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Introduction

Linear differential equations are ubiquitous in mathematics and their ap-
plications. The Galois theory of linear differential equations aims at de-
scribing properties of solutions of linear differential equations by studying
the algebraic relations between solutions (and their derivatives). This alge-
braic object also has some analytic interpretations; in a sense, one may think
of the differential Galois group as mesuring "what algebra sees of the dy-
namics" (Malgrange). Thanks to its algebraic nature, the differential Galois
group is an object many of whose properties can be established/detected
by symbolic computation.

Among the many applications of the algebraic theory of linear differen-
tial equations, we will highlight two families.

A first one stems from the fact that solutions of linear differential op-
erators ("D-finite functions") have good "closure" properties: their sums,
products, derivatives, etc are also D-finite. An extensive illustration of this
aspect will be found in the lectures of J.-M. Maillard where applications to
statistical mechanics are described.

A second family of applications is the study of non-linear differential
systems. We are given a (non-linear) differential system and we assume
that we know a solution curve; linearizing along this solution curve yields
a first order linear differential system, the "variational system". Several
properties of the original system, in particular existence of first integrals
in some "good" class of functions, induce similar properties on the vari-
ational system; the algebraic theory of linear differential equations then
yields methods and algorithms to detect such properties

This talk is split into two lectures. In the first part, we will focus on
differential Galois groups and describe the basic foundations of the algo-
rithms; this is adapted from notes for lectures by the second author in a
CIMPA school in 2001. The second part will be devoted to detection of first
integrals of non-linear differential systems by the variational approach; we
will particularly emphasize on hamiltonian systems.

These notes are introductory material. Although proofs will be sup-
plied, I’ll refer to the original papers for technical aspects or up-to-date
algorithms not covered here.
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Part I

Galois Theory of Linear Differential
Equations

1 Differential Galois Theory

Differential Galois theory is, as in the clasical case, a tool to study the alge-
braic relations among solutions of linear differential equations; as we will
see in the next lecture, it can also be used to study dynamical properties on
solutions of some non-linear systems. A general reference for differential
Galois theory is the fundamental book [vdPS03].

1.1 Differential Equations and Differential Systems

We consider a differential field k with a derivation that we note ′ or ∂ if the
context is not clear. For the rest of these notes, we assume that the field of
constants C of k is algebraically closed (i.e any polynomial over C has all its
roots in C) and of characteristic zero. Typical examples are Q or C.

1.1.1 Differential Operators

Let k denote a field (here k = C(x)) equipped with a derivation ∂ (naturally
∂ = d

dx ). One says that k is a differential field. We define the ring of differ-
ential operators as the set k[∂] with the (non-commutative) multiplication
defined by ∂.a = a.∂ + ∂(a) for a ∈ k. This multiplication corresponds to
the composition of differential operators (compute the derivative of ay for
a in k and an unknown function y).
Let L be a linear differential operator : L = ∂n + · · ·+ a1∂ + a0, ai ∈ k.
K is a Picard-Vessiot extension associated to the homogeneous linear dif-
ferential equation L(y) = 0 if K is generated over k by y1, . . . , yn and their
derivatives where y1, . . . , yn are linearly independant solutions of L(y) = 0
and if the constant fields of k and K are equal.

1.1.2 Equivalent differential systems and differential modules

A linear differential equation is an equation of the form

L(y) = y(n) + an−1 y(n−1) + . . . + a0 y = 0
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with the ai being functions in k (not constants). Solving this equation is
equivalent to solving the companion system


y1
y2
· · ·

yn−1
yn


′

=


0 1 0 · · · 0

0 0 1 0
...

...
. . . . . . 0

0 · · · · · · 0 1
a0 a1 · · · an−2 an−1




y1
y2
· · ·

yn−1
yn


Conversely, suppose that (y1, y2, · · · , , yn) satisfy a homogeneous first

order linear differential system Y′ = AY of size n. To find an equation as-
sociated with Y′ = AY, we would like to find a system in companion form
whose solutions are equivalent (or "isomorphic") to the ones of the origi-
nal system (precisely: obtained with a change of variables Y = PZ with
P an invertible matrix with coefficients in k). This is done by the follow-
ing cyclic vector process (see e.g [Bar93, vdPS03] for references and other
methods). Consider Λ ∈ kn and let z1 = ΛY = λ1 y1 + · · · + λn yn. We
compute z2 = z′1, . . . , zn+1 = z(n)

1 by using the relation Y′ = AY. We ob-
tain n + 1 linear expressions in the n variables yi and so they are linearly
dependant: this provides a linear differential equation L(z1) = 0 for z1.
Letting Z = (z1, · · · , zn)t, we now have a relation Z = PY and Z′ = BY;
If the matrix P is invertible, Λ is called a cyclic vector for the system and
Z′ = (BP−1)Z is a companion system, equivalent to the first one. It can be
shown that the cyclic vectors form a Zariski open set, and almost all choices
of Λ will fit [vdPS03].

Thus, in the following, everything that is stated for first order systems
is valid for n-th order equations and vice-versa.

A useful tool to describe an equivalence class of differential systems
(intrinsically) is the notion of differential module:

Definition 1.1. A differential module over (k, ∂) is finite-dimensional k-vector
space M ' kn with an operator D satisfying a Leibniz rule:

∀ f ∈ k, v ∈ M : D( f .v) = ∂( f ).v + f .D(v)

Differential modules are sometimes also called “modules with a con-
nection” in the litterature. To a differential system Y′ = AY, one may
cannonically associate a differential module with a basis e = (e1, . . . , en)
and the operator D acting by D(ei) = ∑

n
j=1 −a j,ie j. This way, a solution

Y = y1e1 + . . . + ynen of Y′ = AY is caracterized by the relation D(Y) = 0



1 DIFFERENTIAL GALOIS THEORY 3

(check this) so that we may write D =′ −A.
It can be checked that two differential systems are equivalent if and only if
they are associated to the same differential module (in fact, the change of
variable that sends a system to the other can be viewed as a change of basis
in the differential module).
The cyclic vector method above amounts to finding an element v such that
v, D(v), . . . , D(n− 1)(v) are a basis of the differential module M (hence the
term “cyclic”).

1.1.3 First integrals of linear differential systems

Let U denote a fundamental matrix of solutions of Y′ = AY (i.e U is in-
vertible and its collumns are solutions of Y′ = AY). A linear first integral of
the system is a linear function R such that R(Y) is a constant whenever Y
satisfies Y′ = AY. Let Yi denote the columns of U and Ri denote the rows
of U−1. As U−1U = 1, we see that Ri.Yj = δi, j (where δi, j is the kronecker
symbol, δi,i = 1 and δi, j = 0 when i 6= j). It follows that the rows Ri define
linear first integrals of the system. We see that the columns of tU−1 are co-
efficients of linear first integrals; they are also solutions of the adjoint system
Z′ = −t AZ. We see that solutions of the adjoint (or dual) system yield first
integrals of the system.
Similarly, one can show [Wei95, MR01] that polynomial first integrals will
be homogeneous, and obtained from rational solutions of symmetric powers
of the dual system. This simple fact is useful in the Morales-Ramis theory
of non-integrability of Hamiltonian systems.

1.2 The Differential Galois Group

We will proceed as in classical Galois theory: first, we construct a field
generated by all the solutions (and their derivatives)

Definition 1.2. A differential field extension K ⊃ k is said to be a Picard-Vessiot
extension of k (for L(y) = 0) if

1. K = k(y1, y′1, . . . , y( j)
i , . . . , y(n−1)

n ), where the yi are a basis of solutions of
L(y) = 0 (i.e K is the differential field generated1 by the solutions of L.

2. K and k have the same field of constants.

1Note that as L(yi) = 0, we have y(n)
i and the higher derivatives in K, which really

makes it a differential field
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As the constant field of k is algebraically closed of characteristic 0, one
can show that Picard-Vessiot extensions exist and are unique up to differen-
tial isomorphism ([vdPS03], the original proof goes back to Kolchin in 1948
[Kol99]). In the sequel, the term “solution” will always denote a solution in
the Picard-Vessiot extension K.

Example 1.3. Let k = C(x) and consider the equation L(y) = y′ − 1
3x y. We

know that the solution is x
1
3 but let’s construct the Picard-Vessiot extension (hence

the solution) like we did in the the preliminary lecture on Galois groups.
We consider the ring k[y] with the derivation D = d

dx + 1
3x

d
dy , where y is an in-

determinate. In this construction, y satisfies D(y) − 1
3x y = 0. However, it is

easily checked that D( y3

x ) = 0 so this ring contains a new constant. Take the ideal
I = (y3 − x); it is prime (in fact, it is maximal) and stable under the derivation.
We now let K = k[y]/I. This is now a differential field and it now has no new
constant (the “new constant” is included in the relation defined by I). This is now
a Picard-Vessiot extension.
Note the similarity with the second construction of the splitting field in the pre-
liminary Galois lecture.

In fact, the existence of Picard-Vessiot extension can be achieved through
this construction (see [vdPS03, Mag94]). Consider the ring R := k[X1,1, . . . , Xn,n, W]
where the Xi, j are indeterminates and

W. det

 X1,1 . . . X1,n
...

...
Xn,1 . . . Xn,n

 = 1.

Extend the derivation on k to a derivation D on R by letting D(Xi, j) = Xi, j+1

for 1 ≤ j < n and D(Xi,n) = −sumn−1
l=0 alXi,l+1. This way, we have formally

realized that L(Xi,1) = 0. Let J denote a differential ideal in R (i.e D(J) = J)
which is maximal among differential ideals. It can be shown that then J is
a prime ideal. So R/J has no zero-divisor and we may let K := Frac(R/J).
Now K has no new constant: if P

Q was a new constant, then (P−Q) would
be a differential ideal in R/J, contradicting the maximality of J. It follows
that this construction yields a Picard-Vessiot extension K. The ideal J is
called the ideal of relations among solutions.

Definition 1.4. We call a differential k-automorphism of K an automorphism
g of K which leaves k fixed et which commutes with the dérivation,i.e:

1. ∀y ∈ K, g(y)′ = g(y′)
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2. ∀y ∈ k, g(y) = y

The differential Galois group G = Gal∂(K/k) of a differential extension K ⊃ k
is the group of differential k-automorphisms of K.
The differential Galois group G of L(y) = 0 is defined as the differential Galois
group of K/k, where K is a Picard-Vessiot extension of k for L.

Consider the n-dimensional C-vector space V of solutions of L(y) = 0
in K, generated by the yi over C. Let g ∈ G and let y denote a solution of
L(y) = 0. Then, g(y) is also a solution. Indeed, as ai ∈ k, we have g(ai) = ai
and :

L(g(y)) = g(y)(n) + an−1g(y)(n−1) + . . . + a0g(y)

= g(y(n)) + g(an−1)g(y(n−1)) + g(a0)g(y)
= g(L(y)) = g(0) = 0.

