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Introduction

Classical model for cumulative deterioration: univariate Lévy process, such as
gamma process1, inverse gaussian process2 or Wiener process3,4

Nowadays, several deterioration indicators are often monitored at the same time
→ need for multivariate deterioration models5

Common model for multivariate cumulative deterioration: multivariate Lévy
process
Multivariate Lévy process suffers from several drawbacks → need for other model
Suggestion: consider multivariate additive process

1J.M. Van Noortwijk. “A Survey of the Application of Gamma Processes in Maintenance”. In: Reliability
Engineering & System Safety 94.1 (2009), pp. 2–21.

2Xiao Wang and Dihua Xu. “An Inverse Gaussian Process Model for Degradation Data”. In: Technometrics
52.2 (2010), pp. 188–197.

3Zhengxin Zhang et al. “Degradation data analysis and remaining useful life estimation: A review on
Wiener-process-based methods”. In: European Journal of Operational Research 271.3 (2018), pp. 775–796.

4W. Kahle, S. Mercier, and C. Paroissin. Degradation Processes in Reliability. Hoboken, NJ, USA: John
Wiley & Sons, Inc., 2016.

5Xiaolin Wang et al. “Modeling multivariate degradation processes with time-variant covariates and imperfect
maintenance effects”. In: Applied Stochastic Models in Business and Industry 37.3 (2021), pp. 592–611.
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Definition

Definition
A non negative multivariate process X = (X (t))t≥0 is said to be a Lévy
process if:

X (0) = 0 a.s.,
X has independent and homogeneous increments,
X is stochastically continuous,
X is right-continuous with left-side limits.

The process X is componentwise non decreasing.6789

6J. Bertoin. Lévy processes. Vol. 121. Cambridge Tracts in Mathematics. Cambridge: Cambridge University
Press, 1996, pp. x+265.

7R. Cont and P. Tankov. Financial modelling with jump processes. Financial Mathematics Series. Chapman
& Hall/CRC, Boca Raton, FL, 2004, pp. xvi+535.

8A.E. Kyprianou. Introductory lectures on fluctuations of Lévy processes with applications. Universitext.
Springer-Verlag, Berlin, 2006.

9K.-I. Sato. Lévy processes and infinitely divisible distributions. Vol. 68. Cambridge Studies in Advanced
Mathematics. Cambridge: Cambridge University Press, 1999, pp. xii+486.
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Jump structure (1/2)

Let X = (X1, · · · ,Xd ) = (X1 (t) , · · · ,Xd (t))t≥0 be a non negative Lévy
process with bounded variations and no drift,
X is a pure jump process and for each t > 0, the distribution of the
random vector X (t) is infinitely divisible.
Let ρt (dx) be the Lévy measure of X (t). Then ρt (dx) = t ρ (dx) with
ρ (dx) = ρ1 (dx).
Both the jump structure and distribution of the process X are entirely
characterized by the Lévy measure ρ (dx).
Technical assumption:∫

Rd
+

min (∥x∥∞ ,1)ρ (dx) < +∞
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Jump structure (2/2)
Let

J ((0, t ]× B) = # {s > 0 : (s,∆X (s)) ∈ (0, t ]× B}

=
∑
s>0

δ(s,∆X(s)) ((0, t ]× B)

for all t > 0 and B ∈ B
(
R+

d \ {0}
)
, where ∆X (s) := X (s)− X (s−).

Then J (ds,dx) is a Poisson random measure on R+ × Rd
+ with intensity

measure ds ρ (dx).
J ((0, t ]× B) is Poisson distributed with E [J ((0, t ]× B)] = t ρ (B).
Also

X (t) =
∫
(0,t]

x J (ds,dx) =
∑
s≤t

x δ(s,∆X(s)) (dx)

→ series representation useful for simulation purpose
(inverse Lévy, Bondesson, thinning, rejection, ...)10,11.

10J. Rosiński. “Series Representations of Lévy Processes from the Perspective of Point Processes”. In: Lévy
processes. Springer, 2001, pp. 401–415.

