 is 1.

We may assume that m1 = 1. Using Lemma A.4, we have

2 =
∑
i ̸=1

miDi ·D1

= m2D2 ·D1 +m3D3 ·D1 +
∑

i ̸=1,2,3

miDi ·D1

= m2 +m3 +
∑

i ̸=1,2,3

miDi ·D1,

which implies that m2 = m3 = 1. Therefore, by Lemma A.13, we have D = D1 +D2 +D3. □

Theorem A.17.
rankH1(Dred;Z) ≤ 2.

Moreover:

(1) If rankH1(Dred;Z) = 2, then D is irreducible and is a smooth elliptic curve.
(2) If rankH1(Dred;Z) = 1 and D is irreducible, then D is a rational curve with one nodal

singularity.
(3) If rankH1(Dred;Z) = 1 and D is not irreducible, then each component of D is a smooth

rational curve. In this case, there are two possible configurations of D:
(a) D = D1 +D2 has two intersection points and their multiplicities are both 1.
(b) D = D1 + · · ·+DN forms a cycle as in (2) of Lemma A.13.

(4) If rankH1(Dred;Z) = 0 and D is irreducible, then D is a rational curve with one cusp.
(5) If rankH1(Dred;Z) = 0 and D is not irreducible, then each component of D is a smooth

rational curve. In this case, there are three possible configurations of D:
(a) D = D1 +D2 has only one intersection point and its multiplicity is 2.
(b) D = D1 +D2 +D3 has only one intersection point as in (1) of Lemma A.13.
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(c) All the intersections among D1, . . . , DN are transversal and, if considered as a
graph, D1, . . . , DN does not have a cycle.
In this case, if mj = 1, then there exists k such that mk = 2 and Dj · Di ={
1 (i = k)

0 (i ̸= j, k).

Proof. First, we consider the case where D is irreducible. In this case, by Lemma A.3, the
arithmetic genus of D is 1. Therefore, D is either a smooth elliptic curve, a rational curve with
one nodal singularity, or a rational curve with one cusp. Which case D belongs to is determined
by rankH1(Dred;Z) ∈ {0, 1, 2}.

From here on, we assume that D is not irreducible. In this case, by Lemma A.2, all the
components are smooth rational curves. Therefore, by Lemma A.14, the rank of H1(Dred;Z) is
0 or 1.

Let us consider the case where there exist k ̸= j such that Dj · Dk ≥ 2. In this case,
by Lemma A.15, the configuration of D is one in Lemma A.12. Which case D belongs to is
determined by rankH1(Dred;Z) ∈ {0, 1}.

If there exist j, k, ℓ such that Dj ∩Dk ∩Dℓ ̸= ∅, then, by Lemma A.16, the configuration of
D is (1) of Lemma A.13.

Let us consider the remaining cases, i.e. all the intersections among D1, . . . , DN are transver-
sal. If rankH1(Dred;Z) = 1, then D has a cycle Dj1 , . . . , Djℓ for ℓ ≥ 3. Therefore, by
Lemma A.14, the configuration of D is one of (2) in Lemma A.13. If rankH1(Dred;Z) = 0, then
D1, . . . , DN do not have a cycle as a graph. The last statement follows from Lemmas A.11 and
A.13. □

Appendix B. Sufficient deautonomisations for QRT-type mappings

In what follows we will specify, for three-point mappings from each of the classes I-VI in the
classification of QRT-type mappings as it appears in [16, Appendix], how to deautonomise a
mapping with the singularity confinement property in a way that is sufficiently general for the
dynamical degree to be detected by the confinement conditions. Note that the deautonomisa-
tions given here are general enough to be sufficient for all possible mappings from the relevant
class with the singularity confinement property, but can be specialised further in special cases
as we have seen in the examples above.

B.1. Class I. Consider the three-point equation

x̄+
¯
x = f(x), (B.1)

where f is rational. This falls into the remit of Theorem 2.23, since when recast as a mapping

(x, y) 7→ (x̄, ȳ),

x̄ = f(x)− y, ȳ = x,
(B.2)

it preserves the rational two-form

dx̄ ∧ dȳ = dx ∧ dy. (B.3)

We consider f to be of the form

f(x) =
1

xk
PM (x)

QN (x)
, (B.4)

where k ∈ Z≥0 and PM and QN are polynomials of degreeM and N respectively with no factors
of x. A sufficient deautonomisation is given by taking

f(x) =
a0 + a1x+ · · ·+ aMx

M

xk(x− β1)(x− β2) . . . (x− βN )
, (B.5)

where all a0, . . . , aM , β1, . . . , βN are allowed to evolve with n.
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B.2. Class II. Consider the three-point equation

x̄
¯
x = f(x), (B.6)

where f is rational. This falls into the remit of Theorem 2.23, since when recast as a mapping

(x, y) 7→ (x̄, ȳ),

x̄ =
f(x)

y
, ȳ = x,

(B.7)

it preserves the rational two-form

dx̄ ∧ dȳ
x̄ȳ

=
dx ∧ dy
xy

. (B.8)

Let f be of the form

f(x) = xk
PM (x)

QN (x)
, (B.9)

where k ∈ Z and PM and QN are polynomials of degree M and N respectively with no factors
of x. A sufficient deautonomisation is given by taking

f(x) = Axk
(x− α1)(x− α2) . . . (x− αM )

(x− β1)(x− β2) . . . (x− βN )
, (B.10)

where all α1, . . . , αM , β1, . . . , βN and A are allowed to evolve with n.

