Early Triassic chondrichthyans from the Zuodeng Section, Guangxi Province, South China: Palaeobiological and palaeobiogeographical implications

Jiachun Li, Zuoyu Sun, Gilles Cuny, Dayong Jiang

To cite this version:

Jiachun Li, Zuoyu Sun, Gilles Cuny, Dayong Jiang. Early Triassic chondrichthyans from the Zuodeng Section, Guangxi Province, South China: Palaeobiological and palaeobiogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 624, pp.111635. 10.1016/j.palaeo.2023.111635 . hal-04116998

HAL Id: hal-04116998

https://hal.science/hal-04116998

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Early Triassic chondrichthyans from the Zuodeng Section, Guangxi Province, South China:

palaeobiological and palaeobiogeographical implications

Jiachun Li ${ }^{\text {a, b, }}{ }^{*}$, Zuoyu Sun ${ }^{\text {a }}$, Gilles Cuny ${ }^{\text {b }}$, Dayong Jiang ${ }^{\text {a }}$
${ }^{\text {a }}$ Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, Department of Geology and Geological Museum, Peking University, Yiheyuan Street 5, Beijing 100871, China;
${ }^{\text {b }}$ Univ Lyon, Universite Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622

Villeurbanne, France;
*Corresponding author.

E-mail addresses: lijiachun@pku.edu.cn (J.C. Li); sunzuoyu@pku.edu.cn (Z.Y. Sun); gilles.cuny@univ-lyon1.fr (G. Cuny); djiang@pku.edu.cn (D.Y. Jiang).

Abstract

The Early Triassic chondrichthyans from China has been insufficiently studied. We herein present a taxonomic study of a diverse chondrichthyan fauna from the Luolou Formation at the Zuodeng section in Guangxi Province, South China. Nine elasmobranch taxa are recognized, including two hybodonts (Omanoselache halli and Hybodus sp.), three neoselachians (Safrodus tozeri, Polyfaciodus pandus and Synechodus aff. triangulus) and four euselachians of uncertain affinities (Favusodus orientalis, Euselachii gen. et sp. indet., 'Hybodus'zuodengensis and 'Hybodus' yohi). A statistical analysis shows that the shark palaeocommunity had a high diversity and evenness, and a low dominance, indicating that the archipelagic Nanpanjiang Basin probably allowed the thriving of euselachian sharks. Their diverse morphologies indicate that the fauna demonstrated adaptation for a wide diversity of feeding strategies, including grasping-crushing, grasping-swallowing and sharp-grasping. Palaeobiogeographically, trans-Tethyan taxa reveal a shark dispersion path between the western Neo-Tethys (Oman) and eastern Palaeo-Tethys (Zuodeng) in the Early Triassic.

Keywords: Elasmobranchs; palaeobiodiversity; palaeobiogeography; Tethys; China.

1. Introduction

The end-Permian mass extinction (EPME), the most severe crisis of the Phanerozoic (Erwin, 1993; Stanley, 2016; Fan et al., 2020), led to the turnover between Palaeozoic and Modern faunas (Sepkoski, 1981). Chondrichthyans, being one of the predominant top predators of the Late Palaeozoic marine ecosystems (Pitrat, 1973; Chen and Benton, 2012; Koot, 2013; Romano et al., 2016), also experienced a sharp turnover in the wake of the EPME when marine Palaeozoic stem chondrichthyans (e.g., cladodontomorphs, Petalodontiformes, Bransonelliformes) went extinct or strongly declined, whereas the Hybodontiformes increasingly dominated and the modern sharks (Neoselachii) emerged in Mesozoic marine ecosystems (Guinot et al., 2013; Manzanares et al., 2020). Thereafter, chondrichthyans were one of the major vertebrates occupying higher trophic levels in Early Triassic marine ecosystems so that relevant researches are crucial to understand chondrichthyan faunal turnovers and ecosystem recovery after the EPME (Koot, 2013; Scheyer et al., 2014). Early Triassic chondrichthyans have so far been reported from western United States (Mutter and Rieber, 2005), western Canada (Mutter and Neuman, 2006, 2008, 2009; Mutter et al., 2007, 2008), Spitsbergen (Stensiö, 1918, 1921; Birkenmajer and Jerzmańska, 1979; Błażejowski, 2004; Romano and Brinkmann, 2010; Bratvold et al., 2018), Greenland (Nielsen, 1952), Azerbaijan (Obruchev, 1965; Kasumzadeh, 2000), Turkey (Thies, 1982), Oman (Koot et a1., 2015), Madagascar (Thomson, 1982), Japan (Goto, 1994; Goto et al., 1996, 2010; Kato, et al., 1995; Yamagishi, 2004, 2006), South Primorye Russia (Yamagishi, 2006, 2009), Timor (Yamagishi, 2006) and South China (Dingri in Tibet: Zhang, 1976; Zuodeng in Guangxi Province: Wang et al., 2001). The material from China is, however, insufficiently described: a species of helicoprionid shark, Sinohelicoprion qomolangma was erected based on a
partial tooth spiral dentary with six teeth and a preorbital part of skull from South Tibet (Zhang, 1976) and three poorly diagnosed shark taxa, 'Hybodus' zuodengensis, 'Hybodus' yohi and 'Polyacrodus' tiandongensis, were described based on six teeth from Luolou Formation at the Zuodeng section, Guangxi Province, South China (Wang et al., 2001). The aim of the current study is 1) to present a detailed study of a diverse chondrichthyan fauna from the Early Triassic of Zuodeng based on new materials collected by bulk sampling; 2) to reconstruct the shark palaeocommunity in the region and its palaeobiodiversity.

2. Geological setting

Geographically, the fossil locality $\left(106^{\circ} 59^{\prime} 36^{\prime \prime} \mathrm{E}, 23^{\circ} 27^{\prime} 12^{\prime \prime} \mathrm{N}\right)$ is approximately 4.5 km southwest to Denggao village, Zuodeng Town, Tiandong County, Guangxi Province, South China (Fig. 1A). The Nanpanjiang Basin was made of deep-water sediments within which a number of isolated shallow carbonate platforms, such as the Great bank of Guizhou (GBG), the Jinxi, Chongzuo, Debao and Pingguo Platforms were scattered to form an archipelagic sea (Lehrmann et al., 2003, 2015; Enos et al., 2006). The Zuodeng section was located between the Debao and Pingguo Platforms within the southern (interior) part of the Nanpanjiang Basin (Fig. 1B).