As any solution is a linear combination of the yi, we deduce that there ex-
ists constants ci, j such that g(y j) = ∑i ci, j yi. As an automorphism is fully
determined by its action on the generators yi of K, this gives us a faith-
ful representation of G as a subgroup of the group GL(n, C) of invertible
n × n matrices. In fact, one can show that G is a linear algebraic group, i.e
the entries ci, j of the matrices are defined as solutions of a set of algebraic
equations; the reason for this is the fact (intuitively clear, but still deep) that
G can also be viewed as the set of such automorphisms that preserve all the
relations among the solutions.
Recall the construction of the Picard-Vessiot extension; G can be viewed as
the set of matrices with a right action on the Xi, j that preserve the ideal of
relations J, and this is what makes it a linear algebraic group. In what fol-
lows, we will identify G to this representation as a group of matrices acting
on solutions.

A little bit on linear algebraic groups Before proceeding with Galois the-
ory, a quick incursion into linear algebraic groups.
Recall that an affine algebraic variety V over C is defined as the set of solu-
tion of some polynomial equations (e.g straight lines, a circle, conics,etc..).
The ideal I(V) associated to the variety is the set of polynomials that vanish
at every point of the variety. Conversely, to any ideal we associate the va-
riety of points that annul all polynomials of the ideal. The variety is called
irreducible if I(V) is prime. As every ideal is the intersection of a finite
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number of prime ideals, we see that any affine variety is the union of a fi-
nite number of irreducible varieties.

A linear algebraic group G is a group of n× n matrices whose entries
form an algebraic variety of Cn2+1. The reason for adding one dimension
is to include the condition that the determinant is not zero: if we add one
variable, the condition det(g) 6= 0 is rephrased as u. det(g)− 1 = 0 which
is now a polynomial equation. This way, we see that GL(n, C) is a linear
algebraic group.

If G is a linear algebraic group and G is irreducible as a variety, we will
say that it is connected (for the Zariski topology). If G is not connected, then
G is the finite union of irreducible ("connected") varieties. Among those,
the one that contains the identity element is called the connected component
of the identity in G, and denoted by G◦. One can show that G◦ is a normal
subgroup of finite index in G.
A linear algebraic group is said to virtually have a property if G◦ has that
property; for example, G is called virtually abelian if G◦ is abelian (as a
group).
The dimension of G is defined as the transcendence degree of G◦ over C.

Example 1.5. Here are classical examples of linear algebraic groups.

1. GL(n, C) and SL(n, C) (defined by det(g) = 1).

2. The group of upper triangular matrices T (defined by Ti, j = 0 for j < i).

3. Let In denote the identity matrix of size n and the standard symplectic ma-
trix

J =
(

0 In
−In 0

)
The set of matrices M that satisfy t M.J.M = J (this relation induces a fi-
nite set of polynomial relations on the entries of M) is called the Symplectic
group Sp(2n, C) and will be central in the applications to symplectic me-
chanics.

4. Any finite group of matrices (check this!)

To measure properties of the connected component of the identity G◦,
one uses its Lie algebra. The Lie algebra of a linear algebraic group is the
tangent space at the identity (this makes sense: the group is an algebraic
variety, so there is a natural tangent space). This is simply computed with
the epsilon-trick (see [Put99a, vdPS03]) as follows. Let ε denote an object
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satisfying ε2 = 0 (think of ε as being ideally small). A matrix M is in the
tangent space at the identity if and only if Id +εM satisfies the equations of
the group (or “is a C[ε]-point of the variety”). This defines the Lie algebra
Lie(G).
The dimension of G as a variety equals the dimension of Lie(G) as a vec-
tor space. If you compute the Lie algebra for the groups in the above ex-
amples (easy computation), you will find that sl(n, C) := Lie(SL(n, C))
is the set of matrices with zero trace, that the Lie algebra of T is T it-
self, that sp(2n, C) := Lie(Sp(2n, C)) is the set of matrices M satisfying
t MJ + JM = 0 (or M = JS, with S any symmetrical matrix), and that the
Lie algebra of a finite group is equal to 0.

1.3 Some Essential Properties

As in classical Galois theory, there is a Galois correspondence between al-
gebraic subgroups of G and differential subfields of K. We will admit here
a weak version of this correspondence which will be enough for our pur-
poses (see e.g [vdPS03] for a full proof).

Theorem 1.6 (Galois normality). Let K denote a Picard-Vessiot extension of k,
let G be its differential Galois group, and let z ∈ K. Then:

z ∈ k ⇐⇒ ∀g ∈ G, g(z) = z.

A first application of this concerns unimodularity of the Galois group:
recall that a matrix is called unimodular if its determinant is equal to 1, and
that the group of unimodular matrices is denoted by SL(n, C).
Define the Wronskian matrix W = (y( j−1)

i )i, j=1..n and the Wronskian deter-
minant w = det(W).
Exercise 2.

1. Show that y1, . . . , yn are linearly independent over C if and only if the
Wronskian determinant w is not equal to zero.

2. Show that w′ = a1w

3. Show that, ∀g ∈ G, g(w) = w. det(g) (Hint: show that g acts on W by
multiplication on the right).

�

unimodular Lemma 1.7. There exists f ∈ k such that an−1 = f ′
f if and only if G ⊂ SL(n, C).
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Proof. Assume that G ⊂ SL(n, C). By the above exercise, we have g(w) =
w for all g in G hence the normality theorem shows that w ∈ k and it is thus
a solution in k of w′ = an−1w.
Conversely, if there exists f in k such that an−1 = f ′

f , then we must have
w = c. f with c ∈ C (because K contains no new constants) so w ∈ k and
thus the relation g(w) = w. det(g) implies that det(g) = 1.

Note that we can always arrange that the Galois group be unimodular
by letting y = z.e

∫ an−1
n , we see that z satisfies a linear differential over k

where we have no term in z(n−1) any more, hence the wronskian is a con-
stant (necessarily in k) and the Galois group is unimodular.

If z ∈ K, the orbit of z under G, noted OrbG(z) is the set of elements of
the form g(z) for some g in G.

algebrique Proposition 1.8. Let z ∈ K. Then z is algebraic of degree m over k if and only if
OrbG(z) has exactly m elements.
All solutions of L(y) = 0 are algebraic if and only if G is a finite group.

Proof. Assume that z is algebraic; let Q be its minimum polynomial. Let

P = ∏
g∈G

(Y− g(z)) ∈ K[Y].

Of course, P(z) = 0 and we now show that the coefficients are in k. Let
g0 ∈ G. As left multiplication by g0 is a bijection of G, we have

∏
g∈G

(Y− g0.g(y)) = ∏
g̃∈G

(Y− g̃(y)) .

So the coefficients of P are fixed by the group and hence, by Galois normal-
ity, they are all in k. The roots of P are exactly OrbG(z) by construction.
As Q is the minimum polynomial of z, Q is a divisor of P so the roots of
Q are in OrbG(z). Now, the image of a root of Q (here: z) by any element
of G is again a root of Q. We conclude that there are as many roots of Q as
elements in OrbG(z), hence deg(Q) = card (OrbG(z)).
Conversely, if OrbG(z) has exactly m elements, call g1, . . . , gm elements
of G such that OrbG(z) = {g1(z), . . . , gm(z)}. As above, we form P =
∏i=1..m (Y− gi(z)). Let g ∈ G; as it is an automorphisms, g(gi(z)) 6=
g(g j(z)) when i 6= j so g acts as a transitive permutation on the gi(z). It
follows that P has coefficients in k. Now, if it was reducible, z would be
a zero of a factor and its orbit would hence have less than m element. We
conclude that z is algebraic of degree m.
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Now, if G is a finite group, the above shows that any element in the Picard-
Vessiot extension is algebraic; conversely, if all solutions are algebraic, then
the yi have only a finite number of possible images under G so, as an auto-
morphism of K is defined by its action on the generators of K, the group G
must be finite.

Exercise 3. Let z ∈ K be algebraic of degree m. Let StabG(z) := {g ∈
G, g(z) = z} denote the stabilizer of z in G. Show that m is the index in G
of StabG(z) (i.e the cardinal of the quotient). �

exponentiel Proposition 1.9. An non-zero element z of K is exponential over k if and only if,
for all g ∈ G, there exists a constant cg ∈ C such that g(y) = cg.y.

Proof. Let g ∈ G.(
g(z)

z

)′
=

g(z′)
z

− z′

z2 g(z) =
g(z)

z

(
g(

z′

z
)− z′

z

)
.

So, g(z)/z is a constant for all g ∈ G if and only if z′/z is left fixed by all
g ∈ G. By Galois normality, this is indeed equivalent with the fact that
z′/z ∈ k.

Note that in fact, this means that an element z of K is exponential if and
only if the straight-line z.k is globally invariant under G.
Exercise 4.[Put99c]
We consider the equation y′ = ay with a ∈ C(x).

1. Show that any proper algebraic subgroup of C
∗

is finite and cyclic.

2. By considering the possible Galois groups, show that an algebraic
solution y′ = ay must satisfy ym = f where f ∈ C(x) (i.e y is radical
over C(x)). Show that the equation y′ = ay has an algebraic solution
if and only if there exists a positive integer m such that the equation
f ′ = ma f has a solution f ∈ C(x).

3. For m ∈ N, show that the equation f ′ = ma f has a rational solution
if and only if a = ∑i

ni
m(x−xi)

with ni ∈ Z having their gcd prime to m.
What is the Galois group in this case.

4. Deduce from this a method which decides if the equation y′ = ay has
an algebric solution, computes it, and gives the differential Galois
group.
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5. Application: compute the Galois group for y′ = y, for y′ = 1
4x y, and

for y′ = α
x y.

�
Exercise 5.[Logarithms]

1. Consider the field K = C(x, log(x)). Show that K is a Picard-Vessiot
extension of C(x) corresponding to a homogeneous linear differential
equation of order 2 and that its Galois group is conjugate to Ga =

{
(

1 c
0 1

)
, c ∈ C}.

2. Show that Ga is abelian, isomorphic to the additive group (C, +), and
that its only algebraic subgroups are itself and {Id}.

3. Show that the reasonning of (i) applies for any element f such that
f ′ = a ∈ C(x). Deduce from this that either f is transcendental or f
is in C(x) (theorem of Liouville).

�
These two exercises show that when one adjoins to k an exponential or

an integral, the Galois group of the extension is abelian. Recall that the
Liouvillian functions are the elements of fields obtained by adjoining suc-
cessively exponentials, integrals, or algebraic elements to C(x).
Exercise 6. We say that a field K is a purely Liouvillian extension of C(x) if it
is constructed via a tower of fields C(x) = K0 ⊂ K1 ⊂ . . . ⊂ KN = K where
Ki+1 is obtained from Ki by adjoining either an exponential or an integral.
Show that the differential Galois group of a purely Liouvillian extension K
is solvable. �

If we allow arbitrary algebraic extensions, their Galois group G is finite
and needs not be abelian any more (in general, it is not!). However, G◦ is
then reduced to the identity. This gives us the first step to the following
theorem of Kolchin (which we will admit)

Theorem 1.10. A linear differential has a basis of liouvillian solutions if and only
if its differential Galois group G is virtually solvable.

