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Abstract

We introduce a novel harmonic analysis for functions defined on the vertices of a strongly
connected directed graph of which the random walk operator is the cornerstone. As a first
step, we consider the set of eigenvectors of the random walk operator as a non-orthogonal
Fourier-type basis for functions over directed graphs. We found a frequency interpreta-
tion by linking the variation of the eigenvectors of the random walk operator obtained
from their Dirichlet energy to the real part of their associated eigenvalues. From this
Fourier basis, we can proceed further and build multi-scale analyses on directed graphs.
We propose both a redundant wavelet transform and a decimated wavelet transform by
extending the diffusion wavelets framework by Coifman and Maggioni for directed graphs.
The development of our harmonic analysis on directed graphs thus leads us to consider
both semi-supervised learning problems and signal modeling problems on graphs applied
to directed graphs highlighting the efficiency of our framework.

Keywords: harmonic analysis, graph signal processing, Fourier analysis, wavelets,
directed graphs, random walks, semi-supervised learning

1. Introduction

In a world where data available for scientific or social purposes accumulates at an
exponential pace, managing, exploiting and analyzing this torrent of data has become one
of the challenges of our era. Some of them take the form of graphs, structures that arise
in various fields such as neuroscience, the Internet, genomic data, road transportations or
social networks to name a few [3, 4]. Thus, there is a need to develop efficient mathematical
and computational approaches to process and analyze such graphs and data on graphs.

Among the existing methods, a large number involve the (graph) Laplacian [5-9]:

e As a fundamental subject in mathematics and physics, the Laplacian is known and
used, through its spectral study to extract relevant geometric properties from a
manifold [10] or a graph [11] and plays a role in machine learning applications such
as spectral clustering [9].
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e In continuous space, the eigenfunctions of the Laplace-Beltrami operator represent
the generalization of the Fourier basis on manifolds [10, 12].

e In discrete space, the eigenvectors of the graph Laplacian form an orthonormal
Fourier-type basis for functions on undirected graphs [13, 14], when undirected
graphs are considered as a discretization or sampling of a manifold |7, 8, 15, 16].
The eigenvalue associated with each eigenvector is then related to the notion of
frequency [13, 17].

Thanks to these properties, the graph Laplacian bridges the gap between spectral
graph theory and signal processing through the mathematical framework called “signal
processing on graphs" [13, 14]. This framework aims at extending the concepts of classical
signal processing such as filtering or sampling, for functions defined on the vertices of a
graph.

First developed in the context of undirected graphs, signal processing on graphs con-
siders the graph Laplacian (combinatorial or normalized) [11]| as its core element. The
graph Laplacian is a symmetric positive semidefinite operator. By the spectral theorem,
the graph Laplacian admits an orthonormal basis of eigenvectors which can be consid-
ered as Fourier modes, the corresponding eigenvalues being associated with a notion of
frequency.

The purpose of this paper is to provide some answers to the extension of the framework
of signal processing on graphs to the case of directed graphs. The extension of signal
processing on directed graphs is of interest because many networks studied in the scientific
(e.g. mneurosciences) or social (e.g. social networks) fields are directed. Therefore, the
analysis of information on directed graphs also requires the development of mathematical
approaches and therefore an extension of the framework of signal processing on graphs to
the case of directed graphs.

Formally, the direct use of the core element of graph signal processing, i.e. the graph
Laplacian, is no longer appropriate. A directed graph is naturally represented by a non-
symmetric adjacency matrix. It is always possible to naively define a graph Laplacian
in the directed case, but the spectral properties associated with this undirected graph
Laplacian (e.g. nonnegative real eigenvalues and the existence of orthonormal eigenbases)
are no longer verified in the case of directed graphs. There is no simple consensus on
a definition of a Laplacian for directed graphs for which the variation of eigenvectors is
linked to a notion of frequency. This is the main challenge of signal processing on directed
graphs and of this paper: which reference operator(s) should a Fourier analysis be built
upon that would also generalize Laplacian-based Fourier analysis on undirected graphs ?

Hereafter, the random walk operator on graphs [18-20] is proposed as being a suitable
reference operator for extending the framework of signal processing on directed graphs.
Like the graph Laplacian, the random walk operator is associated to the notion of diffusion.
However, unlike the graph Laplacian, its definition is as straightforward on directed graphs
and on undirected ones. Assuming that the random walk operator is diagonalizable, it
potentially admits complex conjugate eigenvectors as well as associated complex conjugate
eigenvalues. Our framework is based on the fact that the variational analysis of the
eigenvectors of the random walk operator through their associated Dirichlet energy [19]
is related to the real part of the eigenvalue [1]. Therefore, the Dirichlet energy of a given
eigenvector of the random walk operator on a directed graph can be considered as its
frequency, using the same analogy as in [13], now for directed graphs. Provided with this
notion of frequency, the eigenvectors of the random walk operator form a suitable Fourier



basis on directed graphs. It is furthermore consistent with the undirected setting when
the Fourier basis is based on the random-walk Laplacian operator (see section 6.2).

By now considering the random walk operator as a reference operator and its asso-
ciated eigenvectors as a Fourier basis for functions defined on directed graphs, the last
part of our harmonic analysis on directed graphs consists in building a multi-resolution
analysis for functions defined on the vertices of a directed graph. Complex graphs, both
directed and undirected, have structures at different scales. Motivated by the efficiency of
multi-resolution wavelet analysis in traditional signal processing [21] and the multi-scale
dimension of graph data, a number of multi-resolution graph constructions have emerged
in recent years [22-26|. Here, we propose a new harmonic analysis built around the ran-
dom walk operator and whose multi-resolution constructions generalize spectral graph
wavelets |23, 24| and diffusion wavelets [22, 27| on directed graphs.

1.1. Literature review and related work

Wavelets [21, 28-32] have been thoroughly investigated for over two decades. Their
efficiency and success in analyzing functions defined on the real line have led to their gen-
eralization for functions defined on higher dimensional spaces such as the sphere [33-35|
or other manifolds [22, 23, 26, 36-39]. The development of wavelets on manifolds and the
multi-scale features of graphs and data on graphs recently led to the extension of wavelets
constructions to the discrete space setting. These wavelet-type constructions include
wavelets on unweighted graphs [40], lifting wavelets [41], diffusion wavelets [22, 27, 36], dif-
fusion polynomial frames [23], spectral graph wavelets [24, 42-44|, Haar-like wavelets [45—
48], average interpolating wavelets [49|, graph wavelets via deep learning [25], multi-scale
pyramid transform [50], tight wavelet frames on graphs [26, 51, 52| and intertwining
wavelets on graphs via random forests [53]. The wavelet constructions mentioned above
were all developed on undirected graphs. In the present work, we intend to construct a
harmonic analysis on directed graphs. The first stage of the proposed harmonic analysis
is the development of a Fourier analysis.

In recent years, Sandryhaila and Moura generalized some fundamental concepts of
traditional signal processing such as filtering to directed graphs using the adjacency matrix
as the central component of their framework [54]. They also proposed the generalized
eigenvectors of the adjacency matrix obtained by Jordan decomposition as a Fourier-
type basis on directed graphs [55]. To the best of our knowledge, no wavelet design has
been proposed in this framework, with the exception of the development of the filterbank
approach generalized in [56] which can be applied to bipartite directed graphs and uses
the adjacency matrix for a polyphase representation of the filters.

More recently, new Fourier-type bases have been proposed which are based on a novel
measure of graph directed variation (GDV) for functions defined on directed graphs, which
is defined as the Lovasz extension of the graph cut size [57, 58]. In both propositions,
Fourier modes are defined as a set of orthonormal functions that approximately solve a
non-convex optimization problem involving the GDVs of the Fourier modes. The two
approaches differ insofar as the minimized objective in [57] is simply the sum of the GDVs
of the Fourier modes whereas in [58] the objective is designed to spread the individual
GDVs. It is worth stressing that because of the non-convexity of the objective, the Fourier
modes are not properly defined by the optimization problems alone and actually depend
on the specific algorithms used to approximately solve the problems. In both cases, the
Fourier modes could also be defined on undirected graphs but they would not coincide
with standard approaches based on Laplacian operators. The reasons are that the Fourier



modes are not eigenvectors of any given operator and that the GDV on undirected graphs
differs from the common quadratic variation measures used on undirected graphs. Unlike
these approaches, the Fourier basis that we propose is generally not orthogonal but it
does generalize the Laplacian-based Fourier basis for undirected graphs. Furthermore we
associate a notion of frequency to the Fourier modes, eigenvectors of the random walk
operator, via their Dirichlet energy which is conveniently related to the corresponding
eigenvalues. Most of the Fourier-like bases approaches on directed graphs have been also
discussed in [59].

Mhaskar has recently proposed the first wavelet-type frame construction for functions
defined on directed graphs [60] as an extension of the diffusion polynomial frames [23].
Although our redundant wavelet construction on directed graphs is inspired in part by
that of polynomial diffusion frames, it differs mainly in the choice of the Fourier basis and
the considered operator. Mhaskar proposes in [60] the set of left-singular vectors of the
weighted adjacency matrix of a directed graph as a Fourier basis while we propose the set
of eigenvectors of the random walk operator.

Finally, Furutani et al. [61] proposed an extension of graph signal processing to directed
graphs using an operator called the Hermitian Laplacian or Magnetic Laplacian (62, 63|
as their reference operator. The main properties of this latter operator are to be hermi-
tian and preserve the directionality of the directed graph. The magnetic Laplacian has
been highlighted trough machine learning applications such that community detection on
directed graphs [64] and graph neural networks on directed graphs [65]. Another oper-
ators based on directed graphs such that the Hermitian adjacency matrix [66] has been
investigated through clustering on directed graphs [67, 68|, however no Fourier analyses
of these operators have been carried out.

1.2. Contributions
The contributions of this article are the following:

1. Construction of Fourier bases on directed graphs. We propose the random
walk operator associated with a random walk on a directed graph as a reference op-
erator. We propose the eigenvectors of the random walk operator as a Fourier basis
on directed graphs and determine a variational characterization of the eigenvectors
of the random walk operator — see Proposition 6.1.

2. Construction of multi-resolution analyses on directed graphs. We propose
an overcomplete spectral wavelet transform on directed graphs in Section 8.1. This
construction extends the framework of spectral wavelets on undirected graphs [24]
and diffusion polynomial frames [23]. We also propose a critically sampled wavelet
transform in Section 8.2 generalizing the framework of diffusion wavelets |22, 27| to
the directed case.

3. Efficiency of the theoretical framework through applications. The devel-
opment of our harmonic analysis on directed graphs leads us to consider semi-
supervised learning problems with /5 regularization in Section 7.1 and ¢; regulariza-
tion in section 8.3.3 and signal modeling by filtering on directed graphs in Section 7.2
highlighting the effectiveness of our theoretical framework.

1.8. Outline of the paper

This paper is structured as follows. We introduce the essential aspects of graph theory
and review the foundations of graph signal processing in Section 2. We present operators
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defined on directed graphs built from the random walk operator and their properties
in Section 4 and propose a new class of operators on directed graphs expressed as the
convex combination between the random walk operator and its time-reversed version.
Section 5 is dedicated to the presentation of a Fourier transform on directed graphs as a
set of eigenvectors of the random walk operator. In Section 6 we propose a Fourier-type
analysis for functions defined on directed graphs by studying the variation of the random
walk’s eigenvectors. To illustrate our Fourier-type analysis, we study the machine learning
problems in Section 7 such as semi-supervised learning and signal modeling on directed
graphs and show through numerical experiments the efficiency of our framework with
respect to the existing approaches. Section 8 is dedicated to multiresolution analyses
on directed graphs. We present a redundant wavelets construction, as well as a critically
sampled wavelets construction with the random walk operator as a reference operator
and we illustrate these multiresolution analyses through some examples. We conclude
in Section 9.

2. Fundamentals of signal processing on graphs

Signal processing on graphs [13, 14, 54| is a mathematical framework in which the
core concepts of harmonic analysis are generalized to functions defined on the vertices of
a graph. In this section, we introduce the essential aspects of the signal processing on
graphs framework and give some additional remarks.

2.1. Graph theory setup

Let G = (V,&,w) be a weighted directed graph where V = {vy,..., vy} is a finite set
of vertices, £ € V x V is a set of directed edges. Each edge e;; = (v;,v;) is directed and
represents a link from vertex v; to vertex v;. The weight function w : V x ¥V — R, satisfies
the following conditions :

o w(v;,vj) >0if ;€.
o 'U}(UZ',’UJ') =0 if €ij ¢ E.