Zhao (1959) first measured the Early Triassic Luolou Formation at the Zuodeng section and reported on ammonoids therein. Yang et al. (1984) subdivided the Luolou Formation into twelve layers, where a successive eight conodont zones were established (Fig. 2A). Subsequently, Wang et al. (2001) described three elasmobranch species that were recovered from Yang et al.'s (1984) conodont residues, i.e. 'Hybodus'zuodengensis, 'Hybodus' yohi and 'Polyacrodus' tiandongensis, all from the conodont Triassopathodus homeri-Neospathodus triangularis Zone (Fig. 2A). More recently, Yan (2013) reassessed the Zuodeng section of Yang et al. (1984) and divided it into the Zuodeng I (ZD I) and the

Zuodeng II (ZD II) sections (Figs. 2B, C). Six conodont zones ranging from the early Induan to late Olenekian were recognized on the ZD I section (Fig. 2B), whereas seven conodont zones ranging from late Induan to late Olenekian were recovered on the ZD II section (Fig. 2C). Accordingly, the Smithian-Spathian boundary between ZD I and ZD II is marked by the first occurrence of Icriospathodus collinsoni on the ZD I and Novispathodus pingdingshanensis on the ZD II (Yan, 2013). The present shark samples were collected from the upper part of the Luolou Formation, characterized by an alternance of thin and thick bedded muddy limestone with shale, mudstone, marl and pisolitic limestone interbeds (Fig. 1C, D). Their lithological and biostratigraphical correlations are illustrated in Figure 2.

3. Material and methods

A total of 63 conodont samples (each weighting $5 \sim 10 \mathrm{~kg}$ and sampled at $\sim 1 \mathrm{~m}$ intervals) and an additional 10 bulk samples (each weighting about 25 kg) were collected in order to search for shark-teeth-bearing layers in 2018. Then, 15 bulk samples (each ca. 25 kg) targeting for shark teeth, were exclusively collected from the shark-teeth-bearing layers in 2020. After breaking coarsely the samples into $\sim 2 \times 2 \mathrm{~cm}$ pieces, they were dissolved in 10% acetic acid, and then filtered through $74 \mu \mathrm{~m}$ and 2 mm meshes. All microfossils, including conodonts and shark remains, were handpicked using fine writing brushes under a binocular microscope. A total of 55 shark teeth and 10 dermal denticles were recovered. Shark teeth were photographed using a JEOL JCM-6000 Plus scanning electron microscope (SEM) under an acceleration voltage of 10 kV . Six broken teeth were used for enameloid analysis following the protocol described by Cuny et al. (2001). The material was etched with 10% HCl for 5-30 seconds according to the size and type of the studied structure, and then was rinsed in demineralized water for 10 minutes. Photographs of the enameloid structures were taken using a FEI

QUANTA-650FEG SEM with an acceleration voltage of 10 kV . The systematic framework and shark tooth terminology follow Cappetta (2012) and Enault et al. (2015). The microstructural terminology follows Cuny et al. (2001). The use of open nomenclature follows Bengtson's (1988) recommendations. The quantitative analysis of the shark community was evaluated by the Simpson's Index (Simpson, 1949), Shannon Index (Shannon, 1948) and Evenness (Pielou, 1966) according to the following mathematical formulas:

```
\({ }^{(1)}\) Simpson's Index (D) \(=\sum(\mathrm{ni} / \mathrm{N})^{2}\)
\({ }^{(2)}\) Shannon Index \((\mathrm{H})=-\sum(\mathrm{Pi})(\mathrm{Ln} \mathrm{Pi})\)
\({ }^{(3)}\) Evenness \((\mathrm{E})=\mathrm{H} / \mathrm{Hmax}=-\sum(\mathrm{Pi})(\mathrm{Ln} \mathrm{Pi}) / \operatorname{Ln}(\mathrm{S})\)
```

with N, the number of all teeth of a community; n, the number of teeth of a given species of a community; $\mathrm{Pi}, \mathrm{ni} / \mathrm{N}$ for each of the recovered species; S , the number of species of a community. This study was conducted at the Laboratory of Orogenic Belt and Crustal Evolution, School of Earth and Space Sciences, Peking University, China. All specimens are stored in the collections of GMPKU (Geological Museum of Peking University, Beijing, China).

4. Systematic palaeontology

(by J.C. Li and G. Cuny)

Class CHONDRICHTHYES Huxley, 1880

Subclass ELASMOBRANCHII Bonaparte, 1838

Cohort EUSELACHII Hay, 1902

Order HYBODONTIFORMES Patterson, 1966

Family incertae sedis

Genus OMANOSELACHE Koot, Cuny, Tintori and Twitchett, 2013
(Figure 3A-C')

2006 Lissodus sp. 1 Yamagishi, pp. 79, pl. 5, figs. B-D.

Material—Sixteen teeth, GMPKU-P-3750-61, GMPKU-P-3788-91 and GMPKU-P-3799, from layers 8-11 of the Luolou Formation, Zuodeng section. Five specimens were used for imaging: GMPKU-P-3750-54 and two for SEM microstructural study: GMPKU-P-3790 and GMPKU-P-3799. Description-The teeth are elongate and fusiform in shape, measuring $0.9-2.3 \mathrm{~mm}$ mesiodistally, 0.3-1.0 mm labiolingually and $0.3-1.0 \mathrm{~mm}$ apico-basally. The dentition shows a gradient monognathic heterodonty: anterolateral teeth have a strong main cusp and basally arched root, whereas the posterolateral teeth have a weak main cusp and straight root. The crown is symmetric or asymmetric with one prominent main cusp surrounded by several small lateral cusplets. In apical view, the mesial extremity of asymmetric teeth (e.g. GMPKU-P-3752, GMPKU-P-3753) turns labially or lingually (Figs $3 \mathrm{M}, \mathrm{R})$. The main cusp is pyramidal in shape with a blunt apex. It always displays an overhanging peg that is apicobasally extensive on the lingual face, whereas the corresponding peg on the labial face is less developed (Fig. 3G) or absent (Fig. 3Q) or replaced by a concave depression (Fig. 3L). The lateral cusplets are reduced and nearly fused together in most specimens (Figs. 3A, K, U). They vary in number. For example, an anterolateral tooth (GMPKU-P-3751) shows five pairs of lateral cusplets on the mesial and distal sides (Figs. 3F-J), whereas a lateral tooth (GMPKU-P-3753) shows three lateral cusplets on the mesial side and eight lateral cusplets on the distal side (Figs. 3P-T). A mesiodistal crest runs through the apices of the main cusp and lateral cusplets. One or two vertical ridges originate from the longitudinal crest at each apex on both labial and lingual crown surfaces. These ridges fuse basally with a horizontal circumferential rim developed along the entire crown shoulder. The crown/root
junction is marked with a groove labially and lingually.

The root is lower than the crown in anterolateral and lateral teeth, but its height is nearly equal to that of the crown in posterior teeth (Fig. 3U). The root displays foramina of varying size that are arranged in a row on the lingual root wall (Figs. 3F, K, U). Labially, foramina are irregularly distributed: they are present at the basolabial edge in anterior and anterolateral teeth (Figs. 3B, L), whereas they are restricted to the upper part of the root in posterior teeth (Fig. 3V). The basal root surface is flat and displays a series of parallel canals at the labialmost part (Figs. 3N, X). The root vascularization is anaulacorhize on the labial and lingual walls, but it resembles pseudopolyaulacorhizy in basal view with parallel canals that are open on the labialmost part. It differs from the latter vascularization system by the absence of a corrugated basal root in labial view.