Kolchin actually proved the Lie-Kolchin theorem: G◦ is solvable if and
only if its matrices can be put simultaneously in triangular form. The above
theorem then follows without too many difficulties. To get convinced, you
may study an exemple of this situation where a linear differential equation
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has a solvable differential Galois group.

Exercise 7. Consider the differential equationexp-red

L(y) = y′′ + (−g(x)− 2) y′ + (g(x) + 1) y = 0

with g a non-zero rational function in C(x).

1. Show that it admits y1 = ex as a solution.

2. Using variation of constants, compute a second solution from y1 and
integrals.

3. Show that the differential Galois group of L is solvable.

4. Show that the differential Galois group of L is either{(
c 0
0 c

)
, c ∈ C

∗
}

or
{(

c d
0 c

)
, c ∈ C

∗
, d ∈ C

}
and give a criterion to decide between either case.

�

2 Second Order Differential Equations

We will now show how to use the differential Galois group for solving lin-
ear differential equations. For simplicity, we focus on second order equa-
tions. The idea is to first classify the possible Galois groups and then, on the
basis of this classification, to study the corresponding properties of the so-
lutions. We consider the differential equation L(y) = y′′ − a1 y′ − a0 y = 0.

2.1 Subgroups of SL(2, C)

Recall from lemma
unimodularunimodular
1.7 that we can assume that the differential Galois group

is unimodular, i.e a subgroup of SL(2, C). The subgroups of SL(2, C) are
classified and we now go through this construction.

2.1.1 Case I: Reducible Case

Definition 2.1. Let G be a linear group acting on a vector space. We say that (the
action of) G is reducible if there exists a non-trivial subspace W ⊂ V such that
G(W) ⊂ W.
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In our case, dim(V) = 2 so W has to be of dimension 1 and the matrices
in the Galois group are triangular (or diagonal). By proposition

exponentielexponentiel
1.9 (and

the remark right after it), this is equivalent with the fact that the differential
equation has an exponential solution. We also see that the group is diag-
onal if there are (at least) two exponential solutions (this case is handled
further in exercise

compredcompred
9). In this case, W admits a complement subspace that is

also stable under G and the group is then said to be completely reducible.

To the equation L(y) = 0, we associate the Riccati equation, i.e the equa-
tion satisfied by u = y′

y . Simple computation shows that u′ = a0 + a1u− u2.
We see that the equation is reducible if and only if the Riccati equation has
a rational solution.

If G is reducible, then L itself is reducible, in the sense that it can be
written as a composition of two operators (check this in exercise

exp-redexp-red
7); you

may check that L has a right factor ∂− u if and only if u is a solution of the
Riccati equation.

If G does not act reducibly, it is called irreducible.

2.1.2 Case II: Imprimitive Case

Definition 2.2. Let G be an irreducible group acting on a vector space V. We say
that G is imprimitive if there exist subspaces Vi such that V = V1 ⊕ . . . ⊕ Vr
and G permutes transitively the Vi :

∀i = 1, . . . , r ∀g ∈ G, ∃ j ∈ {1, . . . , r} : g(Vi) = Vj.

We then say that V1, . . . , Vr form a system of imprimitivity for G.

In our case, we must have r = 2 and dim(V1) = dim(V2) = 1. The
matrices have the form(

a 0
0 a−1

)
or

(
0 b

−b−1 0

)
with a, b ∈ C∗.

Lemma 2.3. Assume that G is irreducible. Then the Riccati equation has an
algebraic solution of degree 2 if and only if G is imprimitive.

Proof. Let P denote the minimum polynomial of an algebraic Riccati solu-
tion of degree 2. Let u1, u2 be the roots of P. As u1, u2 satisfy the Riccati
equation, there exists solutions yi of L(y) = 0 such that y′i/yi = ui. As G



2 SECOND ORDER DIFFERENTIAL EQUATIONS 13

permutes the ui, it permutes the lines Vi = C. < yi > and the Vi form a
system of imprimitivity.
Reciprocally, let Vi = C. < yi > be a system of imprimitivity. If we let
ui = y′i/yi, then G permutes the ui and proposition

algebriquealgebrique
1.8 shows that they are

algebraic of degree 2 and conjugate (you may also check that the symmetric
functions in the ui are left fixed by G).

2.1.3 Case III: Primitive case

Definition 2.4. If G is irreducible and not imprimitive, we say that it is primitive.

One can show ([SU93a]) that an equation whose Galois group is an in-
finite primitive subgroup of SL(n, C) does not have Liouvillian solutions;
And if the group is finite, all solutions are algebraic (proposition

algebriquealgebrique
1.8) and

hence Liouvillian.
In the case of SL(2, C), there are three primitive groups (e.g [Kov86,

SU93b, SU93a] The tetraedral group (ASL2
4 ) of order 24, the octaedral group

(SSL2
4 ) of order 48, and the icosaedral group (ASL2

5 ) of order 120. We will
now review them

The tetraedral group ASL2
4 of order 24 is generated by matrices

M1 =
(
ξ 0
0 ξ−1

)
and M2 =

1
3
(2ξ − 1)

(
1 1
2 −1

)
where ξ denotes a primitive sixth root of unity, i.e ξ2 − ξ + 1 = 0. The
subgroup < M1 > generated by M1 has order 6. Assume the second order
operator L has ASL2

4 as its Galois group. Let y1, y2 denote a basis of the solu-
tion space on which these matrices act and have this form. We see that the
line generated by y1 is left fixed by < M1 >; this imposes that u1 := y′1

y1
is

left fixed by < M1 > (recall proposition
exponentielexponentiel
1.9) so its orbit under G has length

at most 4 (in fact, direct computation shows that it has length exactly 4). By
the Galois correspondenc (proposition

algebriquealgebrique
1.8), it follows that u1 is algebraic

of degree 4. We conclude that when the Galois group is ASL2
4 , the Riccati

equation has a solution which is algebraic of degree 4.
Another way to see this result is the following. Computing the conjugates
of y1 under G shows that the polynomial Y1 (2 Y2 + Y1)

(
4 Y2

2 − 2 Y1 Y2 + Y1
2
)

is a semi-invariant of the Galois group (i.e it is sent to a multiple of itself by



2 SECOND ORDER DIFFERENTIAL EQUATIONS 14

the group acting by linear substitution, right action). It can also be checked
that its cube is an invariant. We will use this below to compute the mini-
mum polynomial of u1.

The octaedral group SSL2
4 of order 48, is generated by matrices

M1 =

(
ξ 0

0 ξ−1

)
and 1/2ξ

(
ξ2 + 1

)( 1 1

1 −1

)

where ξ denotes a primitive eighth root of unity, i.e ξ4 + 1 = 0. The sub-
group < M1 > generated by M1 has order 8 and reasoning as above shows
that the riccati solution u1 is algebraic of degree 6 = 48

8 .
The group admits the semi-invariant Y5

1 Y2 − Y1Y5
2 , whose square is an in-

variant.

The icosaedral group ASL2
5 of order 120. is generated by matrices

M1 =

(
ξ 0

0 ξ−1

)
and

(
φ ψ

ψ −φ

)
whereξ denotes a primitive tenth root of unity, i.eξ4−ξ3 +ξ2−ξ + 1 = 0,
andφ = 1

5 (ξ3 −ξ2 + 4ξ − 2) andψ = 1
5 (ξ3 + 3ξ2 − 2ξ + 1). The subgroup

< M1 > generated by M1 has order 10 and reasoning as above shows that
the riccati solution u1 is algebraic of degree 12 = 120

10 .
The group admits the invariant Y11

1 Y2 − 11Y6
1 Y6

2 −Y1Y11
2 .

In the cases of these three groups, all solutions are algebraic and hence
all solutions of the Riccati equation are of course also algebraic. By devel-
opping on propositions

algebriquealgebrique
1.8 et

exponentielexponentiel
1.9, the study of those groups (see [?, ?] or

push further the above calculations) shows that :

• For ASL2
4 : The Riccati has algebraic solutions of degrees 4,6 ou 12.

• For SSL2
4 : The Riccati has algebraic solutions of degrees 6,8,12, ou 24.

• For ASL2
5 : The Riccati has algebraic solutions of degrees 12,20,30, ou

60.

Lastly, if G = SL(2, C), the differential equation does NOT have liouvil-
lian solutions. In view of the applications to hamiltonian mechanics ([?]),
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we see that the only subgroup(s) of SL(2, C) that will yield obstructions to
integrability are . . . only SL(2, C) itself.

This classification work is summarized in Kovacic’s theorem

kovacic Theorem 2.5 ([Kov86]). Let L(y) = 0 be a linear differential equation with co-
efficients in k It has Liouvillian solutions if and only if it has solutions of the form
y = e

∫
u where u is an algebraic solution of degree 1 (reducible case I), degree 2

(Imprimitive case II), or degree in {4, 6, 12} (Primitive case III) of the associated
Riccati equation.

2.2 The Kovacic algorithm

We now give a (simplified) version of the algorithm of Kovacic for solving
second order linear differential equations.

2.2.1 Symmetric powers

Let P = Um + bm−1Um−1 + . . . b0 be the minimum polynomial of an alge-
braic solution of the Riccati equation. Let u1, . . . , um be the roots of P, and
yi the solutions of L(y) = 0 of which they are logarithmic derivatives. We
then have

bm−1 = −(u1 + · · ·+ um) = −(
y′1
y1

+ . . . y′m ym) = − (∏ yi)′

∏ yi
.

The coefficient −bm−1 is thus the logarithmique derivative of a product of
m solutions of L(y) = 0.

sympow Lemma 2.6. Let y1, y2 be a basis of solutions of L(y) = 0. There exists a linear
differential equation L©s m whose solution space is the set of homogeneous polyno-
mials of degree m in y1, y2 with coefficients in C.

Proof. Let y be a generic solution of L(y) = 0. Let z = ym. Compute z′,
z′′,. . . ,zm+1 by always replacing y′′ by its expression given by L(y) = 0.
The z(i) are linear combinations of monomials of degree m in y, y′. These
monomials form a k-vector space of dimension m + 1 ; if we have m + 2
elements of such a space, they are linearly dependent, so z,z′, z′′,. . . ,zm+1

satisfy a linear dependence relation over k that we note L©s m(z) = 0 : what
we know is that it has order at most m + 1.
Let A be the differential ring K[X1, X2] where the derivation is given by
X′

1 = X′
2 = 0. By construction, we have L©s m((X1 y1 + X2 y2)m) = 0.