We denote by |[V| = N, the cardinality of the vertex set V, that is the total number of
vertices in V. A weighted directed graph G can be entirely represented by its weighted
adjacency matrix W = {w;;}1<ij<n € RJJ\ZXN where w;; = w(v;, v;) are the weights associ-
ated to the respective edges e;;. We define respectively the out-degree and the in-degree
of a vertex v; € V by dj = Zjvzl w;; and d; = Zjvzl wj;. For the sake of simplicity, we
refer to the out-degree d of a vertex v; € V as its degree that we denote by d;.

A limitation of our framework is that it only applies to the case of weighted graphs
with nonnegative weights, that is W = {w;;}1<ij<n € RY Y. Other approaches exist for
the case of directed graphs with positive and negative weights but they are not compatible
with the one presented here [54, 55, 69].

We assume through the theoretical sections of this paper that the directed graph
G is strongly connected and the random walk operators are diagonalizable. These
are two necessary conditions for our theoretical framework. If the directed graph is not
strongly connected, our framework may still apply if we modify the graph to make it
strongly connected. This can be achieved using e.g. the Google method [70], which will
be used in Section 7.2. Since diagonalizable matrices form a dense set, the case of a
non-diagonalizable random walk operator is a priori very rare in practice and typically
never occurs in numerical eigendecompositions.



2.2. Graph signals

Let f:V — C be a function defined on the vertex set V of a given directed graph G.
We define a graph signal f as a column vector representation of the function f applied
at each node v; € V, i.e.

f=1f(vr),.... fln)]" € CY.

We now define the space of functions defined over the vertices of a directed graph.

Definition 2.1 ([71]). Let G = (V, &) be a directed graph and p : V — [0, 00) be a function
on V considered as a measure on 'V by setting p(U) = > .y p(z), U < V. For q e [1,0),
we denote (1(p, V), the space of functions f:V — C such that

(2 If(x)lqu(x)>1/q <. gelLoo).

max |f(z)|p(r) <o, ¢=c0.

[ Flleaury =

We assume throughout this paper that the graph signals are defined in ¢*(V, i) which
is the Hilbert space of functions defined over the vertex set V of G endowed with the inner

product L
Fo@u =), F@)g(z)u(),

zeV

for all f,g € (*(V, 1) and where f(z) denotes the complex conjugate of f(z).

3. Linear filters on graphs

A linear operator on graph is represented by a matrix H € C¥*¥ that acts on a graph
signal input s € CV and produces a graph signal output § € CV according to the matrix
vector product

s = Hs.

Within the framework of graph signal processing and inspired by conventional signal
processing, we are mainly interested in a type of graph filters that commutes with a
reference operator R

HR = RH. (1)

More specifically, we define a graph filter H as a finite polynomial sum of a reference
operator R, that is

T
H=)nR', heC Vt=0,. T (2)
=0
Such a graph filter H commutes with R but the converse is generally not true. The
following theorem establishes a particular condition on R under which all commutating
filters (1) are polynomial filters (2).

Theorem 3.1. [5/] Let R be a reference operator on a directed graph G. We assume that
R is diagonalizable. We also assume that the characteristic and minimum polynomials
of R are equal, i.e. pr(x) = mgr(z). Then a graph filter H that commutes with R is
expressed as a finite polynomial sum of R

T
H=)YmnR', heC Vt=0,...T

t=0



Theorem 3.1 indicates that if the following three conditions are met:
1. H commutes with a reference operator R.

2. R is diagonalizable.

3. Each of the eigenspaces of R is of dimension one.

then the filter H can be expressed as a finite polynomial sum of R. Following the termi-
nology in [54| we refer to a polynomial filter (2) as a linear “shift” invariant (LSI) graph
filter, or just graph filter for short.

Remark 3.1. This notion of invariance with respect to a reference operator on graphs may
seem rather restrictive insofar as many diagonalizable reference operators on graphs may
have eigenspaces of dimension larger than 1. However, it could also be arqued that the set
of all commutating filters may include unexpected elements and that the set of polynomial
filters may be a more relevant generalization of the LSI filters in classical signal processing.
As an example, let us consider the undirected cycle graph. Its (combinatorial) Laplacian
15 the circulant matrix with three main diagonals

2 -1 0 -+ 0 -1
-1 . s s 00
0

0 )
O |
-1 0 --- 0 -1 2

for which the discrete Fourier basis is an eigenbasis. However, most eigenspaces of the
Laplacian matriz have dimension equal to 2 and are spanned by pairs of complex conju-
gate exponentials v;[k] = e*/N and v_;[k] = e=*/N . The operator that turns a complex
exponential into its conjugate, swapping v; with v_; (i.e. swapping positive and negative
frequencies), is usually not considered a LSI filter in classical signal processing. It com-
mutes with the Laplacian but cannot be expressed as a polynomial of the Laplacian. In
contrast, filters defined as polynomials of the Laplacian correspond to symmetric filters in
classical signal processing, which seems more appropriate as a generic filter class on the
undirected cycle graph.

A graph filter can also be characterized by its eigenvalues on each eigenspace of R. Let
{€;}72, denote the eigenspaces of R and {E;}7, the corresponding spectral projectors,
characterized by E? = E; and E;&; = §;;¢;. A graph filter with respect to a diagonalizable
operator R is a linear combination of the spectral projectors

H= ) vE;, veC, EjeC™ vji=1..m, (3)
j=1
where «; is the eigenvalue of H associated to the eigenspace €;.

4. Canonical operators on directed graphs

In this section, we introduce the fundamental linear operators and their properties in
order to develop a harmonic analysis on directed graphs.
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4.1. Random walk operators on graphs

We define a random walk on a directed graph as follows.

Definition 4.1 ([18, 20]). A random walk on a strongly connected directed graph G =
(V,E,w) is a homogeneous Markov chain X = (X,)n=0 not necessarily reversible with
a finite state space V and whose transition probabilities are proportional to the edges’
weights. The entries of the transition matriz P, written as p(x,y),Vx,y €V are defined

as
w(z,y)

2y w(z,y)

A transition matrix must have non-negative entries and rows that sum up to one. This
is guaranteed by the fact that the w(x,y) are non-negative and that the denominators are
always non-zero thanks to the graph being strongly connected.

p(z,y) =P(Xpp1 = y| X, =) =

From a graph theory point of view, the transition matrix P € RV*¥ is equal to
P=D"'W,
where D = diag{dy, ...,d,} is the diagonal matrix of the out-degrees of the vertices and

W is the weighted adjacency matrix. For any graph signal f, measure p: V — [0, 0)
and states x,y € V, we adopt the following conventions [72]:

Pf(z) = > ple,y)f(y),

yey

uP(y) = . p(x)p(z, y).

zeV

where f and p are the vector representations of f and p respectively. Let us consider
the transition matrix P € RY*Y and a Kronecker delta function §; at vertex k € V, as
a graph signal. If P acts on &y, that is Pdy, the mass at vertex v, in 8, propagates
towards vertices where p(v;, vx) # 0, that is vertices with edges pointing to vj. In other
words, the mass propagates towards parent vertices and not children, which may seem
counter-intuitive. When applied to an arbitrary signal x, the random walk operator P
thus behaves as a local averaging of the children’s vertices. Given the importance of local
averaging in signal processing, this suggests that the random walk operator P may be
natural as a core element of graph signal processing.
We define the irreducibility of a random walk on a graph as follows.

Definition 4.2. A random walk X is said to be irreducible if for any x,y € V, the
probability from x to reach y is strictly positive, in other words:

Ve,ye V,3m < 0 : P(X,1m = y| X, =) > 0.

Irreducibility is equivalent to the strong connectivity of G, that is there is a (directed)
path from any vertex v; € V to any vertex v; € V.

Remark 4.1. In the case of connected undirected graphs, the graph is always strongly
connected and the associated random walk is always irreducible.

We now recall the notions of recurrent and transient state.



Theorem 4.1. Let x € V be a vertex. We denote by v, the probability that the random
walk X which starts at vertex x returns to x at least once, that is

v, =P[AneN: X, =z].
Then the vertex x is respectively recurrent or transient if and only if v, =1 orv, <1 .

Proposition 4.1 ([72]). An irreducible random walk X with a finite state space is always
recurrent: all states are recurrent.

Remark 4.2. An irreducible random walk X with finite state space is positive recurrent.
Consequently, the random walk X admits an unique stationary distribution [72].

We define the periodicity of a random walk on a graph as follows.

Definition 4.3. Let X be a random walk on G. The period of a vertex x € V is:
o(z) = ged{n e N* : p(z,2) > 0}.

Thus starting in x, the Markov chain can return to x only at multiples of the period p.
The state z is aperiodic if p(x) = 1 and periodic is o(z) > 1. Having defined the notions
of irreducibility and periodicity, we are able to define the notion of ergodicity of a random
walk.

Definition 4.4. Let X be a random walk on G. The random walk X is ergodic if it is
wrreducible and aperiodic.

We set, out the proposition for the stationary distribution of an ergodic random walk

onG.

Proposition 4.2 ([73|). Let G be a directed graph with finite state space V. If a random
walk X with its transition matrix P is ergodic, i.e. irreducible and aperiodic, the measures
P"(z,.) converge towards the row vector m = [mw(v1), -+ ,w(vn)] € RY asn — oo, i.e. the
unique stationary distribution. In particular, 7P = m, with :

N
w(v;) =1, =(v;)=0.
i=1
4.1.1. Reversibility
Given the discrete-time Markov chain X = (X,,),>0 and M > 0 a finite time horizon,
we define the time reversed Markov chain as X* = (X*) = (Xy—p,) forn =0,--- , M. We

denote by P* = {p*(x,y)}s ey the transition matrix associated with the Markov chain
X*. It verifies

P(Xy—n-1 =)
P(XM_n = {L‘)

p*(z,y) =P(X;,, =ylX, =2) = ply,z), Va,yeV.

If we assume that X is ergodic with stationary distribution 7, the time reversed Markov
chain X* is also ergodic with stationary distribution 7 and the entries p*(x,y) € P* are

Pz, y) = %pw,w, Va,y eV



or in its transition matrix version
P* =II"'P'II,

where IT = diag{m(v1),--- ,m(vxn)} is the diagonal matrix of the stationary distribution.
Let us introduce the function space £*(V, w) endowed with its inner product

(F.9)x = ), fl@)g(a)n(z)

zeV

In this space, P* is the adjoint of P, that is (f, Pg), = (P*f,g)x, for all f, g€ (*(V, ).
The ergodic random walk X with its transition matrix P is reversible if and only if

we have the following relation
P = P*.

Remark 4.3. Ergodic random walks on finite undirected graphs are reversible. That
means that the transition matriz associated to the time reversed random walk X*, P* is

equal to the transition matriz P associated to the original ergodic random walk X namely
P* =P.

Remark 4.4. In the undirected setting, the stationary distribution m admits a closed
form expression. Indeed, on a given weighted undirected graph G = (V,E,w) represented
by its symmetric adjacency matric W = {wyy s ey € RY*N and the degree of a vertex
reVisclr) = Zer Wey. As a result, the associated random walk is reversible with
stationary distribution w defined by w(x) = c(x)/cg where cg = Y.\, c(x). However, in
the directed setting, the stationary distribution © does not admit an analytical form. In
order to calculate it, we use iterative methods such as the power iteration method [7}] or

Markov Chain Monte Carlo(MCMC) methods [75].

Remark 4.5. Ergodic random walks defined on directed graphs are typically non-reversible.
Nevertheless, reversible ergodic random walks may be constructed on directed graphs by
modifying the original non-reversible ergodic random walk. Such a modification s dis-
cussed in section 4.2.2.

4.1.2. Eigenvalue distribution

By the Perron-Frobenius theorem [72], if the random walk X is ergodic with a di-
agonalizable transition matrix P, the diagonalization of P admits a simple dominant
eigenvalue Ap.x = 1. The other eigenvalues {\ # 1} satisfy |A\| < 1, which means that all
eigenvalues different of A\, lie within the unit circle.

4.2. Random walk generalizations

Given a random walk X on a directed graph G with transition matrix P, we are able
to build new types of random walks based on P with various purposes.

4.2.1. Lazy random walks
The periodicity of a random walk A can be overcome by considering the lazy random
walk version of X. The transition matrix P associated to the lazy random walk X', based

upon P is expressed as
- I+P
P=——.
2
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The lazy random walk can be seen as the random walk on a modified graph G where an
edge from each vertex of G to itself is added with a weight equal to the vertex’s degree in
G. The lazy random walk X is always aperiodic, hence when G is strongly connected, X
is also ergodic with a stationary measure 7 verifying @ = 7P = wP.