Enameloid microstructure-The enameloid consists of a single crystallite enameloid (SCE) made of short rod-shaped units (Figs. 3Z-B'). The crystallites are varying in length between 0.3 and $0.5 \mu \mathrm{~m}$. Their arrangement does not change at the level of the vertical ridges (Fig. 3A') and longitudinal crest (Fig. 3B'). The orthodentine was exposed once the enameloid was completely removed (Fig. 3C').

Remarks-The genus Omanoselache was erected by Koot et al. (2013) from the Wordian, Middle Permian of Oman. The material described here matches well the monognathic heterodonty pattern of Omanoselache in having symmetrical and basally arched anterior and anterolateral teeth, and asymmetrical and straight lateral and posterior teeth. They are further assigned to Omanoselache halli from the upper Olenekian of Oman by having a fusiform outline, pyramidal main cusp with a blunt apex, circumferential rim, prominent lingual peg and small or absent labial peg, well developed longitudinal crest and anaulacorhize to perhaps pseudopolyaulacorhize vascularization (Koot et al., 2015). However, Omanoselache halli displays a stronger lingual peg and more separated cusplets.

Additionally, one lateral tooth (GMPKU-P-3752) displays three lateral cusplets on the mesial side and eight on the distal side, which is more asymmetric than any teeth of Omanoselache halli recovered from Oman. These differences are herein considered intraspecific variations. The tooth attributed to Polyacrodus tiandongensis by Wang et al. (2001) from the same layers at Zuodeng locality shares the above-mentioned crown characteristics with the material described here (a labial accessory process of the crown described in the original paper is actually a lingual peg, because mesial and /or distal ends of the crown are usually recurved lingually, see figs. 5a-c; pl. 1, figs. Fa-Fc). However, one poorly described crown lacking the root is difficult to diagnose. Besides, Fischer (2008) considered that Polyacrodus tiandongensis might belong to Lissodus angulatus. However, numerous vertical ridges and a prominent lingual peg in Polyacrodus tiandongensis separate it from Lissodus angulatus, which displays less-developed vertical ridges of the crown and a moderate labial peg (Duffin, 1985). It is here suggested that Polyacrodus tiandongensis is a nomen dubium and could possibly be attributed to Omanoselache halli. Five teeth of Lissodus sp. 1 previously described by Yamagishi (2006) were already included into Omanoselache halli (Koot et al., 2015).

Occurrence-Upper Olenekian (Lower Triassic) of Oman (Yamagishi, 2006; Koot et al., 2015) and Tiandong County, Guangxi Province, South China.

Genus HYBODUS Agassiz, 1837
$H Y B O D U S$ sp. (Figure 4A-U)

Material-Four teeth, GMPKU-P-3780-83, from layers 8-11 of the Luolou Formation, Zuodeng section. GMPKU-P-3783 was used for SEM microstructural study.

Description-The teeth measure $0.6-1.2 \mathrm{~mm}$ mesiodistally, $0.3-0.7 \mathrm{~mm}$ labiolingually and $0.9-1.3 \mathrm{~mm}$
apico-basally. The crown consists of one main cusp flanked by one to three pairs of lateral cusplets. The main cusp is upright (Figs. 4E, S) or slightly inclined lingually (Figs. 4J, O), about two to three times as high as the lateral cusplets. The latter are situated slightly labially to the main cusp in GMPKU-P-3780 (Fig. 4E), whereas all cusps are aligned in GMPKU-P-3782 except an outermost cusplet that is slightly displaced labially (Fig. 4O) and overhangs the root (Fig. 4N). The main cusp is slender with a sharply pointed apex (Figs. 4C, H). The adjacent cusplets are not completely separated from each other. The crown surface is ornamented by rectilinear ridges that start from the apex and reach the crown/root boundary. Each cusp bears two lateral cutting edges and two to three coarse ridges on both labial and lingual surfaces (Figs. 4A-B, K-L). There is a groove that separates the crown from the root labially (Fig. 40) but it is absent lingually.

The root is largely damaged or missing in most specimens. However, GMPKU-P-3782 shows a low root that protrudes lingually. A row of foramina is located on both labial and lingual root wall. Some large and unroofed canals are exposed on the lingual root edge (Fig. 4K) and labio-basal part of the root (Fig. 4N) due to the artificial damage.

Enameloid microstructure - The enameloid consists of a layer of single crystallite enameloid (SCE). Each crystallite is $0.5-1 \mu \mathrm{~m}$ long, rod-shaped and randomly oriented at the cutting edge (Fig. 4T) and on the labial face of the main cusp (Fig. 4U).

Remarks-The assignment of the material herein described to Hybodus is based on well-developed slender cusplets, decreasing in height from the central main cusp to the lateral cusplets and a fairly shallow root (Maisey, 1987; Duffin, 1993; Ginter et al., 2010). The aligned cusplets and coarse rectilinear ridges are reminiscent of the ornamentation pattern of Hybodus plicatilis that was recorded from the Middle-Late Triassic of Germany (Agassiz, 1843), Switzerland (Meyer, 1849; Rieppel, 1981),

Luxemburg (Delsate, 1992, 1993) and Spain (Pla et al., 2013; Manzanares et al., 2018, 2020). However, GMPKU-P-37080-83 lack the deep root of Hybodus plicatilis, a diagnostic feature of the species. Additionally, this species was transferred to the genus Parhybodus and considered as a neoselachian because it displays a labially protruding root, and lacks a clear sulcus (groove) separating the crown from the root on the labial face as in most species of Hybodus (Jaekel, 1898; Böttcher, 2015). Herein, the root does not protrude labially, and is separated from the crown by a labial groove. It is therefore better assigned to Hybodus than to Parhybodus. The overhanging outermost lateral cusplet separates it from other Hybodus species, but such a characteristic is not sufficient to erect a new species. Thus, we tentatively attribute these teeth to Hybodus sp. pending better material for a definite determination.

Occurrence-Upper Olenekian (Lower Triassic) of Tiandong County, Guangxi Province, South China.

EUSELACHII incertae sedis Genus FAVUSODUS Li and Cuny in Li et al., 2021 FAVUSODUS ORIENTALIS Li and Cuny in Li et al., 2021 (Figures 4V-W; 5A-P) 2004 Acrodus sp. e.g. spitzbergensis [sic] Yamagishi, pp. 565-574, figs. 3, 4a-b. Material-Five teeth, GMPKU-P-3771-75, from layers 9-11 of the Luolou Formation, Zuodeng section. GMPKU-P-3771-74 were used for imaging. GMPKU-P-3775 was used for SEM microstructural study.

Description-The teeth are rather large and blunt, of varying completeness. Of them, GMPKU-P-3772 is nearly complete, measuring 2.5 mm mesiodistally, 0.9 mm labiolingually and 0.8 mm apico-basally.