We easily infer that any monomial of degree m en y1, y2 is a solution of
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L©s m(z) = 0. But, if these monomials were linearly dependent, then y1, y2
would be linearly dependent (any homogeneous polynomial in two vari-
ables factors as a product of linear factors over C) : So they form a vector
space of dimension m + 1, then L©s m(z) is order m + 1, and its solution
space is precisely that vector space.

We can calculate the linear dependence between z and z′ using standard
linear algebra, but a faster method is the following:
Exercise 8.[[BMW97]] Let L(y) = y′′ + ay′ + by = 0. we define recursively
a sequence of operators Li by :

L0(y) = y,
L1(y) = y′,
Li+1(y) = Li(y)′ + iaLi(y) + i(m− i + 1)bLi−1(y).

1. Let y be a solution of L(y) = 0. Show by induction that

Li(ym) = m(m− 1) · · · (m− i + 1)ym−i(y′)i.

2. Deduce that Lm+1 = L©s m.

�

2.2.2 Algebraic Solutions of the Riccati Equation

Theorem 2.7. The Riccati equation has a solution algebraic of degree at most m if
and only if the symmetric power L©s m(z) = 0 has an exponential solution.

Proof. If the Riccati equation has an algebraic solution of degree m, we have
seen that the coefficient bm−1 of its minimum polynomial is the logarithmic
derivative of an exponential solution of L©s m(z) = 0.
Conversely, let z be an exponential solutions of L©s m(z) = 0. Lemma

sympowsympow
2.6

shows that there exists a polynomial Q(y1, y2) homogeneous of degree
m such that z = Q(y1, y2). Let v be the logarithmic derivative of z. As
Q(y1, y2) factors as a product of linear factors over C, let u1, . . . , um be the
logarithmic derivatives of these factors. A linear combination of solutions
is a solution so the ui are Riccati solutions. For any g ∈ G, as g(v) = v,
g(ui) must be one of the u j : by proposition

algebriquealgebrique
1.8, it follows that the ui are

algebraic of degree at most m.

If the ui do not have degree m, you may check that the product P of their
minimum polynomials will be of degree m and its coefficient bm−1 will be
given by bm−1 = −v′/v.
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In [UW96], it is shown how, in many cases, one can also ask for rational
solutions of L©s m(y), which simplifies the algorithm.

Recall that the Riccati equation associated with y′′ + a1 y′ + a0 y is u′ =
−a0 − a1u − u2. Differentiating the identity P(u) = 0 and replacing u′

by its expression, we obtain a polynomial relation of degree m + 1 for u.
The remainder of the Euclidean division of this polynomial of degree m +
1 by P must be zero which gives us the following recursion to obtain all
coefficients bi once bm−1 is known.

(])m :


bm = 1

bi−1 =
−b′i + bm−1bi + a1(i−m)bi + a0(i + 1)bi+1

m− i + 1
, m− 1 ≥ i ≥ 0

b−1 = 0

Finally, we obtain the following algorithm to calculate algebraic solu-
tions of Riccati equations:

For m ∈ {1, 2, 4, 6, 12} :

• Compute L©s m(y)

• Seek exponential solutions f

• If there are some: let bm−1 = − f ′
f , compute the other coefficients

bi of P by using (])m, and return P
else, proceed with next m.

If no solution is found this way, there are no Liouvillian solutions.

Exercise 9. Consider the differential equation L(y) = y′′ − ry = 0.compred

1. Write the Riccati equation R(u) = 0 satisfied by u = y′/y.

2. Show that L©s 2(y) = y′′′ − 4ry′ − 2r′y′′.

3. We assume that R has an algebraic solution of degree 2.

(a) Show that its minimum polynomial has the form

P = u2 − f ′

f
u +

f ′′

2 f
− r

where L©s 2( f ) = 0.
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(b) Show that f disc(P) = c where c is a constant.

(c) We assume that L©s 2( f ) = 0 has a solution f ∈ C(x) and that
disc(P) 6= 0. Show that the Riccati equation has one or two
rational solutions; Compute them, and deduce that L admits the

liouvillian solutions y =
√

f e±
∫ √

c
2 f .

(d) Conversely, show that if L(y) = 0 has two linearly independent
exponential solutions, then the matrices of the Galois group are
diagonal matrices and L©s 2(y) = 0 has a rational solution (recall
that the Galois group is unimodular)

(e) Application : solve y′′ − c
16x2 y = 0 où c ∈ C.

�

3 Local and Global Differential Galois Theory

A powerful method to obtain information on differential Galois groups is
to first compute some local information at the singularities, and then try
to patch (or glue) together these local informations. This is how one will
compute rational solutions, exponential solutions, factorizations, etc.
We will now sketch some (easiest) algebraic aspects of this local approach,
and how to realize actual computations with it.

3.1 Local Solutions

3.1.1 Power Series Solutions
series

We make the coefficients of our differential equation polynomials: L(y) =
an y(n) + an−1 y(n−1) + . . . + an y = 0 where the ai are now polynomials (in
fact, analytic would be enough). If an(x0) 6= 0, then Cauchy’s theorem
shows that the equation has a basis of analytic solutions around zero.

Computing these power series is achieved the following way. Let T =
x − x0 if x0 ∈ C of T = 1

x if x0 = ∞. Perform the change of variables
x 7→ T in the equation and plug ∑i ciTi into the equation: you will obtain a
recurrence relation for the ci and they will be uniquely determined by their
first n terms (exercise: prove this cleanly).
To fix notations, let’s make this recursion explicit. The operator L can be
viewed as an endomorphism of the infinite dimensional vector space C[[x]].
Assume that ai = ∑

mi
i=1 ai, jx j. We write the action of L on a basis of C[[x]]:
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we get L(xN) = ∑
n
i=0 ∑

mi
j=0 N(N − 1) . . . (N − i + 1)ai, jxN+ j−i. Now,

L(
∞
∑

N=0
cNxN) =

∞
∑

N=0

n

∑
i=0

mi

∑
j=0

N(N − 1) . . . (N − i + 1)cNai, jxN+ j−i. (3.1) pre-rec

So, grouping powers of x, we obtain a recurrence relation

(RN) :
m

∑
l=0

El(N)cN−l = 0 (3.2) recurrence

with El being a polynomial. In particular, if ν is the valuation of the power
series (the smallest integer such that cν 6= 0), we must have E0(ν) = 0 (all
the cν−l are zero).
If an(x0) 6= 0, then direct computation shows that E0(N) = N(N− 1) . . . (N−
(n− 1)).
Exercise 10. Use this to show the formal part of Cauchy’s theorem i.e the
existence of a basis of solutions in power series. �

3.1.2 Exponents and Quasi-Series
exponents

We now turn to the singular case. For notational convenience, we assume
that the considered singular point is zero (i.e an(0) = 0).
We say that a solution y is a quasi-series if it is of the form y = xαφ with
φ analytic and α ∈ C. If α ∈ Z, this is a Laurent series; if α ∈ Q, this is a
Puiseux series. If further φ has valuation zero (i.e its constant term is not
zero), then α is well defined and we call it the exponent of the quasi-series
y.

Example 3.1. The Euler homogeneous equation ([Inc44]).
Consider the equation L(y) = x2 y′′ + c1xy′ + c2 y = 0 with c1, c2 constants (this
equation is often called, as many other equations, an Euler equation). Computation
shows that L(xα) = E0(α)xα with E0(α) = α(α − 1) + c1α + c0. We see that
there is a solution of the form xα if and only if E0(α) = 0.
If E0 has two distinct rootsα1,α2, then we have distinct solutions xα1 and xα2 (check
that they are linearly independent over C).
If E0 has a double root α1, we have E0(α1) = E′0(α1) = 0. We differentiate the
relation L(xα) = E0(α)xα with respect toα (note that ∂

∂α
(xα) = xα log(x)):

we obtain L(xα log(x)) = (E′0(α) + log(x)E0(α))xα, from which it follows that
L(xα1 log(x)) = 0 so a second solution is xα1 log(x).

Exercise 11. Show that the equation L(y) := 2xy′′ + 3y′ + 2y = 0 has a
basis of quasi-series solutions at x = 0. Hint: Compute L(xα+N) for an
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arbitrary integer N and show that L(∑
∞
N=0 cNxα+N) = 0 if and only if we

both have that E0(α) = 0 for some polynomial E0 and the cN are solutions
of a recursion relation (compute it). �

To make this general, look at equation
pre-recpre-rec
3.1 and replace N by α + N in

there. Relation
recurrencerecurrence
3.2 then becomes

(RN) :
m

∑
l=0

El(α + N)cN−l = 0 (3.3) recurrence2

A necessary condition for the existence of a quasi-series solution with
exponentα is that E0(α) = 0 (from the case N = 0 in recursion

recurrence2recurrence2
3.3).

Definition 3.2. .
The polynomial E0 is called the indicial polynomial of L at zero.
The roots of E0 are called the exponents of L at zero.
If E0 has degree exactly n, then zero is called a regular singularity; otherwise, E0
has degree strictly less than n and zero is an irregular singularity.

Exercise 12. Letα be an exponent at zero such that, for all i ∈ N,α+ i is Not
an exponent. Prove that L admits a quasi-series solution of exponentα. �

More generally, if the singularity is regular singular, then (see [?] or
[Inc44]) either there is a basis of quasi-series solutions, or there is a ba-
sis formed of quasi-series and of solutions of the form xα1φ1, xα1−n1(φ2 +
xn1φ1 log(x)), . . . (this may happen in the case when two exponents differ
by an integer). Moreover, the power series φi are analytic. So in this case,
the formal theory and the analytical theory coincide.

3.1.3 Generalised Exponents
local

If the singularity zero is not regular, then quasi-series and logarithms are
clearly not enough to define solutions. For example, consider the equation
x2 y′ + y = 0: the solution e

1
x can not be written as a quasi-series at zero, so

we need to add exponentials to our formal local objects.

Definition 3.3. An element ei ∈ C[x−
1
r ] is called a generalized exponent if

there is a formal solution of the form e
∫ ei

xφi whereφi ∈ C[[x]][ei, log(x)] and the
valuation (with respect to x, not counting the log) ofφi is equal to zero.
If r > 1, then r is called the ramification index of the generalized exponent.

Note that exponents themselves are generalized exponents: indeed xα =
e
∫
α
x .
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To compute generalized exponents, one looks for formal Puiseux series so-
lutions for the Riccati equation associated with L (i.e solutions in C((x

1
r ))

for some r ∈ N) and keeps only the parts of such solutions whose valua-
tion is less or equal to −1; the degrees of the generalized exponents can be
measured from the Newton polygon of L at zero.

One can show ([vdPS03, ?]) that one can compute a basis of formal so-
lutions of the form e

∫ ei
xφi whereφi ∈ C[[x]][ei, log(x)].

3.1.4 The Formal Local Galois group
formal-group

We still assume that we work at zero (otherwise, take a local parameter
t = x − x0 at x0 ∈ C or t = 1

x at infinity and work with t). We consider
the field C((x)) as our base field. The formal local Galois group Ĝ0 at zero
is defined as the differential Galois group of a Picard-Vessiot extension of
C((x)) for L.