More generally, let us define P, the class of transition matrices associated with gener-
alized lazy random walks by

P = {E P, =(1-7)P +7I'7e [0,1)}.

We note that the elements INDAY € P share the same eigenspaces as P, hence the graph
filters with respect to P are also graph filters with respect to P.

4.2.2. Additive reversibilization
From a non-reversible ergodic random walk X with transition matrix P and unique
stationary measure m, an additive reversibilization of X can be constructed [76], denoted
by X', whose transition matrix is the average between P and its time reversed P*:
_ P+P*
P = ) (4)
2
X is a reversible random walk with the same unique stationary distribution .

More generally, let us define P the class of convex combinations between the random
walk matrix P and its time reversed version P* as

P—{Pa:Pa—(l—a)P—FaP*

ae o, 1]}. (5)

We note that the elements P, € P share the same stationary distribution 7 but do not
have the same eigenspaces. We also note that all the random walks associated to transition
matrices P, € P are non-reversible except for o = 1/2, namely P, /2= P.

Remark 4.6. Given an ergodic random walk (X,P,m), we note that all lazy and re-
versibilized versions, respectively P e P and P, € P share the same unique stationary
distribution .

Remark 4.7. As a generalization of random walks, we may also consider the multiplica-
tive reversibilization of the ergodic non-reversible random walk P, that is PP* which is
also a reversible Markov chain with stationary distribution 7. It is useful e.g. for defining
the convergence bounds of non-reversible Markov chains [76].

4.8. Laplacians on directed graphs

In this section, we introduce several definitions of Laplacians on directed graphs, which
are extended from the undirected cases case [59, 77, 78|.

4.8.1. Normalized directed graph Laplacian
The normalized Laplacian on a directed graph G is expressed in terms of the transition
matrix P of an ergodic random walk X on G and is defined as follows.
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Definition 4.5 ([79, 80]). Let G = (V,€) be a directed graph with |V| = N. Let X be an
ergodic random walk on G with transition matrix P and unique stationary distribution .
The normalized Laplacian on G is defined by

Hl/QPl—‘[fl/Z + H71/2PTH1/2
L-T1- s | (6)

where 1 is the identity matriz and IT = diag{m(v,),...,m(vn)} is the diagonal matriz of
the stationary distribution.

4.8.2. Random walk Laplacian
Another definition is the random walk Laplacian Lry, defined as

Lpw =1—P. (7)

The normalized Laplacian on directed graphs £ is connected to the random walk
Laplacian through the following relation

L = I LpwIT™ V2

More generally, we define the random walk Laplacian on directed graphs associated to a
transition matrix P, € P by - ~

P,+ P

—

In the following proposition, we show that the random walk Laplacian Lgw . is equal to

Liwe =1—

LRVV .

Proposition 4.3. For any P, € P, we have

LRW,oz = LRW7 Va € [0, 1] (8)
Proof.
P, + P
Lrw,o =1- —
_1 aP+ (1 -a)P*+aP*+ (1 - )P
o 2
_1_ a(P +P*) + (1 — a)(P + P¥)
a 2
P *
1 +P
2
= Lgrw. O

4.8.8. Combinatorial Laplacian
Finally, we also introduce the combinatorial Laplacian L, defined as

IIP + P'II

L=II— 5 (9)

The latter is related to the random walk Laplacian through

L = II Lpw.
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Remark 4.8. As mentioned in remark 4.3, the transition matriz of a random walk on
an undirected graph is equal to the transition matriz of its time reversed Markov chain.
Furthermore, the stationary distribution © admits a closed form as we mention in re-
mark 4.4. As a result, the definitions eqs. (6) and (7), generalize the usual definitions
for undirected graphs [11]. The combinatorial Laplacian on directed graphs (9) (thereafter
denoted Lgirectea) generalizes the one on undirected graphs up to a multiplicative factor:

Lund’irected =D-W = (Zz di)Ldirected-

4.4. Canonical operators on directed graphs and Hilbert spaces

Let G = (V, &) be a directed graph, £2(V) and ¢2(V, w) be the Hilbert spaces associated
respectively with the counting measure and with the stationary measure 7 of the ergodic
random walk X on G. Let ¢ : (2(V) — (2(V, ) be the linear mapping defined as follows

o f—TIY2f  Yfel(V). (10)

Definition 4.6 ([81]). Let H, K bet two Hilbert spaces. A linear transformation V : H — K
1s an isometry if and only if

V(@ —y)ln = |z - ylk, Ve,yeH.

Proposition 4.4. The linear transformation @ : (*(V) — (2(V, 1) is an isometry.

Proof. Given g, h € (*(V), and the linear transformation ¢, we have

(p(g), p(h))x = A1"V2g, I h) = (g, h). O
Let us introduce the operator T € £2(V) defined as
T = IIV2PIT Y2, (11)

Definition 4.7 ([81]). Let H,K bet two Hilbert spaces. An invertible bounded linear
transformation V : H — K intertwines an operator M : H — H to an operator S : K — K
if

VM = SV.

The operators M and S are called similar.

Proposition 4.5. The linear operator ¢ intertwines the operator T on (*(V) to the op-
erator P on (*(V, 7).

Proof.
o(T) = T 2T = I *I'2PI? = PIT V2. 0

Hence the operators T and P are similar with respect to ¢. Identically, the random
walk Laplacian Lrw and the normalized Laplacian £ are also similar with respect to .
This suggests that P and Lrw are best viewed as operators on £2(V, ) while T and £
are essentially the same operators on ¢()).
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5. Directed graph Fourier transform

Let P be the transition matrix of the ergodic random walk X. We assume P diago-
nalizable, that is P admits an eigenvalue decomposition

P-=20Z=""!
where 2 = [§,---,€y] is an eigenbasis with elements §;,7 = 1,...,N and ©® =
diag{¥y, -+ ,In} is the corresponding diagonal eigenvalue matrix, non necessarily distinct.
Given a graph signal s, its directed graph Fourier transform denoted by § = [51,...,5n]
is
5§=E"'s.

The values {§j}§V:1 characterize the content of the graph signal s in the graph Fourier
domain.

The graph Fourier transform is not uniquely defined as it depends on the choice of
eigenbasis E. First all eigenvectors &; are defined up to a multiplicative scalar. This
can be easily resolved by normalizing the vectors and e.g. making the first non-zero
coefficient of each eigenvector real and positive. Second, whenever there are eigenspaces
with dimension greater than 1, there are infinite choices for the orientations of the basis
vectors within such eigenspaces. There is generally no solution to this second issue. This
implies that the values of individual Fourier coefficients 5; within such eigenspaces are
rather meaningless. However, it only impacts cases with eigenspaces of dimension greater
than 1, which are not that common in applications.

The inverse directed graph Fourier transform corresponding to an eigenbasis = is given

by

(11

s =Es.
It reconstructs the original signal from its frequency contents by forming a linear combi-
nation of eigenvectors weighted by the Fourier coefficients.

More generally, any P, € P admits an eigenvalue decomposition

P, =E.,0,E."

Consequently, one can build an infinity of Fourier-type bases {Ea}ae[o,l] for functions
defined on directed graphs. Among these, the case a = 1/2 is particularly interesting
insofar as Py, = P is self-adjoint in ¢2(V, 7). This implies that there is an orthonormal
eigenbasis 2y, of (*(V, ) which yields the following theorem.

Theorem 5.1 (Generalized Parseval’s Theorem). Given an eigenbasis Zq/2 of P that is

orthonormal in (*(V, ), the corresponding Fourier transform is an isometric operator
from C*(V,7) to (2({1,...,N})

(B, Bpy) = (&, Y Yo,y e (V). (12)
Proof. BjpI1Zy), =1 = (B ha, B py) = ¢ B 1B sy = ¢ Ty = (®,y)- O

Another interesting property of P is that its eigenspaces are the same as those of the
random walk Laplacian Lrw (7).
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Remark 5.1. In the undirected setting, a suitable Fourier-type basis is usually defined as
an orthonormal eigenbasis of the combinatorial Laplacian L or its normalized counterpart
L [11]. These Fourier-type bases are both orthonormal for (*(V). Another less common
choice is a Fourier-type basis based upon the random walk Laplacian Lrw = I —P. As in
the directed case with P, it leads to a Fourier basis that is orthonormal in (*(V, ), where
7 is proportional to the degrees of the vertices (see remark 4.4). Some properties of the
different definitions are investigated in [78].

6. Fourier analysis on directed graphs

In this section, we propose a new analysis on directed graphs that is different from
the existing approaches on directed graphs [55, 57, 58, 60]. It is based on the study of
variations in the eigenvectors of the random walk operator. Before discussing it in greater
detail, we introduce the elements that allow us to study the variation of signals on directed
graphs.

6.1. Regularity of signals on graphs

The behavior of a graph signal over a directed graph (or undirected) can be analyzed
by measuring its regularity or smoothness. We first define the length of the graph gradient
at a given vertex as follows.

Definition 6.1 ([19]). Let G = (V, &) be a directed graph and v : £ — [0,0) be a positive
measure defined on the edge set £. The length of the graph gradient of a graph signal f
at vertexr x € V on an arbitrary graph G under the measure v is

1/2
vi@l- (3 X 1@ - fwPren)

yeV,(z,y)ef

Intuitively, the length of the graph gradient measures the smoothness of a graph
signal around a given vertex. We now introduce the Dirichlet energy as a measure of the
smoothness of a signal over a strongly connected graph.

Definition 6.2 ([73|). The Dirichlet energy of a graph signal f associated to the ergodic
random walk X with transition matric P and stationary distribution ™ on a strongly
connected graph G s

D2e(f) =5 3 w(@ple)lf) ~ F), (13)

(z,y)e€

= <f7 LRWf>7r-

As we can appreciate, D2 p(f) = [V £|13, where v(z,y) = T(2)p(z,y) where p(z, )
is the (z,y) entry of the transition matrix P and 7(z) is the stationary distribution at
vertex x. For all P, € P, the associated Dirichlet energy is the same:

D25 (f) = Dip(f) = (f Lawf)x.

We also introduce the Rayleigh quotient of a graph signal f associated to the Dirichlet
energy D2 p(f) as
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D2 p
Replf) = 220

For any P, € P, we have
RTr,P(f) = Rﬂ,lsa(f)'

6.2. Frequency analysis on directed graphs

The following proposition settles a key connection between the regularity of the eigen-
vectors of the transition matrix P of the ergodic random walk X and their associated
eigenvalues.

Proposition 6.1. Let € € CV be an eigenvector of a transition matriz P of an ergodic
random walk X, with stationary distribution w, associated to the eigenvalue ¥ € C. The
Rayleigh quotient of € is given by

Rrp(§) =1—Re(V),

where Re(V) denotes the real part of ¥ € C.

Proof.
1 1 1.
Rop() = g (€61~ 56 PO - 6 P9,
1 9+
- o (162 - 25z
Rep(€) = [1 - e(0)]. 0

The latter proposition thus indicates that the smoothness of any eigenvector & of P, as
described by its Rayleigh quotient, is associated to the real part of its respective eigenvalue
. More generally, the smoothness of any eigenvector &, of P,, € P is characterized exactly
in the same manner as in Proposition 6.1, i.e.

R.p(&,) =1—Re(V,).

Therefore, we are now able to associate to each eigenvector £ of P and generally to
each eigenvector &, of a given P, € P, a value w characterizing its variation that we call
frequency expressed intuitively as

w=1-Re(V), wel0,2] (14)

Remark 6.1. In the undirected setting, the random walk is reversible such that the Dirich-
let energy associated to the random walk operator P is

Dﬂ,P(f) = <f7 LRW.f>7r7

where Lry = I —P. The random walk operator P is self-adjoint in (*(V, 7). As a result,
given an eigenvector € of P associated to an eigenvalue 9, the associated Rayleigh quotient
18

R.p(&) =1-19.
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Therefore, the variation of the eigenvectors of P is directly related to their respective
eigenvalues. A similar result holds when the Fourier basis is based on the combinatorial
Laplacian L = D — W thanks to the following identity

Dﬂ,P(f) = <f> Lwa>7r = <f, Lf>-

As L is a symmetric semi-definite operator, its eigenvalues are non-negative and real.
Hence the Rayleigh quotient of an eigenvector ¢ of L associated to an eigenvalue X\ is
R.p(@) =\, which is the definition of frequency considered in [13].