11L. Bondesson. “On simulation from infinitely divisible distributions”. In: Adv. in Appl. Probab. 14.4 (1982),
pp. 855–869.

S. Mercier Multivariate additive processes 4 / 33



Laplace transform and moments
Laplace transform of X(t) :

LX(t) (y) = E
(

e−⟨y,X(t)⟩
)
= exp

[
−t
∫
Rd

+

(
1 − e−⟨y,x⟩

)
ρ (dx)

]
for all y ∈ Rd

+.

Let ρi (dxi) and ρi,j (dxi ,dxj) be the Lévy measures of the marginal Lévy
processes (Xi (t))t≥0 and (Xi (t) ,Xj (t))t≥0, respectively.
Then:

E (Xi (t)) = t
∫
R+

xi ρi (dxi) = t E (Xi (1)) ,

var (Xi (t)) = t
∫
R+

x2
i ρi (dxi) = t var (Xi (1)) ,

cov (Xi (t) ,Xj (t)) = t
∫
R+

xixj ρi,j (dxi ,dxj) = t cov (Xi (1) ,Xj (1))

for all t > 0 and all i ̸= j .
All these moments are linear functions in t .
Ratio E (Xi (t)) /var (Xi (t)) and ρXi (t),Xj (t) are independent on time.
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Definition

Definition
A multivariate process X = (X (t))t≥0 is said to be an additive process if:

X (0) = 0 a.s.,
X has independent increments,
X is stochastically continuous,
X is right-continuous with left-side limits.

Remark
Whenever the increments are homogeneous, an additive process is a Lévy
process.

1213

12K.-I. Sato. Lévy processes and infinitely divisible distributions. Vol. 68. Cambridge Studies in Advanced
Mathematics. Cambridge: Cambridge University Press, 1999, pp. xii+486.

13E. Çinlar. Probability and stochastics. Vol. 261. Graduate Texts in Mathematics. Springer, New York, 2011.
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Jump structure (1/2)

Let X = (X1, · · · ,Xd ) = (X1 (t) , · · · ,Xd (t))t≥0 be a non negative
multivariate additive process with bounded variations and no drift.
X is componentwise non decreasing.
X is a pure jump process and for each t > 0, the distribution of the
random vector X (t) is infinitely divisible.
Let ρt (dx) be its Lévy measure, with∫

Rd
+

min (∥x∥∞ ,1)ρt (dx) < +∞.

The distribution of the random vector X (t) is characterized by its Lévy
measure ρt (dx).
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Jump structure (2/2)
Let

J ((0, t ]× B) = # {s > 0 : (s,∆X (s)) ∈ (0, t ]× B}
for all t > 0 and B ∈ B

(
R+

d \ {0}
)
.

Then J is a Poisson random measure with intensity measure ρ̃ defined by

ρ̃ ((0, t ]× B) = ρt (B) for all B ∈ B
(
Rd

+\ {0}
)

and all t > 0.

J ((0, t ]× B) is Poisson distributed with E [J ((0, t ]× B)] = ρ̃ ((0, t ]× B).
Also

X (t) =
∫
(0,t ]

x J (ds, dx) =
∑
s≤t

x δ(s,∆X(s)) (dx)

→ series representation, useful for simulation purpose.
Both the jump structure and the distribution of the whole process X are entirely
characterized by the intensity measure ρ̃14.

Remark

In the specific case of a Lévy process: ρt = t ρ for all t > 0 and
ρ̃ (ds, dx) = ds ρ (dx), where ρ is the Lévy measure of the process X.

14K.-I. Sato. Lévy processes and infinitely divisible distributions. Vol. 68. Cambridge Studies in Advanced
Mathematics. Cambridge: Cambridge University Press, 1999, pp. xii+486.
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Laplace transform and moments
Laplace transform of X(t) :

LX(t) (y) = E
(

e−⟨y,X(t)⟩
)
= exp

[
−
∫
Rd

+

(
1 − e−⟨y,x⟩

)
ρt (dx)

]

for all y ∈ Rd
+.