Because we know the structure of the formal solutions, we may describe
the structure of the formal local Galois group: for each i, we may write
e
∫ ei

x = xαi ePi (with Pi of negative degree in x).
The formal local monodromy is defined as the Galois group over C((x)) of

1. either C((x))(xα1 , . . . , xαn) if there are no logarithms in the solutions
(in which case it is a torus)

2. or C((x))(xα1 , . . . , xαn , log(x)) if there are logarithms in the solutions
(in this case, it contains a unipotent element)

The exponential Torus is defined as the Galois group of C((x))(eP1 , . . . , ePn).
One readily sees that these two groups generate the formal local Galois
group; moreover, they can be easily computed from the given of local solu-
tions.

Lemma 3.4. The formal local Galois group can be embedded into a subgroup of
the differential Galois group of L over C(x).

Proof. We use the fact that C(x) can be embedded in C((x)) so we view it as
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a subfield. Consider the following Kaplansky diagram: K̂
Ĝ0

qqqqqqqqqqqq

IIIIIIIIIIII

C((x))

LLLLLLLLLL
K

Hvvvvvvvvvv

G

��

C((x)) ∩ K

C(x)

where

H is the differential Galois group of K. Galois theory shows that H is a sub-
group of K. Then, the above diagram shows ([?]) that the Galois groups H
and Ĝ0 are isomorphic. Thus, Ĝ0 can be viewed as a subgroup of G.

If we now take for our base field the field C({x}) of convergent power
series, we define the local Galois group G0 as the differential Galois group of
a Picard-Vessiot extension of C({x}). A Kaplansky diagram again shows
that Ĝ0 ⊂ G0 ⊂ G.

At a regular singularities, we have Ĝ0 = G0 and the Schlesinger density
theorem ([?]) shows that the global Galois group is generated by its local
Galois groups.

At irregular singularities, though, then new phenomena may occur (Stokes
phenomenon) and in this case Ĝ0 ( G0.

A very simple illustration of a link between local and global information
is given in the following

finite Proposition 3.5. Assume that the Global galois group is finite. Then the expo-
nents at all singularities are rational.

Proof. The local Galois group is embedded in the global Galois group and
hence finite. The exponential torus is infinite so there cannot be irregular
points and all points must be regular. Now, if there are logarithms, the
monodromy contains an additive subgroup and is infinite (alternatively: a
logarithm is transcendental hence not algebraic, contradicting the fact that
the group is finite). So the monodromy must be diagonal. But, because it is
finite, it is cyclic and hence the exponents must be rational.

We note that this result is proved more naturally using Puiseux expan-
sions of algebraic functions, but this proof gives light on the power of the
Galois theoretic tools.
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3.2 Local and Global Algorithms

3.2.1 Rational Solutions
ratsols

Let S denote the set of singular points (i.e the zeroes of an and possibly
infinity). We search for a method to check if our differential equation has
a rational solution. Let y be a rational function. Then y can be written
as y = ∏xi∈S (x − xi)αi .(pmxm + pm−1xm−1 + . . . + p0). So to compute y,
we need to find the αi, the degree m, and the coefficients pi. Expansion in
Laurent series (or partial fraction decomposition) shows that the αi must
be exponents of L at xi. Now, expansion at infinity (expand in powers of
1
x ) shows that there must exist an integer exponentα∞ at infinity such that
m = −α∞ − ∑xi∈S αi. We thus obtain the following algorithm, whose solu-
tions are a basis of rational solutions (if any) of L(y) = 0:

1. Select the minimal integer exponentsαi at all singularities, including∞. If one singularity does not have integer exponents, then STOP.

2. Let m := −α∞ − ∑xi∈S αi. if m is not positive, then STOP.
Plug y = ∏xi∈S (x− xi)αi .(pmxm + pm−1xm−1 + . . . + p0) into the equa-
tion

3. solve the resulting linear system in the pi.

3.2.2 Radical and Global Solutions

The same reasoning applies to radical solutions, i.e the exponents may
be used also to compute solutions having some power which is rational:
one can similarly prove (see e.g [?, ?]) that there is a radical solution only
if there are rational exponents ei at all singular points xi ∈ S such that
m := −e∞ − ∑xi∈S ei is a positive integer. The solution would again be
y = P. ∏xi∈S (x− xi)ei with P of degree m. Pluging this expression L(y) = 0
with indeterminate coefficients of P gives a linear system for the coefficients
of P, any (non-zero) solution of this system leading to a solution of L;
Note that unlike the case of rational solutions, there may be different com-
binations of the ei to be tested. Also, note that if some factors of an are ir-
reducible polynomials, then we may have to compute with a splitting field
of those to check for combinations, and this can make the algorithm more
costly.

For the more general case of exponential solutions, the process is simi-
lar, though a little bit more technical, see [?] or [vdPS03].
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Now we would like to see how to use these tools in the Kovacic algo-
rithm. We introduce the following useful trick from [?]:
Note that if we have two formal solutions e

∫ ei
xφi, then their product is

e
∫ e1+e2

x φ1φ2, hence e1 + e2 is a generalized exponent for the symmetric square
of L. In general, it is easy to verify that the expressions ie1 + (m− i)e2 form
the generalized exponents of L©s m. So we can check necessary conditions
on rational (or radical) solutions of L©s m without having to compute this
equation.

3.3 Reducibility and Factorization

• Let G ⊂ GL(n, C) be a linear algebraic group. The representation in
GL(n, C) of the group G is said to be reducible if there exists a non-
trivial subspace W which is left globally invariant by G ; it is called
completely reducible if any subspace W of Cn which is left globally in-
variant by G admits a complement V in Cn which is invariant under
G. In our case (characteristic zero), this is equivalent with being re-
ductive (i.e all linear representations are completely reducible).

• A differential operator is called reducible if it can be written as a prod-
uct L = L1.L2 with Li ∈ k[∂] but not in k. Right-hand factors cor-
respond to subspaces of the solution space that are stable under the
differential Galois group. The ring of differential operators is seen be-
ing left and right euclidean ring, one can define (effectively) notions
of greatest common right divisors (gcrd) and least common left mul-
tiples (lclm). A differential operator is called completely reducible if it
is the least common (left) multiple of irreducible operators (equiva-
lently: if its Galois group is reductive).

In terms of linear differential system, here is another possible formu-
lation.

• A system [A] Y′ = AY with A ∈ Mn(k) is said to be reducible if there
exists a matrix P ∈ Gln(k) such that the change of variable Y = PZ
transforms the system [A] into a system of the form

Z′ =
(
× 0
× F

)
Z

where F is a square matrix of dimension k (it corresponds to a factor).
Otherwise the system is said to be irreducible.
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The system is said to be completely reducible if it can be transformed
into a block diagonal system

Z′ =


F1

F2

. . .
Fs

 Z

where each system ν′ = Fiν is irreducible.

3.4 The Art of Computing Galois Groups

We now have tools to smoothly use and apply the Kovacic algorithm (and
generalisations like [SU97, vHRUW99]). We will show on examples how to
combine all these tools together to obtain differential Galois groups.

Example 3.6. Consider the Airy equation L(y) = y′′ − xy = 0. The only sin-
gularity is infinity. The local (generalised) exponents are − 1

4 ± 2
√

x3 at infinity.
Because of the ramification at infinity, we see that the equation cannot have expo-
nential solutions. Now we look at the second symmetric power.
Looking at sums of the exponents, we see that the only rational exponent of the
second symmetric power L©s 2 will be ( 1

2 ) at infinity. This cannot be the degree of
a polynomial. so there cannot exists a radical solution the the second symmetric
power.
Now, as the equation is irregular at infinity, the group cannot be finite by proposi-
tion

finitefinite
3.5: this excludes case 3 of the Kovacic algorithm. Finally, the only possibility

is that the Galois group is SL(2, C).

Example 3.7. Consider the equation

L(y) = y′′ +
(

1/4 (x− 1)−1 + 5/4 (x− 1)−2 + 3/16 x−2
)

y = 0

The local (generalised) exponents are ( 1
4 , 3

4 ) at zero, the roots of X2 − 2X + 5 at 1
and− 1

4 ± 2
√
−x at infinity. Because of the ramification at infinity, we see that the

equation cannot have exponential solutions. Now we look at the second symmetric
power.
Looking at sums of the exponents, we see that the only rational exponents of the
second symmetric power L©s 2 will be ( 1

2 , 1, 3
2 ) at zero, (1) at 1 and (− 1

2 ) at in-
finity. Taking the lowest e0, e1, e∞ possible, we have −e∞ − e1 − e0 = −1 < 0
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and the latter cannot be the degree of a polynomial so there cannot exists a radical
solution the the second symmetric power.
Now, as the equation is irregular at infinity (and does not have rational exponents
at 1), the group cannot be finite by proposition

finitefinite
3.5: this excludes case 3 of the Ko-

vacic algorithm. Finally, the only possibility is that the Galois group is SL(2, C).

Exercise 13. Consider the equation L(y) = x3 y′′ + (x2 + x)y′ − y = 0

1. Show that the exponents at ∞ are (0, 0) and that the generalized ex-
ponents at 0 are (1,− 1

x ).

2. Show that e
1
x is an exponential solution, the only one (up to scalar

multiplication).
Show that there is a unique power series solution at zero, and that it
is divergent (and Gevrey). Compute the formal local Galois group at
0.

3. Show that the formal solutions at infinity are of the form ˆy1,∞ and
ˆy1,∞ log(x) + ˆy2,∞ where the ˆyi,∞ are power series in 1

x . Compute the
formal local Galois group at infinity.

4. Compute the global Galois group, and compare it with the formal
local Galois groups.

�
Exercise 14. The Whittaker equation L(y) = y′′ − ( 1

4 + 12
λ

)y = 0. The
exponents at zero are the roots of λX2 − λX− 12 and at infinity ± x

2 .

1. Show (using the above examples) that for generic values of λ the Ga-
lois group is SL(2, C).

2. Show that the exponents at zero are rational if and only if λ = 12
n(n−1)

with n ∈ Q.

3. In this case, the equation is y′′ − 1
4 −

n(n−1)
x2 . Show that the exponents

at zero are (n, 1− n) and ± x
2 at infinity. Prove that the Galois group

is SL(2, C) unless n is an integer.

4. Perform the change of variables y(x) = e
x
2 f (x). Search for f as a

power series: its coefficients uN satisfy the recursion NuN − (n + N) ∗
(n− 1− N)u(N + 1) = 0 and u(0) = 0. Conclude that when n is an
integer, f is a polynomial and hence L has one (in fact, two) exponen-
tial solutions.
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�
In this exercise, we see that these tools give strong necessary conditions.