6.2.1. On the content of subspaces associated to the random walk

The eigenvalues of an ergodic transition matrix P associated to a random walk on a
strongly connected directed graph G are either real or come as complex-conjugate pairs
(9,9) € C?,9 = a + if. In the following, we examine how these individual eigenspaces
can be understood with respect to each other.

Let us first consider pairs of eigenspaces related to complex-conjugate eigenvalues
a + 16. Assuming that the eigenspaces have dimension equal to 1, the eigenvectors can
be chosen as complex-conjugate &, € € CV. These eigenvectors share the same frequency
1 — a and can be seen as a generalization of the Fourier modes at frequencies w and
—w in one-dimensional classical Fourier analysis. One can also define the corresponding
real-valued Fourier modes

eyl
o

£+ £ -

cos s
5 - ’ E - 22 )
which generalize the cosine and sine functions to graph signals. As with the discrete
Fourier transform, there are also frequencies for which the w and —w frequency subspaces
are the same (the zero frequency and possibly the 1/2 frequency in discrete signal process-
ing). The case of real eigenvalues in graph signal processing can be seen as a generalization
of these.

When the eigenspaces have dimension greater than 1, the situation is similar to the
multidimensional classical Fourier analysis setting where the classical frequency is a vec-
tor w = [wy,...,w,|". In graph signal processing, the w frequency would then be a
generalization of the norm of the classical frequency vector |w].

Continuing the analogy with classical Fourier analysis, in more than one dimensions
Fourier modes with a given frequency w are all oscillations at the same frequency but with
different orientations. We argue that the case in graph signal processing of eigenvalues
with the same real part but different non-conjugate imaginary parts may be a generaliza-
tion of different orientations. This is illustrated in section 6.4.2 on the directed toroidal
graph.

[\3 ‘

6.3. Random walk graph filters
We define a random walk graph filter as a LSI filter with respect to the reference
operator P:

T
H= Z h,Pt.
t=0

Assuming that P is diagonalizable, we can represent a graph filter H as a linear combi-
nation of the spectral projectors {Ey, }}-, associated with P, as defined in (3):

HzkaEﬁk, weC, k=1,...,m.
k=1
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The filter is characterized in the Fourier domain by its spectral response coefficients,
or Fourier coefficients, v¢, K = 1,...,m. As in classical signal processing, the application
of a filter to a signal in the Fourier domain is obtained by multiplying the filter’s Fourier
coefficients with the signal’s corresponding Fourier coefficients. A particularity here is that
a filter may only have one Fourier coefficient for a Fourier subspace of dimension larger
than 1 while the signal is generally described by as many coefficients as the dimension of
the subspace.

From a filter design point of view, we may also be interested in filters defined by a
frequency response. This is a special case of (6.3) where the spectral coefficients only
depend on the frequency: vy, = h(wy) = h(1 — 0;), where h : [0,2] — C is the frequency
response of the filter.

Let us define the projector associated to the frequency w as

S.= Y, Ky (15)

0:1—Re () =w

It is a projector that projects on the sum of the eigenspaces corresponding to the frequency
w. A filter based on a frequency response h can be expressed as

H, = > h(w)S,, wel0,2]. (16)

wWeEw

A major advantage of such a formulation is that it allows one to shift, contract or
dilate a filter along the frequency axis by simply applying these operations to its frequency
response. Unfortunately, this is not possible for all graph filters because a filter may have
different Fourier coefficients v, for different eigenspaces even when they share the same
frequency w.

6.4. Fourier analysis on finite groups: a graph signal perspective

In order to show the consistency of our Fourier analysis with respect to traditional
signal processing, we depict the directed counterparts of two well-known objects: the cycle
graph associated with the cyclic group (Z/nZ) and the toroidal graph that is the direct
product of cyclic groups, i.e. T = (Z/mZ)®---® (Z/n,Z) |82].

6.4.1. Fourier analysis on the directed cycle graph

A directed cycle graph Cy is a graph with N vertices containing a single cycle through
all the vertices and were all the edges are directed in the same direction. The directed
cycle graph Cy is represented by its adjacency matrix Cy which is circulant

0O 0 ... 01

1 0 ... 00
Cy=10

: . .00

[0 ... 0 1 0]

As the out-degree matrix of Cy is D = I, the transition matrix for the random
walk random walk X on Cy is P = Cy. P is diagonalizable, i.e. P = E@Z"' with
O = diag{¥y, -+ ,9n} € CV*V the eigenvalue matrix where

O = 2™ E=D/N e~ 1 . N.
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and Z = [£,,- - ,&x] € CV*V is the discrete Fourier basis where

1
£, = \/—N[l,ﬁ}c,...,ﬁ{f‘lf k=1,---,N.

The random walk X is irreducible and periodic. As our frequency analysis only deals
with ergodic random walks, we need X to be aperiodic. In order to overcome the peri-
odicity issue, we consider a y-lazy random walk X characterized by its transition matrix
15V € P defined at section 4.2.1. For such a lazy random walk, the stationary distribution
7 exists and is constant. As a consequence, the Rayleigh quotient associated to a given
eigenvector £, is given by

)

RSJ%(&) = (1 —7)[1 — cos <W)] zd),(j), k=1, N

Since the y-lazy random walks X have the same eigenspaces as the non-lazy random
walk, taking the limit v — 0 of these Rayleigh quotients allows us to define a frequency
for the eigenspaces of the non-lazy random walk too.

e[ (Y] o

Thus, the ordering of the frequencies {wy}2_, associated with the eigenvectors {&,}2_,
by the Rayleigh quotient coincides exactly with the classical signal processing approach.
However, the actual values of the frequencies are warped by the function x — 1 — cos(z)
compared to their classical counterparts. As the warping could in theory be reversed by
modifying our definition of frequency, the notion of frequency that we propose is consistent
with the classical notion of frequency.

Finally, the trick we used here with taking the limit v — 0 of v-lazy random walks
could be used for any graph where the random walk is irreducible but periodic. This
effectively allows us to define a meaningful notion of frequency for any graph that is
strongly connected.

6.4.2. Fourier analysis on the directed toroidal graph

A directed toroidal graph 7, ,, is the Cartesian product of the directed cycle graphs C,,
and C,, namely 7,,, = C,, ©C,,. We introduce necessary definitions for the understanding
of the section.

Definition 6.3 ([83|). Let G = (U,E) and H = (V,F) be two graphs with respective
vertex sets U = (uq,...,u,) and V = (v1,...,vy). The Cartesian product of G and H is
the graph G o H with vertex set U x V in which two vertices v = (u;,vj) and y = (up, vy)
are adjacent if and only if either u; = u, and (vj,vy) € F or v; = v, and (u;,u,) € E.

Definition 6.4 ([83]). Let G = (U, &) and H = (V,F) be two graphs. The adjacency
matriz of the Cartesian product G o H, denoted Ag.y is

AguH = Ag X I\Vl + I‘u‘ ® Ay.
where ® 1is the Kronecker product symbol.

Lemma 6.1. Suppose A1, --- , A\, are eigenvalues of Ag and iy, - - , by are eigenvalues of
Ay, Then the eigenvalues of Agoy are all \ij+p; for1 < i <mn andl < j <m. Moreover,
if w and v are eigenvectors for Ag and Ay with eigenvalues A and p respectively, then
the vector o = u® v is an eigenvector of Agoy with eigenvalue \ + p.
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Directed toroidal graph

Let Tpn = Cp0C,, be the directed toroidal graph characterized by its adjacency matrix
Az, =C,®IL, +1,®C,. The eigenvalues of C,, are \, = e*™*=/m for ke [1,m]
and the eigenvectors are denoted by [¢y, ..., @,,]. Identically, the eigenvalues of C,, are
pe = Xm0/ for ¢ e [1,n] and the eigenvectors are denoted by [w,,...,,]. The
directed toroidal graph 7, , is a directed 2-regular graph. Consequently, the out-degree
matrix of T, is D7, . = 2L,.,. We thus define a random walk X on 7,,, with a
diagonalizable transition matrix P = D}i/nAvan. We specify its spectral properties in
the following lemma. 7

Lemma 6.2. Let 7,,, be a directed toroidal graph and X be a random walk associated
with the diagonalizable transition matriz P. The directed toroidal graph T, . is a directed
2-reqular graph. Consequently, the spectrum of P is

)\Z-+,uj
2

o(P) = {Gy = 25, e Ll e 1,01

with associated eigenvectors

{¢i®¢j,¢ e [L,m],je [[1,74]}.

For the cycle graph, we observed that our notion of frequency was consistent with the
classical notion of frequency used in signal processing up to some monotonous transform.
This is only approximately true for the toroidal graph. Indeed, it is usually possible
to find pairs of eigenvectors of the toroidal graph for which the frequency order differs
compared to the classical case, although it does not seem to occur when the frequency
difference is large enough. An example where classical frequencies and graph frequencies
behave slightly differently is presented below.

As in section 6.4.1, the associated random walk X is irreducible and periodic. In order
to overcome this periodicity issue, we consider a v-lazy random walk X with transition
matrix f)w e P.

Figure 1 illustrates the eigenvalue distribution of the transition matrix of a directed
toroidal graph. As we can appreciate, the distribution of eigenvalues is remarkable. We
denote by A, the set of eigenvalues located on the green dotted line and A, the set of
eigenvalues located on the orange dotted line. Sets Ay, and A,, include respectively eigen-
values having the same real part and different imaginary parts i.e. Re(A,) = —0.25 and
MRe(A,) = 0.25. In order to illustrate the insights discussed in section 6.2.1, we exhibit in
figure 2 the two-dimensional representation of some eigenvectors from the transition ma-
trix of a directed toroidal graph Tze 60 corresponding to a graph frequency w = (7—+/5)/8.
The eigenvalues associated with these eigenvectors have identical real parts but different
non conjugate imaginary parts. Analytically, the Rayleigh quotients of the selected eigen-
vectors are equal, as explained in section 6.2.1. As we can see in figure 2, the selected
eigenvectors are all (discretized) complex exponential waveforms with what looks like
identical or very similar frequencies. The main difference between them appears to be
their orientation, which seems related to the different imaginary parts of the eigenvalues.
On a side note, we also observe that the graph frequencies of these 4 eigenvectors are
identical but this is not exactly true for their classical frequencies, which are equal to
0.260, 0.269, 0.260 and 0.269 from top to bottom respectively.
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Figure 1: Eigenvalue distribution of the random walk matrix of a directed toroidal graph 7s 4. Eigenvalues
on the dotted green line: Re(A9) = —0.25,Y\9 € A,. Eigenvalues on the dotted orange line: Re(A\°) =
0.25,V\° € A,.

7. Applications

This section is devoted to illustrating our theoretical framework through examples of
semi-supervised learning and signal modeling on directed graphs. It turns our that in the
following applications, we are able to work either in the Hilbert space ¢*(V) or ¢*(V, )
where 7 is the unique stationary distribution of an ergodic random walk. Furthermore, by
the results obtained in section 4.4, we define the isometries ¢ and ¢! going from ¢%())
to 2(V, 7).

o: fII72f ot f s TIV2F, Ve ?(V,n). (17)

For the sake of simplicity, we will always map signals living in £2(V, 7) to £*(V), so that
we can work in £?()) where the inner product coincides with the one between vectors in
C¥. In practice, given a graph signal f measured in the real world. We must first decide
in which space the signal lives. This is a somewhat arbitrary choice between the signal
living in a space associated with the counting measure or in a space associated with the
stationary measure 7 of an ergodic random walk. If we decide that the signal lives in
*(V, ), we then convert the signal into ¢?(V) using the application ¢~!, we perform all
the necessary operations in £*(V) and then go back to the (?(V,w) space using ¢. In
¢*(V), the operator T defined in eq. (11) corresponds to the random walk operator and
L is the operator such that {f, Lf) is the Dirichlet energy.

7.1. Semi-supervised learning on directed graph via {s-regularization

We discuss the semi-supervised learning problem on directed graphs with a regulariza-
tion term of type ¢5. The following problem aims to show the efficiency and relevance of
the Dirichlet energy (13) as a regularization term for signal processing on directed graphs.
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Figure 2: Two-dimensional representation of the eigenvectors for the toroidal graph 736 60 Wwith a graph
frequency equal to (7 —+/5)/8. Each row shows one eigenvector, with its real part on the left hand side
and its imaginary part on the right hand side. Among the 8 eigenvectors with this frequency, we only
show those corresponding to eigenvalues with a non-negative imaginary part (shown on the left hand
side).
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7.1.1. Definition of the problem

Let G = (V, &) be a strongly connected directed graph where V = (vy,...,vy) is the
vertex set, £ is the edge set and with cardinality |V| = N. The directed graph G is
represented by its adjacency matrix W e RY*N. Let X’ be the associated random walk
on G. The random walk X is represented by its random walk operator P € RY*" with
unique stationary distribution .