The crown has one prominent main cusp and at least two lateral cusplets (GMPKU-P-3773) or no lateral cusplet (GMPKU-P-3774). The main cusp is pyramid or dome-shaped with a blunt apex (Figs. $5 \mathrm{C}, \mathrm{H}, \mathrm{O})$. A lingual peg is present on the main cusp, overhanging the root. Well-defined ridges originate from the apex of the main cusp and extend to the crown shoulder. Some ridges bifurcate and then converge into a network, forming a few small concave pits on the labial surface of the main cusp (Fig. 5G), whereas some are parallel to each other on the labial and lingual crown surfaces, perpendicular to the longitudinal crest (e.g. GMPKU-P-3774, Fig. 5O). The latter runs across the crown mesio-distally (Figs. 5C, O). The crown and root are separated by a groove labially and lingually (Fig. 5L). The root is lower labially than lingually. The labial side of the root displays a row of small foramina just below the crown (Figs. 5B, G), whereas the lingual side displays a series of large, drop-shaped foramina (Figs. 5A, F, J). In basal view, the root surface is divided into labial and lingual parts. The labial one is much depressed and penetrated by parallel unroofed canals that sometimes reach the basolabial edge (Figs, 5D, I). The vascularization is therefore pseudopolyaulacorhize.

Enameloid microstructure - The enameloid is about $30-40 \mu \mathrm{~m}$ thick in longitudinal section, made of crystallites mostly oriented perpendicular to the surface (Fig. 4V). In surface view, the crystallites appear to be somewhat randomly oriented (Fig. 4W). The crystallites are about $0.5 \mu \mathrm{~m}$ in length.

Remarks-The attribution of the material to Favusodus orientalis Li and Cuny in Li et al., 2021 is based on the presence of the following characters: rather blunt crown with one prominent main cusp and much reduced lateral cusplets, an overhanging lingual peg, ornamentation pattern and pseudopolyaulacorhize vascularization. The ornamentation of the teeth herein described display less honeycombed pits compared with Favusodus orientalis from the Nimaigu section of Guizhou Province
(Li et al., 2021) and Ehime Prefecture of Japan (Yamagishi, 2004). This difference could be caused by a preservation artefact or abrasion when preying on hard-shelled items.

Occurrence-Upper Olenekian (Lower Triassic) of Tiandong County, Guangxi Province, South China; upper Ladinian (Middle Triassic) of Xingyi City, Guizhou Province, South China (Li et al., 2021); Upper Olenekian (Lower Triassic) to lower Anisian (Middle Triassic) of Ehime Prefecture, southwest Japan (Yamagishi, 2004).

EUSELACHII gen. et sp. indet.
(Figure 5Q-D')

Materials-Five teeth, GMPKU-P-3777-79, GMPKU-P-3792-93, from layers 9-11 of the Luolou Formation, Zuodeng section. GMPKU-P-3777-79 and GMPKU-P-3792 were used for imaging.

Description-All teeth are badly damaged, measuring $0.8-1.2 \mathrm{~mm}$ mesiodistally, $0.2-0.4 \mathrm{~mm}$ labiolingually and $0.3-0.4 \mathrm{~mm}$ apico-basally. The crown consists of one main cusp flanked by up to three or four cusplets on each side. The main cusp is slightly higher than the first pair of lateral cusplets. Small intermediate cusplets are usually present between the main cusp and the nearest lateral cusplets (Figs. 5A', C^{\prime}). One additional accessory cusplet is situated on the mesial extremity of the crown (Fig. 5Q). Most cusps are acute, slightly inclined distally. The crown ornamentation cannot be characterized due to the poor preservation of the teeth. There is no well-marked groove at the crown/root boundary. The root protrudes both labially and lingually (Fig. 5S). It is slightly arched in the central part. A row of small foramina is present on the lingual face of the root (Figs. 5Q, U). The foramina of the labial surface of the root cannot be distinguished due to their poor preservation in all available teeth. The basal root surface is rather flat and presents foramina roughly organized in a row exposed on the labial
part (Fig. 5T). The vascularization is anaulacorhize.

Remarks-The material is reminiscent of an undetermined taxon of euselachian sharks from the

Ladinian (Middle Triassic) of Xingyi, Guizhou Province (Li et al., 2021). We tentatively assign them to the same taxon of Euselachii gen. et sp. indet. as described by Li and Cuny in Li et al., 2021 because of their cladodont-like crown that displays intermediate cusplets and outermost accessory cusplet among the well-developed cusplets, and euselachian-type root (anaulacorhize) with both labially and lingually protruding root wall.

Occurrence-Upper Olenekian (Lower Triassic) of Tiandong County, Guangxi Province, South China; upper Ladinian (Middle Triassic) of Xingyi City, Guizhou Province, South China (Li et al., 2021).

Subcohort NEOSELACHII Compagno, 1977

Order SYNECHODONTIFORMES Duffin and Ward, 1993

Family incertae sedis

Genus SAFRODUS Koot and Cuny in Koot et al., 2015

SAFRODUS TOZERI Koot and Cuny in Koot et al., 2015
(Figures 6A-I'; 7K-M)

2004 Synechodus sp. Yamagishi, pp. 572-573, fig. 5.1-3.

Materials- Nine teeth, GMPKU-P-3762-68, GMPKU-P-3800-01 from layer 9 of the Luolou

Formation, Zuodeng section. Two specimens were used for SEM microstructural study:

GMPKU-P-3762 and GMPKU-P-3768.

Description-The teeth are $0.9-2.2 \mathrm{~mm}$ long mesiodistally, $0.3-0.5 \mathrm{~mm}$ wide labiolingually and $0.6-0.9 \mathrm{~mm}$ in height. A gradient monognathic heterodont dentition is deduced because anterior teeth
are mesiodistally short with a relatively high main cusp and slightly arched root, whereas the lateral and posterior teeth are mesiodistally elongated with a rather low main cusp and a straight root. The polycuspid crown displays one robust main cusp flanked by slender and low lateral cusplets. There are one to three cusplets on the distal side and one to four on the mesial side. All cusps bear a pointed apex and become slanted distally from anterior to posterior teeth. In apical view, the main cusp and lateral cusplets are compressed labio-lingually (Figs. 6C, H, R). A continuous longitudinal crest traverses the apex of each cusp. At the base of the main cusp, the longitudinal crest may display small, irregular bumps (Figs. 6L, P, E'). The crown is ornamented by three to eleven vertical ridges, both labially and lingually. These ridges originate from the base of each cusp and converge to its apex. The crown/root junction presents a shallow groove labially (Figs. 6Q, F').

The root is low and projects lingually. It has a pseudopolyaulacorhize vascularization with a row of foramina on both labial and lingual root walls. These foramina are usually larger and more developed on the lingual face of the root than on the labial one. The basal face of the root presents a mesiodistal depression in the labial-most part penetrated by a row of foramina, some of them reaching the labio-basal edge (Figs. 6D, C').

Enameloid microstructure-The microstructural analysis of GMPKU-P-3762 reveals a layer of single crystallites enameloid (SCE), which is composed of numerous long and slender crystallites. The crystallites are randomly arranged within a plane that is parallel to the crown surface, but these crystallites are not parallel to each other (Figs. 7K-M).