However, question (4) shows that when there are parameters and the nec-
essary conditions are satisfied, then it is not that easy to decide if there
actually exists a solution. In this case, it was feasible; in general, it is not
(see [Bou99]) and even sometimes undecidable.
Still, in the applications to Hamiltonian mechanics, we encounter many
systems where "mysteriously" reasonings like the above (and many other
tricks) allow one to say a lot about non-integrability of entire families of
equations. This will be the topic of the next lecture.
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Part II

Integrability of Hamiltonian
Differential Systems
The Hamiltonian systems are differential systems which describe the equa-
tions of motion of mechanical systems whose mechanical energy (the Hamil-
tonian) is conserved. One says that the mechanical energy is a first integral
for the Hamiltonian system. The notion of complete integrability of a Hamil-
tonian system refers to the given of sufficiently many independent first in-
tegrals (see definitions below).
In recent decades, many significant improvements have been made in the
research regarding complete (meromorphic) integrability of Hamiltonian
systems after the pioneering papers of Ziglin ([Zig83a, Zig83b], [Zig83a,
Zig83b], 1982) relating integrability to properties of the monodromy group
of a variational equation (or variational system) along a known solution. Churchill,
Rod and Singer ( [CRS95, BCRS96], 1996) and Morales and Ramis ([MRR01a],
1998; [MRRS05], 2005) then recast and extended these ideas in terms of the
differential Galois group of this variational equation.
To quickly summarize, this culminated in the following criterion of Morales
and Ramis (from [MRR01a]) :

Let (S) be a Hamiltonian system, x0(t) be a particular solution of (S) and G
be the differential Galois group of the normal variational equation of (S) computed
along the solution x0(t). If the system (S) is completely integrable, then the con-
nected component of the identity in the group G, denoted G0, is an abelian group.

This theorem was generalized to ’higher variational equations’ in [MRRS05].
At first sight, it may not be obvious that the conclusion of the statement (i.e.
G0 abelian) is any easier to test than its premices. For second order equa-
tions, many methods are known after the work of Kovacic [Kov86], see
also[UW96], [DLR92], . . . ). They enabled many results of non integrabil-
ity, let us cite only some of them : [Tsy01b, Tsy01a, MSS01, Mac02, Aud03,
MP03, MPW04, MP04, MP05, Aud01, Aud02, Aud03]
The goal of these notes is to provide tools that seem to be practically effi-
cient in handling families of Hamiltonian systems. We would like to pro-
mote the following idea. The variational system has an infinitesimally sym-
plectic matrix. This fact induces a number of structural properties on the
system that can be used to simplify computations. So our approach is to
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try to exploit and preserve as much as possible this symplectic structure.
Another point is that integrability questions are asked on families of Hamil-
tonians depending on parameters. This induces families of variational equa-
tions which also depend on parameters and this is an obstruction to al-
gorithms that test Morales-Ramis theorem and the criterium we deduced
from it. However, we will show below that the symplectic structure allows
one to confront a part of this obstruction. We will emphasize on systems of
order greater than 2.

The topic of this lecture is at the crossing point of two theories for which
we assume the reader has a working knowledge (or is ready to accept
some statements and references ot litterature): Integrability of Hamilto-
nian systems (see [Aud01, Aud02] [MRR01a], [MR01, MRR01b], [Chu02],
[MRRS05] . . . ) and Differential Galois theory (see the previous lecture, and
the remarkable reference book [vdPS03], or also [Sin90b], [Mag94]. . . ).

4 Basic Facts on First Integrals of (Hamiltonian) Dif-
ferential Systems

section2
In this first section we recall basic facts on Hamiltonian systems, differential
galois theory and the Ziglin and Morales-Ramis theorems ([MR01],[MRR01a]).

4.1 Variational equations and First Integrals

Definition 4.1. Let K be a field of characteristic zero. Let us consider F =
( f1, . . . fn) where fi is of class Ck on an open set U of Kn. A dynamical system is
a system of differential equations

dxi

dt
= fi(x1(t), . . . , xn(t)), i = 1, . . . , n

which can be written, in vectorial notation as

dx
dt

= F(x)

We will focus on conserved quantities for such systems:

Definition 4.2. A function G : U → R is a first integral of the dynamical system
ẋ = F(x) if, for all solution x(t) of the system,

d
dt

G(x(t)) = 0.
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The first integrals give the geometry of the solution curve. Indeed the
solutions of the system lie on the hypersurfaces G = cte.
To answer questions regarding the existence of analytic first integrals, Poincaré
studied the solutions which are infinitesimaly close to a given particular so-
lution of the differential system. The behavior of these solutions is given
by a homogeneous linear differential system, the variational system, which
is obtained by linearization of the differential system along the particular
solution.

Definition 4.3. The variational system along a solution x0(t) of a differential
system is the linear differential system:

h′(t) = Jac(F)(x0(t)) h(t)

where Jac(F) denotes the Jacobian matrix of F at x0(t).

Let G : U → R and let k in N such that (dG)x = · · · = (dk−1G)x = 0.
The junior part G◦ of G is dkG (see [Aud01] for a nicer definition)

weak-ziglin Lemma 4.4 (Ziglin, weak form). If (S) admits m algebraically independent first
integrals f1, . . . , fm, then it admits m algebraically independent first integrals
g1, . . . , gm such that their junior parts g◦1 , . . . , g◦m are algebraically independent.
Furthermore they are solutions to the variational system.

4.2 Hamiltonian Systems and Complete Integrability

Definition 4.5. Let n ∈ N∗, x = (x1, . . . , x2n) = (q1, . . . , qn, p1, . . . , pn) ∈
R2n.
A Hamiltonian system on a non empty domain U of R2n is a system of differen-
tial equations of the form: 

dqi

dt
=

∂H
∂pi

(q, p)

dpi

dt
= −∂H

∂qi
(q, p)

i = 1, . . . , n

where H : U → R is the Hamiltonian function.
The variables pi and qi are conjugate variables. The positive integer n is called
the number of degrees of freedom.
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Remark 15 : A Hamiltonian system can also be written in the following
form:

x′(t) = J ∇H(x(t))

where J =
(

0 I
−I 0

)
, I is the order n identity matrix and ∇H(x) is the

gradient of H at x. � The Hamiltonian H is conserved, it is a
first integral for the hamiltonian system. Indeed, for each solution x of the
system, dH(x(t)) = 0.
A first integral G of the Hamiltonian system is also characterized by the
equality

{G(x), H(x)} = 0

(or {G(x), H(x)} = {H(x), G(x)})
where

{G1, G2} =
n

∑
i=1

(
∂G1

∂pi

∂G2

∂qi
− ∂G1

∂qi

∂G2

∂pi

)
=< ∇G1(x), J∇G2(x) >

is the Poisson bracket of G1 and G2.

Definition 4.6. A Hamiltonian system with number of degrees of freedom equal
to n is called completely integrable if it has n first integrals G1, . . . , Gn such
that:

• G1, . . . , Gn are functionally independant
(∇G1, . . . ,∇Gn are linearly independant)

• G1, . . . , Gn are in involution: for all solution x of the Hamiltonian sys-
tem,
{Gi(x), G j(x)} = {G j(x), Gi(x)}
(G1, . . . , Gn commute for the Poisson bracket).

It is necessary to give a more precise sense to this notion of complete
integrability by asking which class of functions we want the first integrals
to belong to (analytic, algebraic, meromorphic functions, . . . ).

To answer the question of the analytic complete integrability, Poincaré
studied the solutions which are infinitesimaly close to a particular solution
of the Hamiltonian system. The behavior of these solutions is given by
a homogeneous linear differential system, the variational system, which is
obtained by linearization of the Hamiltonian system along the particular
solution.
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Definition 4.7. The variational system along a solution x0(t) of a Hamiltonian
system is the linear differential system:

h′(t) = J H(H, x0(t)) h(t)

where H(H, x0(t)) is the hessian of H at x0(t).

Remark 16 : The matrix A = J H(H, x0(t)) belongs to the simple Lie
algebra sp(2n, C) = {M ∈ Gl(2n, C)/ t M J + J M = 0} which is the Lie
Algebra of the symplectic group Sp(2n, C) = {g ∈ Gl(2n, C) /tg J g = J}.
One says that A is an infinitesimally symplectic matrix. �

As x′0(t) is a particular solution of the variational system along the so-
lution x0(t), one can reduce it and get a normal variational system of order
2n− 2. During the last twenty years many results on the meromorphic non
integrability of the Hamiltonian systems were deduced from the study of
this (normal) variational system.
Exercise 17. We consider here the example of the system of HŐnon-Heiles

from [MRRS05].
The initial Hamiltonian is

H =
1
2
(y2

1 + y2
2) +

1
2

x2
1 +

1
2

x2
2 +

1
3

x3
1 +

1
2

x1x2
2

A particular solution of it is ([MRRS05]) :

x0(t) =t
(

1
2
− 3

2
tanh

(
t
2

)
, 0,−3

2
tanh

(
t
2

)(
1− tanh2

(
t
2

))
, 0
)

The variational system along this particular solution is :

h′(t) =


0 0 1 0
0 0 0 1

−2 + 3 tanh2( t
2 ) 0 0 0

0 − 3
2 + 3

2 tanh2( t
2 ) 0 0

 h(t)

If one wants rational coefficients one makes the change x = tanh(t/2) and
one gets

h′(x) =


0 0 − 2

x2−1 0
0 0 0 − 2

x2−1

− 2(3x2−2)
x2−1 0 0 0
0 −3 0 0

 h(x)
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To reduce it to a normal variational system one makes the symplectic
change of variable (see [MRR01a] or annex of [Bou00b], [Bou00a, BW03]
) h = PY where the first column of the matrix P is x′0(t) and P satisfies
tP J P− J = 0. One gets an equivalent linear differential sytem from which
one extracts the rows and columns 2 and 4. One gets the normal variational
system

Y′(x) =
(

0 3
2

x2−1 0

)
Y(x)

�
In 1982, Ziglin ([Zig83a, Zig83b], [Zig83a, Zig83b]) established neces-

sary conditions of meromorphic complete integrability on the monodromy
group of the variational system. In 1995, Baider, R.C. Churchill, Rod and M.
Singer ( [CRS95, BCRS96]) and in 1998, J.J. Morales and J.P. Ramis ([MRR01a])
established necessary conditions of meromorphic complete integrability on
the differential Galois group of the variational system.

4.3 Ziglin, Morales-Ramis

We may now restate lemma
weak-ziglinweak-ziglin
4.4 in differential Galois terms (this is not

Ziglin’s original formulation, but rather the one from [CRS95, BCRS96] or
[Aud01]).

Theorem 4.8 (Ziglin, strong form). Consider a differential system (S) : x′ =
F(x) and the variational system [A] : Y′ = AY along a solution x0(t) of
(S). If (S) admits m algebraically independent meromorphic first integrals, then
Gal([A]) admits m algebraically independent rational invariants.

For completely integrable hamiltonian systems, the additional involu-
tion property translates into the celebrated result of Morales and Ramis:

theoRM Theorem 4.9 (J.J. Morales, J.P. Ramis). Consider a hamiltonian system (S) and
the variational system [A] : Y′ = AY along a solution x0(t) of (S). If the system
(S) is completely integrable, then Gal([A]) is virtually abelian.