We also introduce Ggym the symmetrized version of the directed graph G. The undi-
rected graph Gg,m, is represented by its adjacency matrix Wy, = (W + WT)/2 e RN,
Let Xy be the associated random walk on Ggym. The random walk Xy, is represented
by its random walk operator Py, € RY*N with unique stationary distribution Teym-

Let y : V — {—1,1} be a “label” function defined on the vertex set V. From the
function y, we obtain the graph signal y defined as follows

y=ly(),...,y(on)]".

Given the values y(vk){lgks ~y on only a subset of labeled vertices & < V, the aim is
to estimate the labels of the remaining unlabeled vertices. This is the semi-supervised
learning problem on graphs [6, 84, 85]. We introduce the formulation of the problem in
the next section.

7.1.2. Considered approaches
The standard approach with ¢ regularization is based on the following optimization
problem:

arg;nin{CIIMz(f —Y)|* + oML FI* + 02S(f)}, ¢ 01,00 > 0. (18)

The term |M;(f —y)|? is the data fidelity term with M; = diag{m,, ..., mx} a diagonal
matrix where m; = 1,,¢y, for alli = 1... N (hence 0 on vertices with unknown labels).
In the second term, |[M,f|? M, selects the unlabeled vertices and is defined as M, =
Iy —M,. This second term is a Tikhonov-like regularization term. The third term, S(f),
is the variational regularization term derived from the graph

S(f) = (£, Xf), XeRVY,

The semi-supervised learning on graphs problem is formulated in the same manner
for the directed graph G or its symmetrized version Gy, except that the variational
regularization term S(f) differs. In all these situations, for learning two classes, the
solution is obtained by constraining the previous continuous problem of having labels
taking values only in {+1, —1}; a relaxed version of the problem is to solve the continuous
optimization problem and take the sign of its solution. We now compare three methods
for the directed case and the symmetrized case.

(a) Semi-supervised learning on G, the directed graph.:.

Method 1: The first method is a version of eq. (18), that was previously investigated by [84].
Assuming the graph signal lives in £2(V), the optimization problem is

arg}l}lin{CHMz(f —y)I* + IMLFI* + 0(F L)Y, 02> 0. (19)

with £ the directed normalized Laplacian (6). The term (f,Lf) is the Dirichlet
energy in £2(V).
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Method 2: For this method, we also use the formulation (19), except that we now assume that
the graphs signal lives in ¢2(V, 7). Hence, we define g € ¢*(V) as follows

§=¢t(y) ="y, yelV,n).

The optimization problem is therefore

argmin{c|M,(f — ) > + ¢|MLFI* + 02(f, L)}, ¢,00> 0. (20)
f

Equation (20) is the same as eq. (19) except for y which is now g. The optimization
problem (20) can be rewritten as

argj{rlin{C\le(f — Y2 + ML FI5 + 0ol f, LowFn}, c,00>0. (21)
with Lgrw the random walk Laplacian on directed graphs (7). The term {f, Lrw f )=
is then the Dirichlet energy (13).

Method 3: In the framework of "Discrete Signal Processing on Graphs" [54, 55|, the semi-
supervised learning problem for directed graphs is formulated as follows

arg]rcnin{cHMl(f — y)H2 + 09|l f — W”OTmfﬂg}, ¢, 09 >0, (22)
with W™ " a normalized version of the the adjacency matrix W so that its spectral
norm is equal to one.

Semi-supervised learning on Geym,, the symmetrized graph:. We consider the same methods
applied now on Ggym,.

Method 1: Given the graph signal y € ¢?(V), the optimization problem is

arg]rcnin{CHMz(f —y)|? + ML FI? + 0{f, LoymB)}, c02>0. (23)

with Ly, the normalized Laplacian defined as
Logm =1 -T2 P, JI2, Ty, = diag{meym(v1), .., Toym(on)}-

Method 2: The optimization problem is

argmin{c||Ml(f — ’!})“2 + CHMu}HQ + Q2<}7 Esym}>}7 C, 02 > 0. (24)
F

This can be rewritten as
arg;nin{CIIMz(f )7 + cIMFIF + 0o(f Lrwoymf)r},  c02>0. (25
with Lrw gym the random walk Laplacian defined as
Lew sym = I — Pyym.

7.1.83. Solutions in closed form
The problem (18) is quadratic and convex and therefore admits a closed form solution.
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Semi-supervised learning on G.

Method 1: The solution of the optimization problem (19) is

fr=0+7L)"My, v=ofc, frelV). (26)

Method 2: The solution of the optimization problem (20) is
f*=(T+9Lpw) "My, v =0ofc, frelP(V,m). (27)

Method 3: The solution of the optimization problem (22) is

ff =M +Ry)y, v=0/c, frelV).
with Ry = (I — Wnorm)T(I — Wrorm),
Semi-supervised learning on Geym.

Method 1: The solution of the optimization problem (23) is
=0+ Loym) My, 7 =02/c. frel?(V). (28)

Method 2: The solution of the optimization problem (24) is
F =T+ Lrwem) My, v=o0/c, f*e€l(V, mym). (29)

Remember that in each case, we take the approximated solution for 2 classes which
keeps only the sign of the solution as the label of the inferred class: y* = sgn(f*). We
summarize the different methods in Table 1.

Method g gsym

Method 1 L )Csym
Method 2 LRW LRW,syIn
Method 3 Ry, [54]

Table 1: Table of the different operators associated with the semi-supervised learning methods according
to G and Ggym.

7.1.4. Experiments

Let us consider the dataset of the political blogs of the 2004 US presidential cam-
paign [86]. The dataset consists of 1224 blogs, each associated with a political orientation,
either republican or democrat. The hyperlinks between blogs provide the dataset with a
graph structure G = (V,£), where each vertex v € V is associated to a blog and an edge
between two vertices {v;, v;} indicates the presence of hyperlinks from blog i to blog j. The
political orientations of the blogs are modeled by a graph signal f, = {fo(v1), -, fo(vn)}
where fo(v;) = +1 if blog i has a Democrat orientation and fy(v;) = —1 if it is Republican.
The directed graph G is not strongly connected, which is a problem with our framework
that requires strongly connected graphs. As a result, we consider the largest strongly
connected subgraph of G, denoted by G’ = (V',£’) which is made up of |[V'| = N’ = 793
vertices (hence roughly 65% of the vertex set V) and its associated graph signal f. The
respective performances of the approaches egs. (19), (21) and (22) and their symmetrized
counterparts egs. (23) and (25) are compared in fig. 3.
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Numerical simulations

Figure 3 shows the performance of the semi-supervised approaches egs. (19), (21)
to (23) and (25), in terms of the proportion of correct matching between y* and f, (or
f4). For each method, several values of v € [0, 10] were tested and we kept the one giving
the best performance over 500 realizations. The lines displayed in fig. 3 are averaged esti-
mation accuracy over 500 realizations and the error bars show the corresponding standard
deviations.

Firstly, we remark that for all proportions of known labels, the semi supervised ap-
proaches based on £, Lrw and its symmetrized counterparts Lqym, Lrw sym perform better
than the semi-supervised approaches based on Rj;. On the top left of fig. 3, we com-
pare the semi-supervised approaches involving the operators £, Lrw and R,;. The semi-
supervised approach associated with £ performs the best compared to the approaches in-
volving Lgw, Ry, for low proportions of known labels. Furthermore, £ performs slightly
better than the approach involving Lgrw. On the top right of fig. 3, we compare the
semi-supervised approaches involving the operators Lgym, Lrwsym and Rys.  Similarly
the top left figure, the semi-supervised approach associated with Ly, performs slightly
better than the approach involving Lgrw. On the bottom left of fig. 3, we compare the
semi-supervised approaches involving the operators Lrw, Lrw sym and Rys. The approach
involving Lrw and Lgw sym perform quite similarly for any proportion of known labels.
The same can be observed in the bottom right of fig. 3 comparing the semi-supervised
approaches involving Lgrw, Lrw sym and Rj;. This performance comparison leads us to
the following conclusions:

e The semi supervised learning approaches involving Dirichlet energies based upon £
and Lrw (and their symmetrized counterparts) yield better performance compared
to the approach proposed by Sandryhaila and Moura [54] based upon R,;. Con-
sequently, semi-supervised learning approaches on directed graphs with Dirichlet
energies based on the random walk operator seem more appropriate.

e The Hilbert space where we assume the graph signal lives seems to have an influence
on the performance. Here, we obtain better performance when assuming that the
graph signal y belongs to ¢*(V) rather than ¢*(V, ), or equivalently when using £
in the regularization term rather than Lrwy.

7.2. Signal modeling on directed graphs via filtering

In this section, we consider a way to model the relationships between the values of a
graph signal using a graph filter. The model is expressed as a graph filter that takes some
values from the graph signal and reconstructs the other values. A possible application of
such a model could be the lossy compression of the signal, where knowing only the graph,
the coefficients of the graph filter and a few signal values enable the reconstruction of the
whole signal. The major difference with the previous application is that we assume the
whole graph signal known to learn the filter.

7.2.1. Problem formulation

Let G = (V, €) be a directed graph with cardinality |V| = N and p : V — R, a positive
measure. The directed graph G is characterized by its adjacency matrix W e RY*Y | Let
fo € 2(V, 1) be a known graph function and f, = [fo(v1), ..., fo(vn)] ", the corresponding
graph signal. Let y be a random sampling of f; according to some known sampling
strategy, where for a given sampling realization y; = fo(v;) or y; = 0 depending on
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whether vertex j is selected in that sampling realization. The goal of the problem is to find
a graph filter H that optimally reconstructs f, from the samples in y. More specifically,
we consider graph filters expressed as finite polynomials of a reference operator R with
order K.

K
H=) R 6,eR k=0, K (30)
k=0

The reconstruction of f, from y is then
A K
fo=Hy =) 6;R*y. (31)
k=0

In order to find an optimal filter H-= Zf:o ékRk, we propose to minimize the expected
quadratic reconstruction error:

(32)

~ 2
0= argmin E ,
o

0—={0;}K_ eRK+1

K
‘fo - Z QkRky
k=0

Finally, we only consider sampling strategies where samples in y are selected inde-
pendently according to a given distribution 6§, that is y; = fo(v;) with probability ; and
y; = 0 otherwise. The random variables y;,j = 1,..., N can be expressed as y; = ¢; fo(v;),
where the ¢; are independent and Bernoulli distributed with parameters d;: ¢; ~ Ber(d;).
The random variable & defined as

| N
P=% 2 €y (33)
is the proportion of known values of f collected in y.

7.2.2. Solution in closed form
The solution of the problem (32) is the following

6 =72'"MQ' f,, (34)

where M = diag{pu(v1), -, u(vy)} is the diagonal matrix of the associated measure u, Z
the matrix where each entry Zy, € Z is expressed as

Zio = Tx (RNTMRE(yy"}), Wik, 0} € [0, KT,
and Q = [qq, -, qx] € RY*ETD where each vector g; is
q; = R‘]E{y}v V] € [[07 Kﬂ
Finally, according to the definition of y, we have E{y;} = d;fo(v;), E{y7} = 0; /5 (v))
and E{y;y;} = 6:0; fo(vi) fo(v;) for @ # j, which would allow us to replace the above terms

E{y} and E{yy '} with their values. For the experiments below, we will assume that the
sampling strategy is unknown and estimate E(y), E(yy ') empirically.
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7.2.8. An exploration of modeling accuracy with different graph operators

The reconstruction quality using the previous approach depends on several factors:
the choice of reference operator R, the order of the filter K and the random sampling
strategy defined by the Bernoulli parameters d,. Here, we evaluate primarily the influence
of R and compare two possible sampling strategies. As an example, we also consider the
dataset of the political blogs of the 2004 US presidential campaign [86], described in
section 7.1.4.

As before, we will use the largest strongly connected directed subgraph G’, represented
by its adjacency matrix W. On G’, we consider the following operators

e W, the normalized version of the adjacency matrix W whose spectral norm is
equal to one.

The random walk operator P associated with an ergodic random walk X with unique
stationary distribution 7.