Remarks-The following features support an attribution to Safrodus tozeri: a gradient monognathic heterodont dentition with a high main cusp and not well-separated lateral cusplets, well-defined vertical ridges and a continuous longitudinal crest. The posterior teeth of the current materials resemble those
of Euselachii gen et sp. indet. in crown pattern with distally inclined cusplets. However, the indeterminate Euselachian teeth described herein display small intermediate cusplets next to the main cusp, which is not the case in Safrodus tozeri. The enameloid of the material described here shows no bundles and consists entirely of SCE, which differs from those of Oman that is made of a double-layered enameloid displaying single short-rodded crystallites and subparallel to parallel crystalline bundles (SCE and PBE) (Koot et al., 2015). Herein, the lack of bundles is possibly explained by the small size of the teeth, which appears to be strongly recrystallized, resulting in a blurry enameloid surface (see Figs. 7K-M), which makes difficult to observe the details of the structure.

Three teeth (Yamagishi, 2004, figs. 5. 1-3) attributed to Synechodus sp. from the Spathian (upper Olenekian) to lower Anisian of southwest Japan share with Safrodus tozeri all the above-mentioned features apart from their vertical ridges on the main cusp and cusplets that often bifurcate near the crown shoulder. These teeth are better ascribed to Safrodus tozeri than to Synechodus sp. because of an extensive arched root in anterolateral teeth and the absence of a labial crown overhang (Koot et al., 2015). However, the additional two posterolateral teeth attributed to Synechodus sp. should be excluded from Safrodus due to their extremely asymmetric crown with almost no lateral cusplets (Yamagishi, 2004, figs. 5. 4-5).

Occurrence-Upper Olenekian (Lower Triassic) of Oman (Koot et al., 2015) and Tiandong County, Guangxi Province, South China; Upper Olenekian (Lower Triassic) to lower Anisian (Middle Triassic) Ehime Prefecture, southwest Japan (Yamagishi, 2004).
(Figure 7A-E)

Material-One tooth, GMPKU-P-3770, from layer 8 of the Luolou Formation, Zuodeng section.

Description-The tooth is 0.8 mm mesiodistally, 0.4 mm labiolingually and 0.5 mm apico-basally. The symmetric crown is labio-lingually compressed and displays one main cusp flanked by one pair of intermediate cusplets and two pairs of lateral cusplets. The main cusp is twice as high as the first pair of lateral cusplets. A pair of small intermediate cusplets are situated between the main cusp and lateral cusplets (Fig. 7C). All cusps are triangular in shape but their apexes are not preserved. Cusp and cusplets are fused together at their bases and separated by V-shaped notches. Labially, the ornamentation is characterized by some poorly preserved vertical ridges and a longitudinal circumferential rim along the crown shoulder (Fig. 7B). The latter is convex upwards in the central part of the crown. A small lingual peg is present at the base of the main cusp, connected to a weak ridge that extends apicobasally (Fig. 7A). A deeply incised groove lies between the crown/root boundary labially (Fig. 7B) but is absent lingually (Fig. 7A).

The root is arched with a corrugated basolabial edge (Fig. 7B). The lingual foramina, larger than the labial ones, are arranged in a row. In the basal face of the root, two unroofed canals extend to the labio-basal edge. The root vascularization seems therefore to be pseudopolyaulacorhize.

Remarks-The following features, including labiolingually compressed crown, small lingual peg on the main cusp, weak circumferential rim along the shoulder and lingually protruding root with a pseudopolyaulacorhize vascularization, support the attribution of the tooth described here to Polyfaciodus pandus (Koot et al., 2015). Symmetric crown and arched root suggest that GMPKU-P-3770 may represent an anterior tooth. A pair of small intermediate cusplets between the
main cusp and the following lateral cusplets can also be observed in the anterior teeth of Polyfaciodus pandus from Oman (see Koot et al. 2015, figs. 9B, F). The presence of intermediate cusplets has been considered as a transitional feature between 'cladodont' and neoselachian teeth (Li et al. 2021).

Occurrence-Upper Olenekian (Lower Triassic) of Oman (Koot et al., 2015) and Tiandong County, Guangxi Province, South China.

Genus SYNECHODUS Woodward, 1888

SYNECHODUS aff. TRIANGULUS Yamagishi, 2004
(Figure 7F-J)

Material-One tooth, GMPKU-P-3769, from layer 8 of the Luolou Formation, Zuodeng section.

Description-An asymmetric, elongated tooth measuring 2.6 mm mesiodistally, 0.6 mm labiolingually and 0.9 mm apico-basally. The crown consists of one main cusp flanked by one lateral cusplet on the distal side and at least three lateral cusplets on the mesial side. The main cusp is three times as high and broad as the lateral cusplets. All cusps are somewhat pointed and bent distally, with an acute angle of about 50°. The crown is slightly compressed labio-lingually in apical view, displaying an acute longitudinal crest mesio-distally (Fig. 7H). Each cusp bears one faint and short vertical ridge on the labial face. Lingually, the ridge looks somewhat inclined and reaches the base of the cusp. There is no obvious groove between the crown and root.

The root is low. There are a series of foramina on the lingual side of the root, whereas foramina are indiscernible on the labial side. The lingual foramina form crevice canals and approach to the lingual root edge (Fig. 7F). The basal root surface is slightly arched in the central part. Some foramina and unroofed canals are scattered on the basal face of the root.

Remarks-The material is quite reminiscent of the posterior tooth of Synechodus triangulus
(Yamagishi, 2004: fig. 4. 2a-b). They share an asymmetric crown with more lateral cusplets on the distal side (at least three) than on the mesial side (a single one), a labio-lingually compressed crown as well as distally-inclined cusp and cusplets. However, GMPKU-P-3769 has no foramina on the labial face of the root and no concave labial depression on the basal face of the root. Its main cusp is much elongated and lower than that of Synechodus triangulus. Therefore, pending more material, the current tooth is tentatively attributed to Synechodus aff. triangulus.

Occurrence-Upper Olenekian (Lower Triassic), Tiandong County, Guangxi Province, South China.

5. Discussion

5.1 Biostratigraphical distribution

The shark teeth studied here were collected from layers 8,9 and 11 (Figs. 1C, D, 2A) of the Luolou Formation following Yang et al (1984), and their biostratigraphical distributions were investigated at ZD I and ZD II sections, respectively, following Yan's (2013) conodont biostratigraphical zones. The layers 8 and 9 range from the conodont Discretella discrete Zone, to Icriospathodus collinsoni Zone and then Triassospathodus homeri Zone at the ZD I section, which spans across the Smithian-Spathian boundary, whereas the Layer 11 of the ZD II section lies in the early Spathian conodont zones that range from the Icriospathodus collinsoni Zone to Triassospathodus homeri Zone and then Triassospathodus brochus Zone (Figs. 2B, C). A total of nine shark taxa were recovered, four of which are restricted to the early Spathian, coming from layer 9 of the ZD I section and the layer 11 of the ZD II section (Fig. 2), including Euselachii gen et sp. indet., Favusodus orientalis, Polyfaciodus pandus, and Safrodus tozeri. The Euselachii gen et sp. indet and Favusodus orientalis were described from the latest Ladinian (late Middle Triassic) of the Zhuganpo Member (Li
et al., 2021), and their stratigraphic distribution is expanded from the Ladinian down to the Spathian. The five other taxa range from the Smithian to the Spathian in layers 8,9 and 11, i.e. 'Hybodus' zoudengensis, 'Hybodus' yohi, Hybodus sp., Omanoselache halli and Synechodus aff. triangulus (Fig. 2).