Let ρt,i (dxi) and ρt,i,j (dxi , dxj) be the Lévy measures of the marginal r.v. Xi (t)
and (Xi (t) ,Xj (t)), respectively.
Then:

E (Xi (t)) =
∫
R+

xi ρt,i (dxi) ,

var (Xi (t)) =
∫
R+

x2
i ρt,i (dxi) ,

cov (Xi (t) ,Xj (t)) =
∫
R+

xixj ρt,i,j (dxi , dxj) for all t > 0 and all i ̸= j.

Ratio E (Xi (t)) /var (Xi (t)) or ρXi (t),Xj (t) are dependent on time,
except if ρt (dx) = Λ (t)ρ1 (dx) that is if ρ̃ (dt , dx) = λ (t) dt ρ (dx).
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Time-scaled Lévy processes

Let λ : R+ −→ R+ be a time-scaling function such that:
λ is continuous,
λ (t) > 0 for all t > 0,
Λ (t) =

∫ t
0 λ (s) ds < +∞ for all t > 0,

limt→∞ Λ (t) = ∞.

Let Y = (Y (t))t≥0 be a multivariate non negative Lévy process with Lévy
measure ρ.
We set X (t) = Y (Λ (t)) for all t ≥ 0.
Then X is a time-scaled Lévy process and it is a specific additive process
with intensity measure ρ̃ (ds,dx) = λ (s)ds ρ (dx).
Hence, the ratio E (Xi (t)) /var (Xi (t)) and ρXi (t),Xj (t) are independent on
time

-> Time-scaling does not enlarge that much the modeling ability of a Lévy
process.
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Extended Lévy process
Let Y = (Y (t))t≥0 be a Lévy process with Lévy measure ρ.
We set

X (t) =
∫
(0,t]

b (u)dY (u) =

(∫
(0,t]

b1 (u)dY1 (u) , · · · ,
∫
(0,t]

bd (u)dYd (u)

)

for all t ≥ 0, where b (u) = (b1 (u), · · · ,bd (u)) for all u ≥ 0 is a
componentwise positive and continuous function on

(
R∗

+

)d .
X = (X (t))t≥0 is said to be an extended Lévy process.
X is an additive process and if ρ (dx) = ρ (x)dx (to simplify), its intensity
measure is

ρ̃ (ds,du) = ds ρ

(
u1

b1 (s)
, · · · , ud

bd (s)

)
1

b1 (s)× · · · × bd (s)
du.

Remark
Can be extended to time-scaled Lévy process.
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Extended Lévy process, references

Univariate extended gamma process15,16,17,18

Extended multivariate Lévy process19

Simulation based on series expansion20, where they consider
X (t) =

∫
(0,t] b (t ,u)dY (u) (shot noise process but not an additive

process).

15E. Çinlar. “On a generalization of gamma processes”. In: J. Appl. Probab. 17 (1980), pp. 467–480.
16RL. Dykstra and P. Laud. “A Bayesian nonparametric approach to reliability”. In: The Annals of Statistics

9.2 (1981), pp. 356–367.
17M. Guida, F. Postiglione, and G. Pulcini. “A time-discrete extended gamma process for time-dependent

degradation phenomena”. In: Reliability Engineering & System Safety 105.0 (2012), pp. 73 –79.
18Z. Al Masry, S. Mercier, and G. Verdier. “Approximate simulation techniques and distribution of an extended

Gamma process”. In: Methodology and Computing in Applied Probability 19 (2017), pp. 213–235.
19S. Mercier and C. Sangüesa. “A general multivariate lifetime model with a multivariate additive process as

conditional hazard rate increment process”. In: Metrika 86.1 (2023), pp. 91–129.
20S. Yuan and R. Kawai. “Numerical aspects of shot noise representation of infinitely divisible laws and

related processes”. In: Probability Surveys 18 (2021), pp. 201–271, 70 p.
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Extended Lévy process, example (1/2)
Let Y be a bivariate Lévy process with Lévy measure ρ.
We have

var (X1 (t)) =
∫
R+

x2
1 ρt,1 (dx1) =

∫
R+

x2
1

∫ t

0
ρ̃ (ds, dx1)