P the additive reversibilization of P.

o T = IT'?PITI" "2 the operator similar to P.
e T = IT/?PII""/? the operator similar to P.
e P,ePwithP={P,:P,=(1-a)P+aP*|ac|0,1]}

o T,eT with7T = {T,: Ty = (1 — )II'*PII"? + oII"*P*IT ?|a € [0, 1]}

We also consider G, the symmetrized version of G’. The undirected graph G,

is represented by its adjacency matrix Wy, = (W + WT)/2. On G, we define the
following operators

e W™ the normalized version of the adjacency matrix Wy, whose spectral norm

is equal to one.

e The random walk operator Pgy,, corresponding to the ergodic random walk Xy,
with stationary distribution meyy,.

o Toym = I1'/? Psyml_rl/2 the operator similar to Pyyy,.

sym sym

Finally, we consider G, the full graph that is not strongly connected. Consequently, we
can not build directly a random walk operator on G unless we transform G into a strongly
connected graph, as required by our framework. We thus consider two classic approaches
that make the graph strongly connected and the associated random walk ergodic:

Approach 1: Rank-one perturbation: from the original adjacency matrix W, we construct a new
adjacency matrix W, as follows

W, = W + ],

where J = 117 /N is a rank-one matrix and € is small. The weak perturbation of the
adjacency matrix W by the matrix J ensures that the random walk on G is ergodic
with stationary measure m, and its associated transition matrix P, is well-defined.
For our experiments, we choose € = 1074,
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Approach 2: Construction of the Google matrix of G [70, 87]. This is achieved in two steps.

Firstly, we construct an adjacency matrix W from W by adding a weight one from
all dangling nodes, that is nodes with no out-edges towards all the nodes in the
graph. From W we can construct the transition matrix S. Secondly, we define the

Google matrix Py as
PG = (1 —’Y)S +’7J

where v = 0.85 |70, 87].

We will compare the reconstruction accuracy using a proportion of correctly recon-
structed labels obtained via

f = sgn(Hy).

Subproblem 1. We solve the problem (32) by learning a polynomial graph filter with K =
10 on G’ and G, with each of the reference operators listed above. In this subproblem,
the random variables y;, j = 1,..., N’ are distributed according to one of the two following

cases

e uniform sampling: y; = ¢; fj(v;) where €; ~ Ber(p) with p the proportion of known
labels.

o m-weighted sampling: y; = ¢; fj(v;) where £; ~ Ber(ar;), such that >, E{e;} = pNV’
with p the proportion of known labels.

The proportions of correctly reconstructed labels are measured for various p values
using 500 realizations of y to estimate its mean and covariance used in the solution (34).
We summarize the different cases in table 2.

Case Distribution y Reference operators
Case 1 yj = Ejfé(vj)a 6]' ~ Ber(p) Wnorm7 P7 P? T7 T7 W;Lyo;m7 Psynu Tsym

Case 2 y; = ¢, fj(v;), &5 ~ Ber(am;), 35, E{e;} = pN' W™ P, P, T, T, W™ Py, Toym

sym

Table 2: Summary table of the different cases of the subproblem 1.
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Figure 4: (Subproblem 1, Case 1) Left: Reconstruction of the graph signal f{ on G'. Right: Reconstruc-
tion of the graph signal f{, on Giym-The notation Py, (resp. Thar) correspond to P (resp.T).

Numerical simulations: Case 1. We evaluate the reconstruction performance of the graph
signal fj in figure 4. For all proportions p of known labels, the average rate of correctly
reconstructed labels using a graph filter baseed on P or P is significantly better than when
using a graph filter based on W,,,.,,,. This holds on the subgraph G’ ands its symmetrized
version G .. Furthermore, the reconstruction performance using a filter based on P is
slightly better than using a filter based on P. The reconstruction performance using a
filter based on T is the best overall. For small proportions p of known labels, the average
rate of correctly reconstructed labels from filter based on T is slightly better. We also
notice that the reconstruction performance using a filter based on Tsyy, is identical to
using a filter based on Pgyy, for all proportions p of known labels.
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Figure 5: (Subproblem 1, Case 2) Left: Reconstruction of the graph signal f{, on the subgraph g
Right: Reconstruction of the graph signal f{, on ggym. The notation Ppay (resp. Tpar) correspond to P
(resp.T).

Numerical simulations: Case 2. The reconstruction performance is shown in figure 5.
Filters based on W, perform significantly worse than any other choice both on the
subgraph G’ or its symmetrized version Gg . Also, the reconstruction accuracy when
using W,,,.» has a much larger variability and the average performance even decreases
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for larger p. Among other methods, the differences are not significant except for filters
based on T which perform slightly worse than others for large p.

Case 1 vs. Case 2. The reconstruction performance using a filter based on P or P is
slightly better when the samples in y are selected according to a distribution propor-
tional to the stationary distribution 7 (case 2) than when the distribution is uniform
(case 1). It is also the case when using a filter based on T or T. This is expected as ver-
tices with larger 7, values correspond to better-connected blogs, which are likely to have
an influence on a larger number of other blogs. Although the reconstruction performance
using a filter based on W, is better in case 2 than in case 1, the large variability and
the poorer performance at large p in case 2 suggest that these filters provide generally
poorer models of the signal. The better reconstruction performance using a filter based
on T or T with respect to using a filter based on P or P suggests that for this application
it seems more suitable for the graph signal to live in ¢2()) than ¢2(V, 7).

Subproblem 2. Here we consider the same problem (32) as in the previous section but
now compare the performance using reference operators P, € P and their equivalents
T, = II'?P,IT "2, The random variables yj, j = 1,..., N" are distributed according to

one of the two following cases:

e uniform sampling: y; = ¢; fj(v;) where €; ~ Ber(p) with p the proportion of known
labels.

o m-weighted sampling: y; = ¢;f5(v;) where €; ~ Ber(am;), such that »,; E{e;} = pN’
with p the proportion of known labels.

We summarize the different cases in table 3.

Case Distribution y Reference operators
Case 1 y; =i fo(v;), € ~ Ber(p) P,eP,T,eT
Case 2 y; = ¢;fy(v)), €5 ~ Ber(am;), >, E{e;} = pN’ P,eP,T,eT

Table 3: Summary table of the different cases of the subproblem 2.

Numerical simulations: Case 1. We evaluate the reconstruction performance of f using
filters either based on P, € [0, 1] at the top of fig. 6 or either based on T, € [0, 1] at
the bottom of fig. 6. We first consider the top of fig. 6. For small proportions p of known
labels, we notice that the best reconstruction performance using a filter based on P, is
obtained for o ~ 0.2 while for higher proportions p, the best performance is obtained
for a ~ 0.3. We notice poorer performance overall when « increases from o = 0.5 to
a = 1. At the bottom of fig. 6, the reconstruction performances using a filter based on
T,,a ~ 0.2 are the best except for the rate p = 0.01. We also notice poorer performance
overall when « increases from a = 0.5 to a = 1.
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Figure 6: (Subproblem 2, Case 1) Up: Reconstruction of the graph signal foon G, P, e P. Down:
Reconstruction of the graph signal f; on G/, T, € T.
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Figure 7: (Subproblem 2, case 2) Up: Reconstruction of the graph signal foon G, P, € P. Down:

Reconstruction of the graph signal f; on G/, T, € T.

For all proportions p of known labels, filters based on T, appear to perform slightly
better than filters based on P,. This again suggests that this graph signal f{ is better
represented as living in ¢2(V) than ¢2(V, 7). Furthermore, the better performance when
a € (0.5, 1) suggests that, for this signal, graph filters P,, perform better when the convex
combination of P and P* involves more the random walk P, i.e. « € (0,0.5), than the
time-reversed random walk P*.

Numerical simulations: Case 2. We evaluate the reconstruction performance of f{ using
filters either based on P,,a € [0, 1] at the top of fig. 7 or based on Ty, € [0,1] at the
bottom of fig. 7. Let us consider the top of fig. 7. We notice that the reconstruction
performances using a filter based on P,,a ~ 0.3 are the best except for the rates p =
{0.01,0.02}. We notice poorer performance overall when « increases from a = 0.5 to
a = 1. This suggests that, for this signal, graph filters based on P, perform better
when the convex combination of P and P* involves more the forward random walk P,
ie. a € (0,0.5), than the backward random walk P* i.e. a € (0.5,1). At the bottom
of fig. 7, the reconstruction performances using a filter based on T4, o ~ 0.3 are the best
for all proportions p of known labels. Similarly to the previous cases, we notice poorer
performance overall when « increases from o = 0.5 to a = 1.

On this example, the reconstruction performance is better using filters based on P,
than T,. This suggests that the graph signal f{ is best viewed as living in ¢2(V, 1) com-
pared to ¢?(V) when the samples in y are selected from a distribution proportional to 7.
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Case Distribution y Reference operators

Case 1 y; =¢;f(vj), €j ~ Ber(p) W™ P, Pg, P, Pg T, Tg, Te, Tg

Table 4: Summary table of the case of the subproblem 3.

Previously, we observed that it is more suitable for the graph signal f to belong to ¢2(V)
than /2(V, 7) when the distribution in ¥ is uniform. This suggests that it may be a good
idea in practice to adapt the measure of the Hilbert space to the sampling distribution if
it is known.

Subproblem 3. We now consider the same problem (32) on the whole graph G. In this
subproblem, the random variables y;,j = 1..., N are distributed as y; = ¢;fo(v;),g; ~
Ber(p). For each proportion of known labels p, the correct reconstruction rates are ob-
tained by averaging over 500 realizations of y. We summarize the following case in table 4.

Numerical simulations. The reconstruction performance is shown in fig. 8. For all p values,
the reconstruction performance using filters based on W,,,.,, is significantly worse than
with all other reference operators. Compared to the other reference operators, Wy, is
the only one that can be used without modifying the graph to make it strongly connected.
Still, its performance is always worse.

Among the other reference operators, we notice a clearly better performance generally
when using the reversibilizations P, and P compared to the non-reversible random walks
P. and Pg. Furthermore, the best reconstruction performance is obtained using a filter
based on T¢ and the reconstruction performance using a filter based on T, is identical
to T¢ for higher proportions of known labels. This differs from the results on G’ where
both would perform similarly.

Finally, the reconstruction performance does not depend as much on the approach we
use to make the graph strongly connected. It seems though that the Google approach
slightly outperforms the rank-one approach, both for the non-reversible random walks
and their reversibilizations.

Subproblem 4. Here we consider the same problem (32) as in the previous section but
now compare the performance using reference operators P, € P and their respective
equivalents T, = ITY?P,II"%2. The random walk operator is built from the Google
matrix approach (Approach 1). The random variables y;,j = 1..., N are distributed as
y; = €;fo(vj),e; ~ Ber(p). We summarize the case in the table 5.
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Figure 8: (Subproblem 3, Case 1) Reconstruction of the graph signal f; on G.The notation PPar (resp.
poar TRar Thar) corresponds to Pe (resp. Pg, Teq, Te).

Case Distribution y Reference operators

Case 1 y; =¢;fo(vj), e; ~Ber(p) PoeP,ToeT

Table 5: Table of the case of the subproblem 4.

Numerical simulations: Case 1. We evaluate the reconstruction performance of f{ using
filters either based on P,,a € [0,1] at the top of fig. 9 or either based on T, a € [0,1]
at the bottom of fig. 9. For all proportions p of known labels, the best reconstruction
performance using a filter based on P, is obtained for a ~ 0.6. We also notice that the
reconstruction performance using a filter with a € {0.7,0.8} is better than with o ~ 0.5.
This suggests that, for this signal, graph filters based on P, perform better when the
convex combination of P and P* involves more the time-reversed random walk P* than
the random walk P (i.e. when o > 0.5). At the bottom of fig. 9, the best performance
is obtained for a filter T, with a ~ 0.5 overall. The performance is worse when o
increases from o = 0.5 to a = 1. For all proportions p of known labels, the reconstruction
performance are better overall if the graph signal f, is in £*(V) than in £*(V, 7). In other
words, the reconstruction performance using filters based on T, is better than using filters
based on P,,.
To summarize :

e Both the Hilbert space where we choose for the graph signal and the sampling
distribution impact the performance. For the example presented here, we obtain
better performance when we consider the Hilbert space whose measure corresponds
to the sampling probability.

e Graph filters based on the random walk operator yield better performance than
those based on the adjacency matrix.

e The choice of the parameter « in the convex combination between P and P* has an
influence on the performance. For the example presented here, the optimal convex
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combination of P and P* (resp. T and T*) always involves more the forward random
walk (P) than the backward random walk P*, except in one case.