In next section we present a criterion deduced from Morales-Ramis the-
orem to get sufficient conditions of non complete integrability of a Hamil-
tonian system (see [Bou00b, Bou00a, BW03] for a preliminary version of
it).



5 A CRITERION OF NON COMPLETE INTEGRABILITY OF HAMILTONIAN SYSTEMS34

5 A criterion of non complete integrability of Hamil-
tonian systems

int-criteria
The analysis of the local solutions around singularities can give information
on the integrability of nonlinear systems of ordinary differential equations
such as Hamiltonian systems (Kovalevskaya and Painlevé test) However,
the criterion we deduce from Morales Ramis theorem requires not only a
local study of the normal variational equation but also a global study of
it. In next subsection we give introducory examples illustrating that the
study of the local solutions for the variational system will not be sufficient
in general to give an obstruction to the virtual abelianity of the correspond-
ing Galois group. In the second subsection, we give a non integrability
criterion based on local and global considerations.

5.1 Examples

Before stating the criterion, let us focus on two introducing examples.

• Let us consider the first order linear differential symplectic system

Y′ =

(
0

1
x

0 0

)
Y

which can be also written

xY′(x) =
(

0 1
0 0

)
Y(x)

This system has formal solutions at zero with logarithmic terms as

the local monodromy is given by the matrix
(

0 1
0 0

)
(whose single

eigenvalue is 0 and who is not diagonalizable). However its differen-
tial Galois group is additive, so abelian.
One can notice that this system is equivalent to the linear differential
equation

xy′′(x) + y′(x) = 0

(using the cyclic vector (0, 1)).
Its space of solutions is generated by 1 and ln(x). The presence of
logarithmic terms in the formal solutions does not suffice to imply the
non virtual abelianity of the group G. Furthermore, one notices here
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that the equation was reducible without being completely reducible.
Indeed,

x∂
2 + ∂ = (x∂ + 1)∂ 6= ∂(x∂ + 1).

This is the crucial point that is at the origin of the proposition
prop2prop2
5.2 and

theorem
newnew
5.3 (or corollary

new2new2
5.5).

• Let us consider the normal variational system of the example 1

Y′(x) =

 0 3
2

x2 − 1
0

Y(x)

The system can be written

(x− 1)Y′(x) =

 0 3(x− 1)

2
x + 1

0

Y(x) =
[(

0 0
1 0

)
+
(

0 3
−1
2 0

)
(x− 1) + · · ·

]
Y(x)

So the monodromy matrix at 1 is given by the matrix
(

0 0
1 0

)
and

there are logs at 1.

As the exponents at 1 and −1 are both equal to 0, the exponential
solutions of the system correspond to the polynomial solutions. The
exponents at infinity are 2 and −3 so one searchs a polynomial solu-
tion of degree 3. One finds (using package ISOLDE in Maple) t(z(z2−
1), z2 − 1

3 ) so the system is reducible.
One can also see the normal variational system as an equivalent linear
differential equation

y′′(x)− 6
x2 − 1

y(x) = 0

The exponents at the singularities are 0 and 1 at the points −1 and
1; −3 and 2 at the point infinity, so an exponential solution is of the
form p(x) where p is a polynomial of degree 3. One finds one single
solution z3 − z so the system is reducible without being completely
reducible.
Again, the differential Galois group of this normal variational system
is abelian, so the presence of logarithmic terms does not suffice to
conclude to the non virtual abeliannity and Morales-Ramis theorem
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does not enable to conclude here. Furthermore, this special example
was given a complete answer in [MRRS05] where the use of higher
variational equations enabled to conclude to the non complete inte-
grability of the system.

5.2 A non-integrability criterion

We propose a criterion where added assumptions about the factorization of
the equation suffice to make the group non virtually abelian. We derive this
criterion using both the presentation of linear differential equations and the
presentation of linear differential systems. First we need a lemma (estab-
lished independently in [Bou00b, ?]).

lem1 Lemma 5.1 ([Bou00b, BW03, ?]). Let G ⊂ GL(n, C) be a completely reducible
linear algebraic group acting on V = Cn. The following assertions are equivalent:

(a) G0 is solvable,
(b) G0 is diagonalizable,
(c) G0 is abelian.

Proof. The implications (b) ⇒ (c) and (c) ⇒ (a) are immediate. Now
assume that (a) holds. First we assume that V is irreducible under G. Be-
cause G◦ is solvable, it is triangularizable. In particular, all its elements
have a common eigenvector v1. Let g ∈ G and h ∈ G◦. Because G◦ is
normal in G, we have h(g(v1)) = g(h̃(v1)) with h̃ ∈ G◦. But, as v1 is a
common eigenvector for G◦, we have h̃(v1) = χh̃.v1 with χh̃ ∈ C. But now
h(g(v1)) = g(χh̃.v1) = χh̃.g(v1) so all g(v1) are eigenvectors of G◦. The
linear space spanned by the g(v1) (for g ∈ G) is a subspace of V invariant
under G. By irreducibility, it is equal to V. Because it it is generated by the
g(v1), G◦ acts diagonally on it.
Now, if V is reducible, it is a direct sum of subspaces which are irreducible
under G, and we apply inductively the above reasonning to these irre-
ducible summands.

If G is the differential Galois group of a linear differential equation
L(y) = 0, then it is easier to find sufficient conditions of non-diagonality of
G◦ using the local information that we can read in the formal solutions

prop2 Proposition 5.2. Let L(y) = 0 be a homogeneous linear differential equation
with Galois group G.
Assume that the equation L(y) = 0 is completely reducible.
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1. If it has formal solutions around some point which contain logarithmic terms,
then the connected component of the identity in the group G is not an abelian
group.

2. If it has a non-trivial Stokes multiplier around some point (an irregular sin-
gularity), then the connected component of the identity in the group G is not
an abelian group.

Proof. Let L be a differential operator of degree n with coefficients in a field
k with differential Galois group G.
Let us assume that L is irreducible. If the group G0 is abelian, then accord-
ing to Lemma

lem1lem1
5.1, it is diagonalizable. However, if a logarithmic term ap-

pears locally, then the corresponding local group has a non trivial unipotent
subgroup ([?]). So the group G0 contains a non trivial unipotent subgroup,
which contradicts the diagonality of G0.
If L is completely reducible one concludes in the same way as in the proof
of Lemma

lem1lem1
5.1.

Part (b) is proved similarly because the presence of a Stokes multiplier in-
duces a unipotent element in the differential Galois group (see [?] or [?] for
definition and properties of Stokes multipliers).

We extend now the proposition
prop2prop2
5.2 to a more general one:

new Theorem 5.3. Let L be a linear differential operator such that L = L1 L2 . . . Ls.
If there exists i in {1, . . . , s} such that Li is completely reducible and the linear
differential equation Li(y) = 0 has formal solutions with logarithmic terms, then
the differential Galois group G of the equation L(y) = 0 is not virtually abelian.

Proof. If s = 1 one concludes using proposition
prop2prop2
5.2.

All we now need is to prove that if there exists i in {1 . . . s} such that the
differential Galois group of Li(y) = 0 is not virtually abelian then the dif-
ferential Galois group of L(y) = 0 is also not virtually abelian. It is enough
to prove this in the case of two factors (s = 2), the result then being an easy
induction. So we assume that L = L1.L2.

Lemma 5.4. Let K denote a Picard-Vessiot of k associated to L. If F is an inter-
mediate differential Picard-Vessiot extension (k ⊂ F ⊂ K), then virtual abelianity
of Gald(K/k) implies that of Gald(F/k).

Proof. From [?] (lemma 5.10 page 38), we know that there is a natural surjec-
tion from Gald(K/k) to Gald(F/k). In particular, the abelianity of Gald(K/k)◦

implies that of Gald(F/k)◦.
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We now finish the proof of the theorem. As the solutions of L2 are so-
lutions of L, K contains a Picard-Vessiot extension for L2 and the result
follows for L2 from the lemma.
Now, L2 can be viewed as a morphism from Sol(L) to Sol(L1). Hence, K
contains a full set of solutions of L1 and we may apply the lemma again to
conclude for L1.
We now conclude applying proposition

prop2prop2
5.2 to the Li.

Using the point of view of the systems, we get :

new2 Corollary 5.5. Let Y′ = AY be a linear differential system such that it is equiva-

lent to a block-triangular system Z′ =


B1 0 · · · 0

× . . . 0
× × Bs−1 0
× × × Bs

 Z If there exists

i in {1, . . . , s} such that the system ν′i = Biνi is completely reducible and has
formal solutions with logarithmic terms then the differential Galois group G of the
system Y′ = AY is not virtually abelian.

Remark 18 : As we already had noted in Proposition
prop2prop2
5.2 the conclusion

of the above theorem still holds if we replace the presence of logarithms
by the presence of a non trivial Stokes multiplier (or any recognizable non-
diagonalizable element) at an irregular singularity. The reason is that these
Stokes matrices (see [?] for example) induce a unipotent element in the dif-
ferential Galois group and hence yield an obstruction to diagonalizability.
�

6 An example: the Friedman-Robertson-Walker model

Let us consider the Hamiltonian of the system FRW (Friedmann-Robertson-
Walker) cosmological model

H =
1
2

(
ȧ2 + φ̇2

)
+

1
2

a2 +
1
2
φ2 − 1

2
m2a2φ2 +

1
4
λφ4 +

1
4
Λa4

where a is the scale factor of the universe; Λ is the cosmological constant;
φ is the scalar field with self-coupling constant λ and with mass m (which
we will assume to be non zero).
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6.1 The approach via constructive Morales-Ramis criteria

• We first select a particular solution X0 to the hamiltonian system as-
sociated to H:

X0 = (0,φ0, 0, φ̇0)

where
φ2

0 = − 2
λ
℘(t)− 2

3λ
and ℘(t) = ℘(t, g2, g3) is the Weierstrass function with parameters

g2 =
4
3

+ 4 h λ and g3 =
8

27
+

4
3

h λ

• The variational equation can then be seen as the direct sum of two
Lamé equations (the tangential part and the normal part of the vari-
ational equation). After the change of variable x = ℘(t), we get the
following normal variational equation:

(E)
4

27
(3x− 2) (3x + 1)2 y′′(x) +

2
3

(3x− 1) (3x + 1) y′(x)+(
2m2

λ
x + 1 +

2
3

m2

λ

)
y(x) = 0

• There are logarithmic terms in some formal solution of (E) at the
singular point −1/3. Namely, the formal solutions at that point are

s1 =
√

3x + 1 (1 + · · · ) and −m2

2λ
s1 ln(3x + 1) + s2 where s2 is a for-

mal series.