5.2 Palaeobiodiversity indicated by univariate statistical descriptors

The α-diversity ecological proxy has been commonly used for evaluating the palaeobiodiversity in time and space (Fraiser and Bottjer, 2007; Hautmann et al., 2011; Derycke et al., 2014). Comparisons of univariate statistical descriptors, including Simpson's Index (D), Shannon Index (H) and Evenness (E), are herein made among three Smithian and Spathian (Early Triassic) chondrichthyan faunas that display a trans-Tethyan distribution: Zuodeng in South China, Oman, and southwest Japan (Table 1, Table S1). Therein, D measures the probability that two randomly-selected teeth from a given shark fauna will belong the same taxa; H measures the uncertainty in predicting correctly the taxon of the next shark tooth collected; E measures how similar the abundances of different taxa are in a shark fauna. Additionally, relative abundance of major groups based on numbers of teeth are used to calculate their proportion in a given fauna (see Fig. 8, Table S2).

5.2.1 Shark fauna from Zuodeng

Within the Early Triassic shark fauna of Zuodeng, seven tooth species have been identified.

Additionally, three more taxa ('Hybodus' zuodengensis, 'Hybodus' yohi and 'Polyacrodus' tiandongensis) were originally described from the same layers by Wang et al. (2001). Among them, 'Hybodus' zuodengensis and 'Hybodus' yohi present small intermediate cusplets and crowns ornamented by weak ridges (Li et al., 2021), which probably question their attribution to hybodonts by Wang et al. (2001). We tentatively attributed them to euselachians and their reassessment is in progress
by one of us (J.C. Li). 'Polyacrodus' tiandongensis is poorly preserved and difficult to diagnose. We suggest (see above) that it could be closer to the genus Omanoselache than to either Polyacrodus or Lissodus. As a result, nine genera are identified from the Zuodeng section, including two hybodonts (Omanoselache halli and Hybodus sp.), three neoselachians (Synechodus aff. triangulus, Polyfaciodus pandus and Safrodus tozeri) and four euselachians with indeterminate affinities (Euselachii gen et sp. indet, Favusodus orientalis, 'Hybodus'zoudengensis and 'Hybodus' yohi). The low value of Simpson's Index $(\mathrm{D}=0.177)$ for this fauna indicates a high species diversity and low dominance of each shark genera. The H value is high $(\mathrm{H}=1.918)$, indicating that individuals are evenly distributed among the shark genera. The evenness $(\mathrm{E}=0.873)$ is also high, which indicates that the abundance of individuals among the shark genera is similar. Thus, the univariate statistical descriptors indicate that the shark palaeocommunity in Zuodeng is taxonomically diverse and evenly distributed.

5.2.2 Shark fauna from Oman

The Early Triassic shark fauna of Oman was recovered from allochthonous carbonate build-ups which originated from the platform margin and isolated platforms in the Hawasina Basin (Glennie, 2005). The fauna consists of two hybodonts (Omanoselache halli, cf. Omanoselache sp.) and five neoselachians (Polyfaciodus pandus, cf. Polyfaciodus pandus, Safrodus tozeri, cf. Safrodus tozeri and cf. Amelacanthus sp.) (Koot et al., 2015). The univariate statistical descriptors indicate that the shark fauna of Oman displays medium values of species diversity $(\mathrm{H}=0.960)$ and dominance $(\mathrm{D}=0.547)$, as well as evenness ($\mathrm{E}=0.493$) (Table 1). It is less diverse than that of Zuodeng $(\mathrm{D}=0.177)$; individuals are not evenly distributed among the different shark genera $(H=0.960, \mathrm{E}=0.493)$, whereas they are evenly recovered from those of Zuodeng $(\mathrm{H}=1.918, \mathrm{E}=0.873)$. Moreover, the Early Triassic shark fauna of Oman is neoselachian-dominated (88%, i.e., number of teeth of neoselachians/total number of all teeth
in the fauna, see Fig. 8, Table S2), which separates it from other coeval shark faunas elsewhere (Koot et al., 2015).

5.2.3 Shark fauna from southwest Japan

The elasmobranch remains from the Taho limestone of Ehime Prefecture, southwest Japan were originally reported by Goto et al. (1996), and later on identified extensively by Yamagishi (2004, 2006). The shark-bearing layers range from Smithian (Early Triassic) to Anisian (Middle Triassic) in age (Koike, 1994), and occur within an exotic block representing Triassic seamount sediments of the Panthalassa but possibly close to the South China block (Ando et al., 2001). So far, three tooth genera ('Polyacrodus' minimus, Acrodus sp. e. g. spitzbergensis [sic] and Synechodus sp.) were described from the Smithian to the Spathian (Goto et al., 1996; Yamagishi, 2004, 2006), of which poorly-diagnosed taxa were revised: Acrodus sp. e. g. spitzbergensis [sic] was transferred to Favusodus orientalis by Li et al. (2021) and three anterior teeth of Synechodus sp. were identified as those of Safrodus tozeri. 'Polyacrodus' minimus of southwest Japan was initially noted by Goto et al. (1996) and subsequently attributed to Lissodus minimus by Fischer (2008). However, images and description of original specimen are still missing, and the latter species has so far been restricted to the Upper Triassic (Duffin, 2001). This taxon is therefore problematic and excluded from our quantitative analysis. Therefore, three euselachians are recognised, including two neoselachians (Safrodus tozeri and Synechodus sp.) and one hybodont (Favusodus orientalis). From the Smithian to the Spathian, the Japan shark fauna was dominated by neoselachians (Safrodus tozeri and Synechodus sp.) and was almost devoid of hybodonts (see Fig. 8, Table S2). The Simpson index ($\mathrm{D}=0.934$) indicates that this shark palaeocommunity is not as diverse as that of Zuodeng $(\mathrm{D}=0.177)$. The Shannon index $(\mathrm{H}=0.167)$ and Evenness $(\mathrm{E}=0.152)$ are much lower than in Zuodeng $(\mathrm{H}=1.918, \mathrm{E}=0.873$, Table 1), indicating that
these two eastern Tethyan shark communities have completely different values in species distribution. The shark fauna of Zuodeng is more diverse than those of southwest Japan.

5.2.4 Palaeobiodiversity distribution

Within the trans-Tethyan ocean, the Early Triassic (Smithian-Spathian) chondrichthyan fauna of Zuodeng closely resembles that of Oman, but is more diverse and evenly distributed than the latter. Compared with the neoselachian-dominated fauna of Oman, the low dominance of the Zuodeng' shark community indicates it lacks any typical disaster or opportunist taxa that usually flourish after a mass extinction (Harris et al., 1996; Looy et al., 2001). Along the east coast of the Palaeotethys, the palaeobiodiversity in Zuodeng is more important when compared to the adjacent southwest Japan area. A rather high species diversity with a rather low dominance shark fauna in Zuodeng reflects the presence of a favourable ecological environment in the Nanpanjiang Basin. The generic and species richness of Oman's Early Triassic chondrichthyan fauna indicate that hybodont sharks were abundant in shallow water limestones that were deposited around storm wave base, whereas neoselachians were more common in pelagic sediments in deep water (Koot et al., 2015). Accordingly, an archipelagic sea mixing shallow water from a carbonate platform and deep water from the Nanpanjiang Basin (Lehrmann et al., 2003, 2015; Enos et al., 2006) may account for various habitats available for these euselachian sharks.