8. Multi-resolution analyses on directed graphs

In the previous sections, we proposed a Fourier like basis on directed graphs, as the
set of random walk eigenvectors and determined a frequency analysis by studying their
smoothness. This allows the definition of low-pass or band-pass filters, hence we are now
able to construct multiresolution analyses of functions over directed graphs. In a first
instance, we propose wavelet frames made of analysis and synthesis graph filter banks.
This multi-scale construction is closely related to the diffusion polynomial frames [23] and
spectral graph wavelets [24]. In a second instance, we propose a critically sampled wavelet
construction on directed graphs generalizing the diffusion wavelets framework [22|. For
the sake of simplicity, we will present our theoretical constructions in the £*(V) space.
The linear transformation ¢ defined in eq. (10) and its inverse may be used to express the

constructed wavelets and scaling functions in £2(V, ) or to map measured signals from
2(V, ) into £2(V).

8.1. Redundant wavelet transform on directed graphs

In this section, we propose a redundant wavelet transform on directed graphs. We
follow the construction of spectral wavelets on undirected graphs [24] and polynomial
diffusion frames [23]. The novelty is the construction of filters designed in the frequency
domain via a frequency response function as a linear combination of projectors onto the
associated mono-frequency random walk subspaces. We introduce the necessary elements
for the construction of redundant wavelets on directed graphs.

8.1.1. Theoretical framework

Let G = (V,€) be a strongly connected directed graph with cardinality |V| = N.
The directed graph G is characterized by its adjacency matrix W e RY*N. On G, we
define a random walk X characterized by its transition matrix P = D7'W e RV, X
is assumed ergodic with stationary distribution 7. Let T = IIV*PII"Y/2 € (2(V) be the
operator similar to P in ¢?(V). We assume T diagonalizable. We now define low-pass and
band-pass operators as follows.

Definition 8.1. A low pass operator at dilation t, HY on a strongly connected directed
graph G is defined by

P
HY = ) h(tw)S;, teN.
=1
with h : [0,2] — R, a function gwing a low-pass frequency response and {S¢},_,, the set
of projectors (15) associated to the frequencies wy of the eigenvectors of T. The scaling
function at dilation t and translation y is denoted by

btg,y = Htgéy
where 8, is the Kronecker delta function at vertex y € V.

Definition 8.2. A band pass operator at dilation t, GY on a strongly connected directed
graph G is defined as

p
Gtg = Zg(twg)Sg, t e N.

l=1
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with g : [0,2] — R, a function giving a band-pass frequency response and {Se},_,, the set
of projectors (15) associated to the frequencies wy of the eigenvectors of T. The wavelet
function at dilation t and translation y is denoted by

gtg,y = Ggéy’
where &, is the Kronecker delta function at vertex y € V.

Having defined the low-pass and band-pass operators on directed graphs, we are able
to build analysis and synthesis filter banks on directed graphs.

Definition 8.3. We deﬁne a bank of synthesis filters IC as a set comprising a low-pass

filter at dilation t;, HtJ and a series of band-pass filters at increasing dilations {t;}
{Gt] ‘}]:1 J

Jj=1

K={H{ Gi

tg9 t1r

g
GY 1.

Definition 8.4. We define a bank of analysis filters K as a set comprising a filter at
dilation ty, Ht] and a series of filters at increasing dilations {t;}7]_,, {Gt 3

j=1 *
K={H/ .G}, . .. GY}
where )
HY = ) h(tw)S, e RV,
(=1
and
p

Z thSgERNXN VJIL,J

We also define Gt’k and g, as row vectors as follows:
biw =6 HY, G = 0, Gf.

Proposition 8.1. Given a fized set of increasing dilations {t;}7_,, the synthesis and

j=b
analysis filters sets respectively K and K, the perfect reconstruction condition

HY HY +ZG9G9 —1 (35)

15 guaranteed if and only if

M“

h(thg (tywe) + > g(tjwr)g(tjwe) =1, VL=1,...,p.

7=1

Proof.

J p
HthI:Ig + Z Gg Gg Z h tJWg tJng/ SgSgl Z Z g t (,Ug t Wg/)SgSgl

j=1 =1 j=12,0=1

p
Z t wg t wg>Sg
14=1

[
M@
M%

h(tJWg tJLUg Sg +

~
Il
—_

N
Il

I
B

[h(tﬂﬂg tJWg + Z g t u)g Zf WK)]SZ
7j=1

~
Il
—
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Consequently, (35) is guaranteed if and only if

h(tng tJOJg twg twg 1 Vf=1,...,p. ]

IIMM

We now define a frame as follows.

Definition 8.5. Let G = (V, &) be a directed graph and v a measure on V. A countable
family of elements {f,.}?_, € (*(V) is said to be a frame if for any graph signal f € (*(V)
we have

AlFIP < X KE £l < BIFI,
k=1

for some constants 0 < A < B < o0 which are called frame bounds.

We introduce the rectangular matrix K = (Hth, Gtgl, ce Gth) e RVXNU+1) where -

— (9 g g g g NxN(J+1
K_(htJ,17"‘7htJ,Nvgt1,17"'7gtJ717"'7gtJ7N)ER ( )

We also introduce the following rectangular matrix K = (HthT,Gtng, . .,GthT)T
RN(J+1)xN

A
htJ,l

bté

K _ gtl 1 c RN(J+1)><N. (36)

g
gtJ1

ﬁ?J,N
Proposition 8.2. Let K and K be respectively the synthesis and analysis filter banks. We
assume that the filter banks K and K wverify the perfect reconstruction condition stated

in proposition 8.1. Consequently, K is a frame for 2(V) with lower frame bound 1/||K|?
and upper frame bound |K|?.

Proof. The perfect reconstruction condition implies that | f]|? = |[KKf|]*> < |K|*|Kf|>.
Hence, we have the frame inequalities

I£1? < IKFI” < K[ £, (37)

HKH2

where the second inequality is just the definition of the spectral norm. |K|? and |K|?
are finite because of finite dimensions, hence the frame bounds verify 0 < |[K|? < |[K|* <
0. []

Definition 8.6 (Wavelet decomposition of a signal on a directed graph). Any graph signal
f € 2(V) can be expressed as follows :

N J N
=2 b b w+ Y > F k) 06
k=1 i=1k=1
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8.2. Critically sampled wavelet transform on directed graphs

8.2.1. Notations

We first recall relevant and useful notations for a clear understanding of the construc-
tion of diffusion wavelets [22, 36]. Two notations are introduced: one for the representation
of linear transformations as matrices and a second for the representation of sets of vectors
as matrices where columns correspond to a vector in the set. These notations were used in
[22, 36] except that we adopt a column vector convention whereas a row vector convention
was used in [22, 36].

Let Vo = (2(V) be the space of functions defined over the vertices of a directed graph
G = (V,&). If Lis a linear transformation of Vy into V, [L]gf indicates the matrix
representing the linear transformation L with respect to the basis By in the domain and
Bs in the range. A set of vectors X represented in a given basis B will be written in the
matrix form [X]p where the columns of [ X]p are the coordinates of the vectors X in the
coordinate system defined by B. Generally, [Bi]p, = [I]gf represent the basis vectors By
in terms of the basis By. We will note that, for a given basis B if the input and output
bases are the same, [I]8 = I the identity matrix. We will also abuse this notation if B;
spans a subspace of the space spanned by Bs. If By spans a subspace of the space spanned
by Bj instead, then we use the convention [I]5? = ([I]}}})*, where X* denotes the Moore-
Penrose pseudo-inverse of X. If B; and B, are two bases, the representations of X in B,
and B, are related as follows: [X]p, = [I]gf [X]B,. If By, By, Bs, By are arbitrary bases,
the matrix representation of L with respect to the basis By in the domain and By in the
range in the different bases is expressed as

[L15; = (15 [L]5 T

Furthermore, if By and B, are linearly independent sets of vectors that do not span the
whole space Vj then we will still use the notation [L] gf, but in that case it will represent
the restriction of the linear transformation L to the domain and range subspaces spanned
by Bl and BQ.

8.2.2. Diffusion wavelets

The construction of the diffusion wavelets |22, 36] enables a multi-resolution analysis
of functions on graphs generalizing the concept of classical multiresolution analysis [21].
The starting point of this construction is a diffusion operator T. Similarly to the classical
multiresolution analysis, diffusion wavelets is characterized by a family of nested subspaces
Vo 2 Vy 2--- 2V; 2 -, where each subspace V, is spanned by a basis of scaling
functions ®;. The complement of V,; into V; is called W, and is spanned by a set of
diffusion wavelets V.

8.2.3. Construction

The construction of diffusion wavelets proceeds with a diffusion operator T defined
on a directed strongly connected graph G = (V,€). In the original diffusion wavelets
framework by Coifman and Maggioni [22], the graph is assumed undirected and they
suggest using the reversible random walk operator P.

More generally, any operator T can be used as long as it acts like a low-pass filter.
Given a directed graph G, an appropriate choice seems to be the operator T = ITY?PII~'/2
where P is the random walk operator. However, the random-walk operator is not guar-
anteed to have a low-pass frequency response as the highest frequency eigenvectors may
have eigenvalues with modulus arbitrarily close to one (as e.g. for the cycle graph). In
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such a case, a low-pass filter can be defined using a lazy random walk instead: T =
IT2(yI + (1 — »)P)IT V2,

Assuming an ordering of vertices in )V, T is originally represented on the canonical
basis ®g = {0k }rey of Vo where dy is the Kronecker delta function corresponding to the
vertex k € V. Using the notations from section 8.2.1, [T]ig is the matrix representation
of the linear operator T with respect to the basis @ in the domain and ®q in the range.

The columns of the matrix [T]g can be described as a set of functions ®; = {(;bl & J eV
represented in the basis ®,. Each element d)l,k? keV of <I>1 corresponds to the action of
T on the Kronecker d-function at vertex k and is represented as [;‘Lk]cpo = [T]igék.

The low-pass property of T leads to the fact that each element (751,,? of (51 is a function
localized around its vertex k whose support extends to its close neighbors. In terms of
the diffusion wavelets construction, the elements ¢, ;,k € V are therefore interpreted as

scaling functions. Due to the fact that the support of each element 97)17,g covers a small
neighborhood around their respective vertices, these elements ¢, ;, can generally be well

approximated by a linear combination of the other functions cwbu with [ # k. The next
stage of the construction is a column subset selection stage [88]. The aim is to find a small
number of columns of @, forming a set C such that the residual ||[®1]s, — e [®1]s, | 5 is
as minimal as possible where Il¢ is the projection matrix onto the space spanned by the
columns of C and 3 denotes the spectral norm or the Frobenius norm. N

More precisely, this step involves the selection of a subset {¢, ;, k € Z;} from @y, |7;| <

|V|. We select a subset {Jsl,k, k € Z,} such that all a)ug are well-enough approximated by
linear combinations of the functions in the subset. In classical signal processing terms,
this step is analogous to a subsampling of a set of scaling functions in the classical discrete
wavelet transform. Coifman and Maggioni used a greedy approach to build the set Z;
iteratively by using a modified Gram-Schmidt orthogonalization procedure [22].

The subset {J)Lk, k € 7,} spans a subspace V; which corresponds to the first approx-

imation subspace of the multi-resolution analysis. We will thus denote {qwak, ke I} as
®,, where @, is by definition a basis of V; that is generally not orthogonal. The vectors
in ®, are the scaling functions at scale 1.

In order to define the next scales of scaling functions, we consider the compression
step of the diffusion operator T on the subspace Vi, that is its restriction on V;. The
latter can be represented in ®; as

[T13; = [T [Tl (13-
where [I] ' represents the restriction of the signal space Vy to Vi (with respective bases
®y and P ) and [I]q)0 represents the embedding of V; in V.

The next approximation space Vo, < V; and its associated basis ®5 can be obtained
in the same way as the definition of V; and its basis ®; except that we now consider the
operator T? restricted to V; instead of T in V,.

The columns of [T2]$1 ~ ([T]gi)Q can be interpreted as scaling functions at scale 2

$, = {<7)2’k}, represented in the basis ®;. From these functions we extract a subset ®5 =

{(7527,€7 k € T,} such that any function in ®, is well-approximated by a linear combination
of functions of ®,.

After j iterations of this procedure we have defined j approximation subspaces V; <
V,_;  --- < V; with corresponding bases ®;, ®,_q,...,®;. At each step the basis ®; is
defined by its representation in the basis ®;_; based on the restriction of the operator T
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to V,_1. In order to represent these functions in the original basis ®, of V, we can use

(5], = [Tg0 = [T lTl5e - [Tg! 2 [Te)

Since every function in @ is defined on Vj, so is every function on ®;. Hence any
function in the approximation space V; can be extended naturally to the whole space ;.