=

∫
R+

∫ t

0
x2

1 ρ

(
x1

b1 (s)

)
1

b1 (s)
ds dx1

=

∫ t

0
b2

1 (s) ds
∫
R+

u2
1 ρ (u1) du1

= var (Y1 (1))
∫ t

0
b2

1 (s) ds

In the same way

cov (X1 (t) ,X2 (t)) = cov (Y1 (1) ,Y2 (1))
∫ t

0
b1 (s) b2 (s) ds

Hence ρ(X1(t),X2(t)) = ρ(Y1(1),Y2(1))ϕ (t) with

ϕ (t) =

∫ t
0 b1 (s) b2 (s) ds(∫ t

0 b2
1 (s) ds

)
1
2

(∫ t
0 b2

2 (s) ds
)

1
2

.
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Extended Lévy process, example (2/2)
We take b1 (s) = es, b2 (s) = e10s (left) and b1 (s) = 1 + s, b2 (s) = 1 + 10s (right).
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→ ρX1(t),X2(t) is dependent on time and can have any behaviour.

The same for E (X1 (t)) /var (X1 (t)) or E (X1 (t)) /E (X2 (t)) ...
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A shock model (1/2)
Shocks arrive according to a non homogeneous Poisson process (Nt)t≥0 with
intensity function λ (·) and points {Tn, n ∈ N∗}

Let Q (t , du) be a transition probability kernel from (R+,B (R+)) to
(
Rk

+,B
(
Rk

+

))
Let (Un)n∈N∗ be a sequence of non negative k−dimensional random vectors such
that given the Tn ’s, n = 1, 2, · · · , the Un ’s, n = 1, 2, · · · are conditionaly
independent with conditional distribution Q (Tn, du)

Let h :
(
R+ × Rk

+,B
(
R+ × Rk

+

))
−→

(
Rd

+,B
(
Rd

+

))
be a measurable function

with
h (t ,u) = (h1 (t ,u) , · · · , hd (t ,u)) .

We set

X (t) =
Nt∑

n=1

h (Tn,Un) for all t > 0

(shot noise process).

Remark

Specific case: non-homogeneous compound Poisson process.
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A shock model (2/2)

Proposition

Under technical assumptions, X = (Xt)t≥0 is an additive process with intensity
measure

ρ̃ (ds,dx) = λ (s)ds Qh(s,·) (s,dx) ,

where
Qh(s,·) (s,B) =

∫
1B (h (s,u))Q (s,du)

for all B ∈ B
(
Rk

+

)
, that is Qh(s,·) (s,dx) stands for the push-forward measure

of Q (s,du) by the function h (s, ·).

21

Remark
It is possible to include possibly fatal shocks, with time-dependence and
dependence between components for the probability of the fatality of a shock.

21S. Mercier and C. Sangüesa. “A general multivariate lifetime model with a multivariate additive process as
conditional hazard rate increment process”. In: Metrika 86.1 (2023), pp. 91–129.
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A bivariate shock model, example (1/2)
We take:

h (Tn,Un) =
(
(1 + Tn)

α1 U(1)
n , (1 + Tn)

α2 U(2)
n

)
,

U(1)
n = V (1)

n + V (3)
n and U(2)

n = V (2)
n + V (3)

n ,[
V (1)

n |Tn

]
D
=
[
V (2)

n |Tn

]
∼ Γ (βTn, 1) and

[
V (3)

n |Tn

]
∼ Γ ((1 − β)Tn, 1),

V (1)
n ,V (2)

n ,V (3)
n are conditionally independent given Tn.

Hence
[
U(1)

n |Tn

]
D
=
[
U(2)

n |Tn

]
∼ Γ (Tn, 1).

We get

Var (Xi (t)) = g(3 + 2αi , t)− g(2 + 2αi , t),
cov (X1 (t) ,X2 (t)) = g(3 + α1 + α2, t)− (1 + β) g(2 + α1 + α2, t)

+ β g(1 + α1 + α2, t)

with
g (α) =

(1 + t)α − 1
α

.