5.3 Palaeoecology

Tooth morphology has been used to infer the ecology of chondrichthyan taxa in multiple studies (e.g., Kent, 1994; Ciampaglio et al., 2005; Pla et al., 2013; Scheyer et al., 2014; Cooper et al., 2023). Herein, three feeding strategies, including grasping-crushing, grasping-swallowing and sharp-grasping, are identified by different combination of ten crown characteristics (Table S3). The chondrichthyan
taxa with grasping-crushing tooth includes Favusodus orientalis and Omanoselache halli. This type of dentition presents slightly high crowned anterior teeth and much lower posterior teeth, the latter with rather flat crown and well-defined vertical ridges and/or honeycombed pits, implying durophagous feeding habits (Pla et al., 2013; Koot et al., 2015; Li et al., 2021) probably based on ammonoids, gastropods and bivalves (Fig. 2). These durophagous sharks, like extant Rajiformes and Myliobatiformes, may had inhabited on the seabed in shallow coastal environments (Pla et al., 2013; Cappetta, 2012). Three taxa with grasping-swallowing behaviours, including 'Hybodus' zuodengensis, 'Hybodus' yohi and Euselachii gen. et sp. indet., display a cladodont-like crown with a combination of the following characteristics: multicusped crown, slender and little-ornamented cusplets, large notch between adjacent cusplets and small intermediate cusplets. Sharks with such teeth are prone to grasp preys and then swallow them whole (Williams, 2001) rather than to tear chunks of meat out of them. These sharks may feed on some small bony fishes and conodonts. The sharp-grasping typed tooth is represented by three neoselachians (Synechodus aff. triangulus, Polyfaciodus pandus and Safrodus tozeri) and one hybodont shark (Hybodus sp.). These sharks possess a polycusped crown with sharp pointed apex or acute cutting edge, or well-defined ridges of both labial and lingual crown surfaces. These characteristics add a cutting function to a primarily grasping function, which contributes to hold on the prey more tightly or cut flesh of some soft-body animals into pieces. The conodont animals and other chondrichthyans recovered from the studied section are potential prey items for these carnivores. However, no teeth exceed 1.3 mm in crown height and 2.5 mm in crown width (Table S3), indicating that the nine shark species described here share a similar small body size. The Early Triassic sharks of Zuodeng display therefore diverse feeding habits, including grasping-crushing, grasping-swallowing and sharp-grasping dentitions, which to some extent demonstrate they were part of a complex food
chain.

5.4 Palaeobiogeography

Palaeobiogeographically, the shark fauna of Zuodeng shares some common taxa with the Smithian-Spathian of Oman, Spathian-Anisian of southwest Japan and Ladinian-Carnian Xingyi shark faunas (Table S4). Three species (Omanoselache halli, Polyfaciodus pandus and Safrodus tozeri) of Zuodeng have been found in the Early Triassic (Smithian-Spathian) of Oman (Koot et al., 2015). Of them, Safrodus tozeri and Favusodus orientalis are present in the Early-Middle Triassic (Spathian-Anisian) of southwest Japan (Yamagishi, 2004). Favusodus orientalis and Euselachii gen et sp. indet., were previously reported from the Middle-Late Triassic (Ladinian-Carnian) of Xingyi, China (Li et al., 2021). The other taxa, including 'Hybodus'zuodengensis, 'Hybodus' yohi, Hybodus sp. and Synechodus aff. triangulus are endemic to Zuodeng.

These results suggest trans-regional taxa were prevailing during the Early Triassic (Smithian-Spathian). A hybodont and neoselachian shark combination (Omanoselache halli, Polyfaciodus pandus and Safrodus tozeri) was coevally shared both in Oman in the western Neotethys and Zuodeng in the eastern Palaeotethys (Fig. 8). Their rather small tooth size (not exceeding 3 mm in mesiodistal length) suggest that these chondrichthyan genera are small-bodied coastal sharks. A long-distance trans-Tethyan migration between western Neotethys and eastern Palaeotethys would therefore argue for continuous appropriate ecological habitats (Manzanares et al., 2020). The coastal margin along the Cimmerian microcontinents, including Turkey, Iran, Afghanistan, Tibet and Malaysia (Sengör, 1984), had a potential to form continuous epicontinental shallow-marine environments (Sweet, 1970; Metcalfe, 1990; Horacek et al., 2007; Wu et al., 2007), which possibly served as a migration route for the trans-Tethyan dispersal of Early Triassic sharks as shown in Figure 8. However, with the
increasing expansion of the Neotethys and shrinkage of the Palaeotethys (Zhao et al., 2018, Zhao et al., 2019), the Cimmerian microcontinents continuously moved northward, which to some extent prevented such a trans-Tethyan migration route. Meanwhile, it is not unexpected that a short-distance shark dispersion occurred between the Zuodeng and southwest Japan, because they were located on the eastern coast of Palaeotethys and, therefore, palaeogeographically close during the Early Triassic.

6. Conclusions

The Zuodeng section in Guangxi area in South China has yielded abundant elasmobranch remains, recording a diverse fauna with nine tooth taxa. Two hybodonts (Omanoselache halli and Hybodus sp.), three neoselachians (Safrodus tozeri, Polyfaciodus pandus and Synechodus aff. triangulus) and four euselachians of uncertain affinities (Euselachii gen. et sp. indet., Favusodus orientalis, 'Hybodus' yohi and 'Hybodus' zuodengensis) are identified. Polyacrodus tiandongensis is here considered a nomen dubium. The stratigraphical distribution of each taxon indicate an age comprised in the Smithian-Spathian interval. The statistical analysis of shark palaeobiodiversity and palaeoecology shows a high abundance and evenness, a low dominance in community constituent, as well as diversified feeding strategies of grasping-crushing, grasping-swallowing and sharp-grasping. The diversity of the fauna may be explained by an archipelagic ecological environment within the Nanpanjiang Basin. Trans-regional taxa from Zuodeng and Oman suggest the Cimmerian microcontinent may have behaved like a dispersal channel for shark migration between the eastern Palaeo-Tethys and western Neo-Tethys during the Smithian and Spathian.

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No.

42172009, 41920104001, 41876124), China Geological Survey (no. 121201102000150012-09), State

Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS (No. 123107, 143108, 173123, 20182107) and China Scholarship Council (No. 202206010129). We would like to thank Dr. Chai Jun (Peking University), Luo Denggao and Lu Jinyou (inhabitants of Denggaolin village) for collecting rock samples in the field, and also Wang Mingcui for dissolving the rock samples and picking up shark remains in the laboratory.