Regarding the construction of the wavelets, we propose to construct the wavelet bases
VU, for the subspaces W; by selecting a subset of the columns of the band pass operator
[Tv, — ;11 (b} +1]$§ which is the orthogonal projector on the complement of V;; into V;.
The wavelets capture the detail lost from going from V; to V;,;. As our framework falls
into a bi-orthogonal scope, we need to build the dual wavelet bases. For a scale j, we
have a wavelet base ¥; and we need to construct the associated dual base W; obtained
such that we have the following relation

T
Vv, =1
where @;r is the pseudo-inverse of ¥;. We mention that in [36|, biorthogonal wavelet
transform is proposed but only the scaling functions are actually defined. Our construction
is identical but we also propose a definition for wavelets.

8.2.4. A generalization using more arbitrary scaling operators

We propose a generalization of the diffusion wavelet framework that enables it to
be combined for instance with the wavelet construction presented in Section 8.2. The
idea is merely to replace the powers of T as multiresolution scaling operators by more
arbitrary low-pass filters. More precisely, where the operator T? is used to define the
approximation space V;; in section 8.2.3, we propose to use instead a low-pass graph filter
H;. If the graph filters H; correspond to the scaling operators defined in section 8.1 with
appropriately increasing scales, this approach provides a way to reduce the redundancy
of the sets of scaling functions. Similarly, the same approach could be used to reduce the
redundancy of the wavelet functions defined in Section 8.2.

8.8. Applications

This section is devoted to illustrate our multiresolution analysis framework through
the visualization of wavelets and scaling functions on regular-type structures and semi-
supervised learning on directed graphs. The application framework will be the same as
in section 7.

8.3.1. Multiresolution analysis on the directed cycle graph

We show an example of multi-resolution analysis on the directed cycle graph Cy with
N = 256. We use the same assumptions made in section 6.4.1. We construct both
orthogonal and biorthogonal multi-resolution analyses on Cy through the framework of
the diffusion wavelets applied on the dyadic powers of T, i.e. {T% ‘jjzl. We set the number
of scales at J = 6.

Figure 10 shows the orthogonal and biorthogonal scaling functions at scales 1,3 and
5. At each scale, we represent 3 or 4 scaling functions. Figure 11 shows the orthogonal
and biorthogonal wavelet functions also at scales 1,3 and 5.

We note at each scale that the support of the orthogonal scaling functions is larger
than the support of the biorthogonal scaling functions. We also note at scale 3 and 5
that biorthogonal wavelet functions have support slightly smaller than the orthogonal
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Figure 10: Orthogonal and biorthogonal scaling functions on the directed cycle graph Cas6.
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Figure 11: Orthogonal and biorthogonal wavelet functions on the directed cycle graph Cos.
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wavelets functions. Furthermore, we note that orthogonal scaling functions as well or-
thogonal wavelet functions have more oscillations than their biorthogonal counterparts.
That means that orthogonal scaling and wavelet functions have a poorer frequency lo-
calization. The conclusions about the spatial localization of the scaling functions are
identical to the conclusions in [27]. The novelty here is we work on the directed circle
graph and we show the orthogonal and biorthogonal wavelets functions in addition to the
orthogonal and biorthogonal scaling functions. Finally, the scaling and wavelets functions
are not centered around the vertex where they have been selected. They instead propa-
gate along the graph towards the parent vertices of the selected vertex. We can also note
that the orthogonal wavelet transform is more robust with respect to perturbations than
the biorthogonal wavelet transform. Let Wono = [V1, ..., W5, P5] be the inverse wavelet
transform and W, its biorthogonal counterpart. The condition numbers on this exam-
ple are K(Worino) ~ 33 and k(Whiortho) = 2 X 10*. Consequently, the biorthogonal wavelet
transform is much more sensitive to perturbations than its orthogonal counterpart.

8.8.2. Multiresolution analysis on the directed Watts-Strogatz graph

In this section, we show examples of multi-resolution analyses on the directed ver-
sion of a graph from the Watts-Strogatz model. The Watts-Strogatz model [89] is an
undirected random graph model exhibiting small world properties including short aver-
age path lengths and high clustering [90]. The construction of a directed graph from the
Watts-Strogatz model starts with a directed cycle graph with IV vertices. Each node is
connected to its k next nodes following the direction of the directed cycle graph. For the
sake of simplicity, we consider the k& next nodes connected to a given node ¢ following the
direction of the directed cycle graph as its “closest” neighbors. Starting from an arbitrary
vertex, we apply the following procedure to each vertex in a clockwise manner. At vertex
i, the edge that connects 7 to each of its next nodes is randomly rewired with probability p
or remains untouched with probability 1—p. This procedure is repeated cyclically for each
successive vertex until the vertex i is selected again. We denote by G ~ DWS(N, K, ) a
graph constructed following a directed Watts-Strogatz model with N vertices, K nearest
neighbors and rewiring probability 5.

In a first instance, we analyze the scaling functions built from low-pass filters based on
T, at a given scale of G; ~ DWS(64,2,0). That is a special case of the directed Watts-
Strogatz model with no rewiring. In a second instance, we analyze some scaling functions
built from low-pass filters based on T, at a given scale of G, ~ DWS(64,2,0.02). Lastly,
we show both orthogonal and biorthogonal scaling and wavelets functions built following
the construction in section 8.2. We summarize the following cases in table 6.

Case Graph Reference operators
Case 1 : Scaling functions built wrt. sect. 8.1  G; ~ DWS(64, 2, 0) T,eT
Case 2: Scaling functions built wrt. sect. 8.1 G, ~ DWS(64, 2,0.02) T,eT
Case 3: Scaling functions built wrt. sect. 8.2 Gy ~ DWS(64,2,0.02) T

Table 6: Table of the different cases for the directed Watts-Strogatz graph.
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Figure 12: (Case 1) 50" scaling function at scale t=16 on the graph G ~ DWS(64,2,0), for all a € [0, 1].

Case 1. In this case, we analyze some scaling functions built from low-pass filters based
on P, at scale t = 2* of a directed Watts-Strogatz graph G, ~ DWS(64,2,0). We consider
the following low-pass filters

T, = TP, I 2 VYae|0,1]. (38)

and we construct a collection of low-pass graph filters at a given scale following the
construction presented in section 8.1. More precisely, we build the filters H, as follows

H, = ) h(tw)Su.a,

wWEwW

with ¢ = 2% and h(x) = exp(—x).

Figure 12 represents the 50" scaling function b, 50 = H,d50 at scale t = 2% built
from low-pass filters T, for all a € [0, 1] according to the construction section 8.1 on
the directed Watts-Strogatz graph G ~ DWS(64,2,0). The particularity of this case is
that the following graph has no rewiring. Consequently, the associated adjacency matrix
is circulant. All the low-pass filters T, admit the same discrete Fourier basis and all
corresponding frequencies are the same. Hence the associated scaling functions b, 50 are
exactly the same. We observe that the scaling function is centered around the node 50
and has a symmetric shape. In this case, for non symmetric graph filters H,, the scaling
functions have symmetric shape and are centered around their given node.

Case 2. In this case, we analyze some scaling functions built from low-pass filters based
on P, at scale 10 of Go ~ DWS(64,2,0.02). We also consider the following low-pass filters

T, = I'?P, 12 Vae{0,0.5,1}. (39)

and we construct a collection of low-pass graph filters at a given scale following the
construction presented in section 8.1. More precisely, we build the filters H, as follows

H, = ) h(tw)Su.q

WEW

with t = 2% and h(z) = exp(—x). We observe the 50" scaling functions at scale t = 24,
that is ba,50 = Ha650.
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Figure 13: 50" scaling function at scale 4 on a graph G ~ DWS(64,2,0.02), « € {0,0.5,1}, eq. (38).
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The 50 scaling function at the scale t = 24, for different «, b, 50, are represented in
fig. 13. The graph G, admits a directed edge from node 50 to node 11 and a directed edge
from node 30 to node 50. As « increases towards 1, we observe that the scaling function
Ba50 propagates around the child node 11. This means that the more « increases, the
more the influence of the backward random walk P* is important. For o = 0.5, the scaling
function b, 50 diffuses both ways and is centered around the child node 11 and the parent
node 30. Finally, as o goes to 0, we observe that b, 50 mostly propagates towards the
parent node 30.

Case 3. Here, we consider orthogonal and biorthogonal scaling functions on a graph G ~
DWS(64,2,0.02) used on the Case 2. These orthogonal and biorthogonal scaling functions
are built from the diffusion wavelets procedure. We start the procedure with the low-pass
filter H = T* and we look at the dyadic powers of H i.e. {H*}/_;. We set the number
of scales at J = 5. We observe the orthogonal an biorthogonal scaling functions at node
49 at scale 3 obtained by the diffusion wavelets procedure and we compare to the scaling
function at node 49 built from a graph filter based on T at the scale t = 16.

Figure 14 shows the orthogonal and bi-orthogonal scaling functions at node 49 built
using the diffusion wavelets framework and the scaling function at node 49 built using the
spectral graph wavelets framework. We note that the biorthogonal scaling function and
the scaling function built by the spectral graph wavelet framework are similar, i.e. well
localized around nodes 11 and 30 and localized around 49 with a large size support. By
contrast, the orthogonal scaling function has a poor spatial localization around the nodes
11 and 30.

8.3.3. Semi-supervised learning on directed graphs with {i-reqularization

We discuss the semi-supervised learning approach in the case of functions over directed
graphs with ¢; regularization on the wavelet coefficients. Our aim is to show that the
performance of the semi-supervised learning problem with ¢; regularization is competitive
compared to the existing approaches, e.g. the semi-supervised learning problem studied
in section 7. We use the same notations as in section 7 and work on the subgraph G’. The
{1-regularized solution for the semi-supervised learning problem is

w* = argmin |y — MKw|3 + Mw|;, XeR". (40)

The graph signal y = My is the partially labeled graph signal with M = {m;; }1<i j<n}
is the mask operator, i.e. the diagonal matrix where m;; = 1,.c0 where O < V is the
subset of known labels.

The matrix K = (Hy, Gy, -+, Gy) is the synthesis filter bank. If we set X = MK,
the equation (40) can be rewritten as

w* = argmin |§ — Xw|3 + A\|w|;, AeR.

The formulation (40) is identical to the formulation of the problem of signal restora-
tion with redundant wavelet transforms in [91], except that K is the synthesis wavelet
transform for functions defined over directed graphs. Furthermore, previous approaches of
semi-supervised learning on undirected graphs have been investigated using overcomplete
graph wavelets [92] or critically sampled spline graph wavelets [93]. The ¢;-regularized
synthesis semi-supervised learning problem is convex and can be solved efficiently using
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e.g. proximal splitting methods [94-96]. From the solution w* of eq. (40), we define the
restored signal f* as
f* = sign(Kw?*).

We compare the performance of formulations (40) and (19). Formulation (40) requires
a synthesis filter bank K. We choose a two scales synthesis graph filter bank K =
(Hy, G1, Gs) based on a heat kernel construction [97]

Hj=c¢*, ;=2 j=12
with £ the directed Laplacian defined at (6) and the graph bandpass filters G1, Gy as
G2:H1_H2, G1:I—H1.

Figure 15 shows the performance of semi-supervised learning formulations (40) and (19)
on the largest strongly connected graph obtained from US political blogs. The perfor-
mance is obtained by averaging 200 realizations and choosing the parameters A and ~ that
maximize the performance. On fig. 15, the performance based on the ¢; penalization of
redundant graph wavelets coefficients on directed graphs is competitive against the prob-
lem with ¢y Dirichlet regularization term for all percentage of known labels. Normally,
one should expect better performance in the ¢; case since the signal should be rather
sparse in the wavelet basis. However, the wavelet representation of the signal here is not
that sparse because our graph wavelets are not that good in terms of spatial localization.

9. Conclusion

We introduced a novel harmonic analysis on directed graphs. First, we proposed a
frequency analysis for functions defined on directed graphs based on the eigenvectors
of the random walk operator on a directed graph. From this Fourier-type frequency
interpretation, we showed how to construct redundant wavelets on directed graphs as well
as critically sampled wavelets by generalizing the diffusion wavelets framework. Finally,
we illustrated our harmonic analysis through examples of semi-supervised learning and
graph signal modeling on directed graphs and showed the relevance of our framework
compared to existing approaches.
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