S. Mercier Multivariate additive processes 17 / 33



A shock model, example (2/2)
We take α1 = 10, α2 = 0.5, β = 0.3 (left) and α1 = 1.25, α2 = 0.5, β = 0.5 (right).
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1

→ ρX1(t),X2(t) is dependent on time and can have any behaviour.

The same for E (X1 (t)) /var (X1 (t)) or E (X1 (t)) /E (X2 (t)) ...
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First elements of conclusion about additive
processes

Additive processes are constructed from Poisson random measures in a
very similar way as Lévy processes
Unlike (time-scaled) Lévy processes, they allow time-dependent ratios
E (Xi (t)) /var (Xi (t)), E (Xi (t)) /E (Xj (t)), ... and time-dependent
correlation coefficients ρXi (t),Xj (t)

→ increased modeling ability of additive processes with respect to Lévy
processes.
They can be used for modeling:

multivariate cumulative deterioration,
hazard rate process, in a Bayesian fashion.
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The point

d identical components subject to a common stressful external
environment,
lifetime of each component: characterized by its hazard (failure) rate,
impact of the environment: increases the d components hazard rates,
the d hazard rate increments are dependent and increase over time,
they are jointly modelled by a d-dimensional non negative additive
process.

22

22S. Mercier and C. Sangüesa. “A general multivariate lifetime model with a multivariate additive process as
conditional hazard rate increment process”. In: Metrika 86.1 (2023), pp. 91–129.
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Notations and assumptions
hi (t): intrinsic hazard rate function of the i−th component, i = 1, · · · ,d
(out of the stressing environment),
Hi (t): cumulative intrinsic hazard rate function of the i−th component,
i = 1, · · · ,d ,
X = (X1, · · · ,Xd ) = (X1 (t), · · · ,Xd (t))t≥0: non negative multivariate
additive process with bounded variations and no drift,
conditional hazard rate of the i−th component given X:

hXi (t) = hi (t) + Xi (t)

for all t > 0, all i = 1, · · · ,d ,
given X, the components are independent.

The process X is called Conditional Hazard Rate Increment (CHRI) process.

Remark
All the dependence between components is due to the dependence between
the Xi ’s, i = 1, · · · ,d.
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The multivariate lifetime

τi : lifetime of the i−th component, i = 1, · · · ,d ,
τ = (τ1, · · · , τd ): the multivariate lifetime,
F̄τ (s): the multivariate survival function with

F̄τ (s) = P

[
d⋂

i=1

{τi > si}

]

for all s = (s1, · · · , sd ) ∈ Rd
+.

The point: computation of F̄τ (s).
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Preliminary analysis
We have:

F̄τ (s) = P
(

d⋂
i=1

{τi > si}
)

= E
[
P
(

d⋂
i=1

{τi > si} |X
)]

= E

 d∏
i=1

P (τi > si |X)︸ ︷︷ ︸
e−HXi (si )

 (conditional independence assumption)

with

HXi (si) =

∫ si

0
hXi (t)dt =

∫ si

0
(hi (t) + Xi (t))dt = Hi (si) +

∫ si

0
Xi (t) dt

and

F̄τ (s) = E

[
d∏

i=1

e−Hi (si )e−
∫ si

0 Xi (t) dt

]
= e

−

H(s)︷ ︸︸ ︷
d∑

i=1

Hi (si)

×

e−K (s)︷ ︸︸ ︷
E
[
e−

∑d
i=1

∫ si
0 Xi (t) dt

]
.

S. Mercier Multivariate additive processes 23 / 33



Main result
Theorem
Let X = (X (t))t≥0 be a multivariate non negative additive process with
bounded variations, no drift and intensity measure ρ̃ (dt ,dx).
Then:

F̄τ (s) = e−H(s)−K (s)

for all s = (s1, · · · , sd ) ∈ Rd
+ where H (s) =

∑d
i=1 Hi (si) and

K (s) =
∫
(0,∞)×(Rd

+\{0})

(
1 − e−

∑d
i=1(si−t)+xi

)
ρ̃ (dt ,dx) .