• The equation (E) is irreducible if

λ 6= − 2m2

(n + 2)(n + 1)

with n ∈ N.
Indeed, the equation (E) is irreducible if, and only if, it possesses no
exponential solution

y(x) = (3x + 1)−1/2 (3x− 2)e p(x)

where p(x) is a polynomial of degree d; e = 0 or 1
2 (exponent at 2/3)

and
d− 1

2
+ e + e∞ = 0
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with e∞ , exponent at infinity.
A necessary condition for the existence of such a solution is that the
indicial equation at infinity has a root −d + 1

2 or −d with d natural
integer. This implies

λ = − 2m2

2d(2d− 1)
or

λ = − 2m2

2d(2d + 1)
which is equivalent to

λ = − 2m2

(n + 2)(n + 1)
with n ∈ N

• Using theorem
newnew
5.3 and Morales-Ramis theorem, we conclude that if

λ 6= − 2m2

(n + 2)(n + 1)

with n ∈ N then the FRW system is not completely integrable.

6.2 Higher variational approaches

If

λ = − 2m2

(n + 2)(n + 1)
with n ∈ N then the variational equation is a direct sum of two Lamé-
Hermite type equations. One then needs to go to higher variational equa-
tions. The variational equation is an approximation at order 1 for the lin-
earization. Approximation at order 2, 3, etc, yields successive linear differ-
ential systems (with growing size). Their Galois groups Gk form a tower of
groups; the result of Morales-Ramis-Simo is that each of these Gk must be
virtually abelian.

Now, as the variational equation is a direct sum of two Lamé-Hermite
type equations, one may reduce the Morales-Ramis-Simo criterion to a local
study of the differential at zero. This local study of the third variational
equations enables to conclude that the system is not completely integrable
for n ∈ {2, . . . , 10} (an additional global study is not required in this special
case).
There are two particular cases : Λ = λ when n = 0 and n = 1. For both
these special cases an additional polynomial first integral In is found:
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• I0 = φ ȧ− a φ̇

• I1 = ȧ φ̇+ aφ− m2

3
(aφ3 + a3φ)

If n ≥ 11, we conjecture that he FRW system is not completely integrable.

7 Some properties to factorize symplectic linear dif-
ferential systems

fact
The theorem

newnew
5.3 can be applied very easily when the coefficients of the nor-

mal variational system (or equation) are in Q̄(x) as there exist efficient al-
gorithms to compute formal solutions of linear differential equations (sys-
tems) and to factorize linear differential operators (systems). However the
equations we deal with here are parameterized equations and the existing
algorithms are not adapted to this situation (problems of indecidability).
In the following we see how the symplectic structure of the normal vari-
ational system can help the factorization of the normal variational system
and hence the application of the criterion. This symplectic structure can be
read very simply on the matrix of the normal variational system this is why
we choose to keep the system instead of transforming it to a linear differ-
ential equation (using a cyclic vector computation).

7.1 Factorization in practice

The factorization of linear differential systems was studied and implemented
in[Gri90, Bro96b]. Another family of algorithms uses the notion of eigen-
ring [Sin96],[BP98]

In this section we first give a property of the eigenring in the symplectic
case, which enables a simpler computation of it. Then we see that despite
the presence of parameters one can look easily for some elements of the
eigenring.
Let k denote a differential field (e.g k = C(x)) and let A be infinitesimally
symplectic.

7.2 Properties of the eigenring

The differential Galois group G of the differential system Y′ = AY is a
subgroup of the symplectic group ([Aud01] page 65). Let V denote the
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solution space of Y′ = AY. If U is a fundamental solution matrix, then J.U
is a fundamental solution matrix for the dual system Y′ = −t AY. Hence, J
is the matrix of the musical isomorphism between V and its dual V∗, i.e these
are isomorphic G-modules.

The Eigenring of A is the set E(A) := {P ∈ GL(2n, k)|P′ = AP− PA}.
It describes ([Sin96]) the ring EndG(V) of G-endomorphisms of V; in par-
ticular, the presence of a non-trivial element in the Eigenring provides a
factorization of the differential system.

Now, as End(V) = V ⊗ V∗ and V 'G V∗, we see that End(V) 'G
V ⊗V = Sym2(V)⊕ Ext2(V). The image of the identity in this morphism
is the symplectic form (hence an element of Ext2(V)) that is preserved by
the symplectic group. In fact, this isomorphism can be made even more
explicit:

eigenring Proposition 7.1. Let A be an infinitesimally symplectic matrix (t A J + J A = 0)
and let E(A) be its eigenring. Then

E(A) = E+(A)⊕ E−(A)

where
E+(A) = {T ∈ E(A), tT J + J T = 0}

E−(A) = {T ∈ E(A), tT J − J T = 0}.

Proof. Let A be an infinitesimally symplectic matrix (t A J + J A = 0) and
let T be in E(A). We first need the following lemma:

Lemma 7.2. Each matrix of M of Mn(C) can be uniquely written as the sum of
a matrix M1 such that M1 J − J t M1 = 0 and a matrix M2 such that M2 J +
J t M2 = 0 (M2 is an infinitesimally symplectic matrix).

Proof. Let M be in Mn(C) and let us consider the two matrices M1 =
− 1

2 (M J + J t M) J and M2 = − 1
2 (M J − J t M) J.

One checks:
M = M1 + M2,
M1 J − J t M1 = 0,
M2 J + J t M2 = 0 (M2 is an infinitesimally symplectic matrix).

According to the lemma, the matrix T can be written as a unique sum
of two matrices T1 and T2 such that

T1 J − JtT1 = T2 J + J tT2 = 0.
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It suffices to prove now that both T1 and T2 are in E(A).
As T is in E(A), it satisfies

T′ = A T− T A

so
T′1 + T′2 = (A T1 − T1 A) + (A T2 − T2 A). (7.4) eqT1T2

A quick computation enables to see

T′1 J − J tT′1 = (A T1 − T1 A) J − J t(A T1 − T1 A) = 0

and
T′2 J + J tT′2 = (A T2 − T2 A) J + J t(A T2 − T2 A) = 0.

According to the previous lemma, the equality (
eqT1T2eqT1T2
7.4) enables to conclude:

T′1 = A T1 − T1 A

and
T′2 = A T2 − T2 A

so T1 and T2 are in E(A) and one has written the matrix T as the direct sum
of two elements of E−(A) and E+(A).

Remark 19 : If we define the Eigenring not over k but over a Picard-
Vessiot extension K then the elements of Sym2(V) correspond to E+(A)
and those of Ext2(A) correspond to E−(A). We recover, in particular, the
well-known fact that the Lie algebra of the symplectic group is isomorphic
to the symmetric square of its faithful representation of order 2n. �

The elements of the eigenring of A correspond to rational solutions of
the tensor system

Z′ = (A⊗ I − I ⊗t A) Z

(see [?] or [Sin96]).
If A = (ai, j)1≤i, j≤n (with n = 2m even), then the matrix A⊗ I− I⊗t A is the
n2 × n2 matrix (ai, j I)− diag(t A). At first sight, one needs to compute a ra-
tional vector solution with n2 components. However, thanks to proposition
eigenringeigenring
7.1, one can reduce the number of unknown components. Indeed elements
of E+(A) (resp. E−(A)) have m2 + m(m + 1) (resp. m2 + m(m − 1)) un-
knows instead of 4m2. So one can reduce the number of unknows while
searching rational solutions of the tensor system.
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7.3 Properties of the exponents at the singularities

To compute rational solutions of the tensor system

Z′ = (A⊗ I − I ⊗t A) Z

one needs to compute the exponents at the singular points of this system.
When the matrix A depends on parameters then these exponents may also
depend on the parameters, which makes the search of rational solutions
difficult (in particular there are problems of indecidability). However if the
matrix A is infinitesimally symplectic then some of the exponents of the
tensor system will not depend on the parameters. In this case the search of
the rational solutions of the tensor system (i.e. the elements of the eigenring
of A) can be effectively achieved.

Proposition 7.3. Let us consider a symplectic linear differential system. Let us
assume that it is regular singular at the point 0 and that it can be written:

xY′(x) = A(x) Y(x)

where the matrix A(x) is an infinitesimally symplectic matrix defined at the point
0.
Then the exponents at the point 0 can be gathered in the following way : (e1,−e1, e2,−e2).

Proof. The exponents at 0 are the eigenvalues of the matrix A(0). But this
matrix is infinitesimally symplectic (t A(0) J + J A(0) = 0) so its eigenval-
ues can be gathered in the following way : (e1,−e1, e2,−e2).

So in this particular case the structure of the matrix of the system en-
ables to conclude that two sums of two exponents are equal to 0 and so are
independant of the parameters.
As the exponents at the singularities of the tensor system are sums of expo-
nents of the initial system, some of the exponents for the tensor system are
independant of the parameters (even if all the exponents of the initial system
depend on the parameters).
This proposition can be also seen with the point of view of the linear differ-
ential equations.

exponents Proposition 7.4. Let L(y) = 0 be a linear differential homogeneous equation and
let G be its differential Galois group. Assume that the group G is symplectic.
Let p be a singular point, and let r denote the ramification index at this point (note:
if the point is regular singular, then r = 1).
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The generalized exponents at p are pairewise gathered in the following way :
(e, m− e) where m is a rational in 1

r Z .

Proof. Let us assume that we work at the point 0 and let y(x) = xe Σ(x) be
a formal solution at the point 0 with Σ(x) ∈ Q̄[ln(x)]((x

1
r )).

Let g be in the formal local Galois group G0 at the point 0; then there exists
c such that g(xe) = cxe and c is an eigenvalue for g. But the group G is
symplectic so 1

c is also an eigenvalue and there exists ẽ such that g(xẽ) =
1
c xẽ.
Then g(xe−ẽ) = xe−ẽ and xe−ẽ ∈ Q̄((x

1
r )). So the difference between the

two exponents, e− ẽ, belongs to Q. Furthermore if there is no ramification
(r = 1), e− ẽ is an integer.

7.4 Application to the factorization of linear differential systems

If constructions like exterior powers, exponents in local solutions are ob-
tained from the original local solutions by sums (and adding integers).

For example, in the second exterior powers, the exponents will be (mod-
ulo an integer) sums pairwise of exponents of the original solutions; sym-
plecticity garantees that some of these sums will not depend on parame-
ters, thus making computations easier. Similar observations hold for other
constructions (on the dual, because symplecticity makes it isomorphic to
the original system, on the Endomorphism ring of the differential module,
etc).

This makes factorization of symplectic parametrized differential sys-
tems much easier because some factors will be constructively computable.
This turns out to be powerful in applications - although the success is still
not fully explained.

Remark 20 : If the original Hamiltonian system admits a first integral, in-
dependent from the Hamiltonian whose initial form is linear (resp. quadratic),
then the differential Galois group admits an invariant of degree 1 (resp. 2).
In both case, this introduces an invariant element Sym2(V) and, by the
above result, in the eigenring. So in such a case, the system will be re-
ducible.
Similar observations can be found in the book of M. Audin. �
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