B.3. Class III. Consider the three-point equation

(x̄+ x)(x+
¯
x) = f(x), (B.11)

where f is rational. This falls into the remit of Theorem 2.23, since when recast as a mapping

(x, y) 7→ (x̄, ȳ),

x̄ = −x+
f(x)

x+ y
, ȳ = x,

(B.12)

it preserves the rational two-form

dx̄ ∧ dȳ
x̄+ ȳ

=
dx ∧ dy
x+ y

. (B.13)

Let f be of the form

f(x) =
PM (x)

QN (x)
, (B.14)

where PM and QN are polynomials of degree M and N respectively. A sufficient deautonomi-
sation is given by taking

f(x) = A
(x− α1)(x− α2) . . . (x− αM )

(x− β1)(x− β2) . . . (x− βN )
, (B.15)

where β1, . . . , βN are allowed to evolve with n, but α1, . . . , αM and A can be taken to be
constant.

B.4. Class IV. Consider the three-point equation

(x̄x− 1)(x
¯
x− 1) = f(x), (B.16)

where f is rational. This falls into the remit of Theorem 2.23, since when recast as a mapping

(x, y) 7→ (x̄, ȳ),

x̄ =
1

x
+

f(x)

xy − 1
, ȳ = x,

(B.17)

it preserves the rational two-form

dx̄ ∧ dȳ
x̄ȳ − 1

=
dx ∧ dy
xy − 1

. (B.18)
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Let f be of the form

f(x) =
PM (x)

QN (x)
, (B.19)

where PM and QN are polynomials of degree M and N respectively. A sufficient deautonomi-
sation is given by

(x̄x− z)(x
¯
x− w) = A

(x− α1)(x− α2) . . . (x− αM )

(x− β1)(x− β2) . . . (x− βN )
, (B.20)

where z, w, A and α1, . . . , αM are allowed to evolve with n, but β1, . . . , βN can be taken to be
constant.

B.5. Class V. Consider the three-point equation(
x̄+ x− 1

x̄+ x

)(
x+

¯
x− 1

x+
¯
x

)
= f(x), (B.21)

where f is rational. This falls into the remit of Theorem 2.23, since when recast as a mapping

(x, y) 7→ (x̄, ȳ),

x̄+ x− 1

x̄+ x
=

x+ y

x+ y − 1
f(x), ȳ = x,

(B.22)

it preserves the rational two-form

dx̄ ∧ dȳ
(x̄+ ȳ − 1)(x̄+ ȳ)

=
dx ∧ dy

(x+ y − 1)(x+ y)
. (B.23)

Let f be of the form

f(x) =
PM (x)

QN (x)
, (B.24)

where PM and QN are polynomials of degree M and N respectively. A sufficient deautonomi-
sation is given by(

x̄+ x− z
x̄+ x

)(
x+

¯
x− w

x+
¯
x

)
= A

(x− α1)(x− α2) . . . (x− αM )

(x− β1)(x− β2) . . . (x− βN )
, (B.25)

where z, w, A and α1, . . . , αM are allowed to evolve with n, but β1, . . . , βN can be taken to be
constant.

B.6. Class VI. Consider the three-point equation(
x̄x− z2

x̄x− 1

)(
x
¯
x− z2

x
¯
x− 1

)
= f(x), (B.26)

where f is rational and z is constant. This falls into the remit of Theorem 2.23, since when
recast as a mapping

(x, y) 7→ (x̄, ȳ),

x̄x− z2

x̄x− 1
=

xy − 1

xy − z2
f(x), ȳ = x,

(B.27)

it preserves the rational two-form

dx̄ ∧ dȳ
(x̄ȳ − z2)(x̄ȳ − 1)

=
dx ∧ dy

(xy − z2)(xy − 1)
. (B.28)

Let f be of the form

f(x) =
PM (x)

QN (x)
, (B.29)

where PM and QN are polynomials of degree M and N respectively. A sufficient deautonomi-
sation is given by (

x̄x− z
x̄x− 1

)(
x
¯
x− w
x
¯
x− 1

)
= A

(x− α1)(x− α2) . . . (x− αM )

(x− β1)(x− β2) . . . (x− βN )
, (B.30)
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where z, w, A and α1, . . . , αM are allowed to evolve with n, but β1, . . . , βN can be taken to be
constant.
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no. 7, 073001, 164 pp.
[23] E. Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math. (2) 114 (1981), no. 2, 267–322.
[24] T. Mase, Studies on spaces of initial conditions for non-autonomous mappings of the place, J. Integrable

Syst. 3 (2018), no. 1, xyy010.
[25] T. Mase, R. Willox, B. Grammaticos and A. Ramani, Deautonomization by singularity confinement: an

algebro-geometric justification, Proc. R. Soc. A. 471 (2015), 20140956.
[26] T. Mase, R. Willox, A. Ramani and B. Grammaticos, Singularity confinement as an integrability criterion,

J. Phys. A 52 (2019), no. 20, 205201, 29pp.

[27] C. T. McMullen, Dynamics on blow-ups of the projective plane, Publ. Math. Inst. Hautes Études Sci.105
(2007), 39–89.

[28] M. Nagata, On rational surfaces I. Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Univ. Kyoto
Ser. A Math. 32 (1960), 351–370.
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Math. (N.S.) 5 (1979), no. 1, 1–79.

[30] G. R. W. Quispel, J. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations, Phys.
Lett. A 126 (1988), no. 7, 419–421.

[31] G. R. W. Quispel, J. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations II, Phys.
D 34 (1989), no. 1–2, 183–192.

48



[32] A. Ramani, A. Carstea, B. Grammaticos and Y. Ohta, On the autonomous limit of discrete Painlevé equa-
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