Extends 23,24,25,26

23Y. Kebir. “On hazard rate processes”. In: Naval Research Logistics 38.6 (1991), pp. 865–876. ISSN:
0894-069X; 1520-6750/e.

24J.H. Cha and J. Mi. “On a stochastic survival model for a system under randomly variable environment”. In:
Methodology and Computing in Applied Probability 13.3 (2011), pp. 549–561.

25S. Mercier and H.H. Pham. “A bivariate failure time model with random shocks and mixed effects”. In:
Journal of Multivariate Analysis 153 (2017), pp. 33–51.

26M.L. Wenocur. “A reliability model based on the gamma process and its analytic theory”. English. In:
Advances in Applied Probability 21.4 (1989), pp. 899–918. ISSN: 0001-8678.
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Time-scaled Lévy process as CHRI process (1/2)

Corollary

Let X be a time-scaled Lévy process with X (t) = Y (Λ (t)), and let ρ be the
Lévy measure of Y.

Then
F̄τ (s) = e−H(s)−K (s)

with

K (s) =
∫

F

(
1 − e−

∑d
i=1(si−t)+xi

)
λ (t)dt ρ (dx)

= −
∫ ∞

0
ln
(
LY(1)

(
(s1 − t)+ , · · · , (sd − t)+

))
λ (t)dt .

for all s = (s1, · · · , sd ) ∈ Rd
+.
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Time-scaled Lévy process as CHRI process (2/2)
Corollary

Let X be a time-scaled Lévy process with X (t) = Y (Λ (t)), and let ρ be the
Lévy measure of Y.

Assume the dependence between the marginal processes of Y to be modeled
by a Lévy copula C.

Then

F̄τ (s) = exp

[∫
R2

+

C (U1 (s1),U2 (s2)) γv,λ (s) ds1 ds2

]
F̄τ1 (v1) F̄τ2 (v2)

with

Ui (si) =

∫ ∞

si

ρi (si)dsi for i = 1,2,

γv,λ (s) =
∫ min(v1,v2)

0
(v1 − t) (v2 − t)e−(v1−t)s1−(v2−t)s2 λ (t) dt

for all s = (s1, · · · , sd ) ∈ Rd
+.
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Univariate CHRI Lévy process, example (1/2)
Let h (v) = 0 for all v ≥ 0.

Homogeneous univariate gamma process: X (t) ∼ Γ (at , b) with

fΓ(at,b) (x) =
bat

Γ (at)
xat−1e−bx 1R+

(x)

Then:

F̄τ (v) = eat
(

b
b + v

)a(b+v)

,

hτ (v) = a ln

(
b + v

b

)
.

Homogeneous inverse Gaussian process: X (t) ∼ IG (at , b) with

fIG(at,b) (x) =
at

(2πx3)
1
2

exp

(
−b2

2
x + abt − (at)2

2
1
x

)
1R∗

+
(x)

Then:

F̄τ (v) = exp

(
−a
(

1
3

((
b2 + 2v

) 3
2 − b3

)
− bv

))
hτ (v) = a

(√
b2 + 2v − b

)
.
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Univariate CHRI Lévy process, example (2/2)
Both gamma and inverse Gaussian processes share the same mean
E (X (t)) = at/b.
Plots of hτ (v) for a = 1 and b = 2 (left), b = 0.25 (right):
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Inverse Gaussian
Gamma

0 5 10 15
0

2

4

6

Inverse Gaussian
Gamma

Gamma: hτ (v) ∼
v→∞

a ln (v),

Inverse Gaussian: hτ (v) ∼
v→∞

a
√

2v .
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Extended Lévy process as CHRI process
Corollary

Let X = (X (t))t≥0 be an extended Lévy process with

X (t) =
∫
(0,t]

b (u)dY (u)

and let ρ be the Lévy measure of Y. Then

F̄τ (s) = e−H(s)−K (s)

with

K (s) =
∫

F

(
1 − e−

∑d
i=1(si−t)+bi (t)xi

)
dt ρ (dx)

= −
∫ ∞

0
ln
(
LY(1)

(
(s1 − t)+ b1 (t), · · · , (sd − t)+ bd (t)

))
dt

for all s = (s1, · · · , sd ) ∈ Rd
+.
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Extended Lévy process as CHRI process, example

Let (Zi (t))t≥0, i = 1, 2, 3 be three independent univariate time-scaled gamma
processes with Zi (t) ∼ Γ (ai Λ (t) , 1).
We set {

Y1 (t) = Z1 (t) + Z3 (t)
Y2 (t) = Z2 (t) + Z3 (t)

Then Y = (Y1,Y2) is a bivariate time-scaled Lévy process.
With X (t) =

∫
(0,t ] b (u) dY (u), we get

F̄τ (s) = e−H(s)−K (s)

with

K (s) = a1

∫ s1

0
λ (t) ln (1 + (s1 − t) b1 (t)) dt + a2

∫ s2

0
λ (t) ln (1 + (s2 − t) b2 (t)) dt

+ a3

∫ max(s1,s2)

0
λ (t) ln

(
1 + (s1 − t)+ b1 (t) + (s2 − t)+ b2 (t)

)
dt
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Shock models

Proposition

For the shock model (under additional technical assumptions), we have

F̄τ (v) = e−H(v) exp

[
−
∫

F

(
1 − e−

∑d
i=1(vi−s)+hi (t,x)

)
λ (s)ds Q (s,dx)

]
for all v = (v1, · · · , vd ) ∈ Rd

+.

Extends 27,28

27S. Mercier and H.H. Pham. “A bivariate failure time model with random shocks and mixed effects”. In:
Journal of Multivariate Analysis 153 (2017), pp. 33–51.

28J.H. Cha and J. Mi. “On a stochastic survival model for a system under randomly variable environment”. In:
Methodology and Computing in Applied Probability 13.3 (2011), pp. 549–561.
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Summary

1 Introduction

2 Non negative multivariate Lévy processes

3 Multivariate additive processes

4 Multivariate additive processes as hazard rate increment processes

5 Elements of conclusion and perspectives



Elements of conclusion

Additive processes allow an increased modeling ability with respect to
(time-scaled) Lévy processes.
They can be used for modeling for modeling hazard rate process in a
Bayesian fashion → full form expressions for the distribution of the
multivariate lifetime.
They can also be used for modeling cumulative deterioration but in that
case, technical tools are required for:

the computation of the joint distribution of X (t) (not available in full form, as
for Lévy processes)
statistical inference of X.
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Perspectives
For the computation of the joint distribution of X (t):

Simulation procedures based on series expansions could be explored29,30.

For the statistical parametric inference of X based on low frequency
observation:

Generalized Method of Moments (GMM) based on the Laplace transform
could be explored31.

In the context of a high frequency observation (mostly continuous
monitoring):

One could think about extending some results for non parametric estimation
of the Lévy measure32,33 of a Lévy process in the additive process context
(to be looked at!).

29S. Yuan and R. Kawai. “Numerical aspects of shot noise representation of infinitely divisible laws and
related processes”. In: Probability Surveys 18 (2021), pp. 201–271.

30Z. Al Masry, S. Mercier, and G. Verdier. “Approximate simulation techniques and distribution of an extended
Gamma process”. In: Methodology and Computing in Applied Probability 19 (2017), pp. 213–235.

31Z. Al Masry, S. Mercier, and G. Verdier. “Generalized method of moments for an extended gamma
process”. In: Communications in Statistics-Theory and Methods 47.15 (2018), pp. 3687–3714.

32A. Bücher and M. Vetter. “Nonparametric inference on Lévy measures and copulas”. In: Ann. Statist. 41.3
(2013), pp. 1485–1515.

33P. Tankov. “Lévy Copulas: Review of Recent Results”. In: The Fascination of Probability, Statistics and their
Applications: In Honour of Ole E. Barndorff-Nielsen. Ed. by Mark Podolskij et al. Springer, Cham, 2016,
pp. 127–151.
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