Author contributions

Jiachun Li: Conceptualization, Investigation, Formal analysis, Methodology and Writing- original draft.

Zuoyu Sun: Resources, Funding acquisition, Conceptualization and Writing- review \& Editing. Gilles

Cuny: Writing- review \& Editing and Conceptualization. Dayong Jiang: Supervision, Funding acquisition.

References

Agassiz, L., 1833-1844. Recherches sur les Poissons Fossiles, 1-5. Imprimerie Petitpierre, Neuchâtel, Switzerland, pp. 1420.

Ando, A., Kodama, K., Kojima, S., 2001. Low-latitude and Southern Hemisphere origin of Anisian (Triassic) bedded chert in the Inuyama area, Mino terrane, central Japan. Journal of Geophysical Research 102, 1973-1986.

Bengtson, P., 1988. Open nomenclature. Palaeontology 31, 223-227.

Birkenmajer, K., Jerzmańska, A., 1979. Lower Triassic shark and other fish teeth from Hornsund, south Spitsbergen. Studia Geologica Polonica 40, 7-37.

Błazejowski, B., 2004. Shark teeth from the Lower Triassic of Spitsbergen and their histology. Polish Polar Research 25, 153-167.

Bonaparte, C.L.J., 1838. Selachorum tabula analytica. Nuovi Annali delle Scienze Naturali Bologna 1,

Bratvold, J., Lene Liebe D., Hurum, J. H., 2018. Chondrichthyans from the Grippia bonebed (Early Triassic) of Marmierfjellet, Spitsbergen. Norwegian Journal of Geology 98,189-217.

Böttcher, R., 2015. Fische des Lettenkeupers. Der Lettenkeuper-Ein Fenster in die Zeit vor den Dinosauriern. Palaeodiversity, Sonderband 2015, 141-202.

Cappetta, H., 2012. Chondrichthyes (Mesozoic and Cenozoic Elasmobranchii: teeth). Handbook of paleoichthyology, Vol. 3E. Friedrich Pfeil, pp. 512.

Chen, Z.Q., Benton, M.J., 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5, 375-383.

Ciampaglio, C., Wray, G., Corliss, B., 2005. A toothy tale of evolution: Convergence in tooth morphology among marine Mesozoic-Cenozoic sharks, reptiles, and mammals. The Sedimentary Record 3, 4-8.

Compagno, L.J.V., 1977. Phyletic relationships of living sharks and rays. American Zoologist 17, 303-322.

Cooper, J.A., Griffin, J.N., Kindlimann, R., Pimiento, C., 2023. Are shark teeth proxies for functional traits? A framework to infer ecology from the fossil record. Journal of Fish Biology. https://doi. 10.1111/jfb. 15326 .

Cuny, G., Rieppel, O., Sander, P. M., 2001. The shark fauna from the Middle Triassic (Anisian) of North-Western Nevada. Zoological Journal of the Linnean Society 133, 285-301.

Delsate, D., 1992. Chondrichthyens Mésozoïques du Luxembourg. Note préliminaire. Bulletin de la Société des Naturalistes Luxembourgeois 93, 181-193.

Delsate, D., 1993. Synthèse des faunes d'Elasmobranches du Trias et du Jurassique de Lorraine.

Derycke, C., Olive, S., Groessens, E., Goujet, D., 2014. Paleogeographical and paleoecological constraints on Paleozoic vertebrates (chondrichthyans and placoderms) in the ardenne massif; shark radiations in the Famennian on both sides of the palaeotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 414, 61-67.

Duffin, C.J., 1985. Revision of the hybodont selachian genus Lissodus Brough (1935). Palaeontographica. Abteilung A 188, 105-152.

Duffin, C.J., 1993. Mesozoic Chondrichthyan faunas 1. Middle Norian (Upper Triassic) of Luxemburg. Palaeontographica. Abteilung A 229,15-36.

Duffin, C.J., Ward, D.J., 1993. The Early Jurassic paleospinacid sharks of Lyme Regis, southern England. Belgian Geological Survey, Professional Paper 264, 53-102.

Duffin, C.J., 2001. Synopsis of the selachian genus Lissodus Brough, 1935. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart 221, 145-218.

Enault, S., Guinot, G., Koot, M.B., Cuny, G., 2015. Chondrichthyan tooth enameloid: past, present, and future. Zoological Journal of the Linnean Society 174, 549-570.

Enos, P., Lehrmann, D.J., Wei, J. Y., Yu, Y.Y., Xiao, J.F., Chaikin, D. H., Minzoni, M., Berry, A.K., Montgomery, P., 2006. Triassic Evolution of the Yangtze Platform in Guizhou Province, People's Republic of China. Geological Society of America, Special Papers 417,1-105.

Erwin, D. H., 1993. The great Paleozoic crisis: life and death in the Permian. Columbia University Press.

Fan, J.X., Shen, S.Z., Erwin, D.H., Sadler, P.M., MacLeod, N., Cheng, Q.M., Hou, X.D., Yang, J., Wang, X.D., Wang, Y., Zhang, H., Chen, X., Li, G.X., Zhang, Y.C., Shi, Y.K., Yuan, D.X., Chen,
Q., Zhang, L.N., Li, C., Zhao, Y.Y., 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367, 272-277.

Fraiser, M. L., Bottjer, D. J., 2007. Elevated atmospheric CO_{2} and the delayed biotic recovery from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 252(1-2), 164-175.

Fischer, J., 2008. Brief synopsis of the hybodont form taxon Lissodus Brough, 1935, with remarks on the environment and associated fauna. Freiberger Forschungshefte C 528,1-23.

Ginter, M., Hampe, O., Duffin, C.J., 2010. Chondrichthyes—Paleozoic Elasmobranchii: teeth; in H-P. Schultze (ed.), Handbook of Paleoichthyology 3D. Verlag Dr. Friedrich Pfeil, Munich, pp. 168.

Glennie, K.W., 2005. The Geology of the Oman Mountains-an outline of their origin. Second edition. Scientifific Press Ltd, Beaconsfifield, pp. 110.

Goto, M., 1994. Palaeozoic and early Mesozoic fish faunas of the Japanese Islands. The Island Arc 3(4), 247-254.

Goto, M., Uyeno, T., Yabumoto, Y., 1996. Summary of Mesozoic elasmobranch remains from Japan; pp. 73-78 in G. Arratia and A. Tintori (eds.), Mesozoic Fishes-Systematic and Paleoecology. Verlag Dr. Friedrich Pfeil, München.

Goto, M., Tanaka, T., Utsunomiya, S., 2010. On a tooth remain of Lissodus (Elasmobranchii) from the Taho Formation (Lower Triassic) in Seiyo City, Ehime Prefecture, southwest Japan. Earth Science 64, 111-116. [in Japanese with English abstract]

Guinot, G., Adnet, S., Cavin, I., Cappetta, H., 2013. Cretaceous stem chondrichthyans survived the end-Permian mass extinction. Nature Communications 4, 1-8.

Harris, P.J., Kauffman, E.G., Hansen, T.A., 1996. Models for biotic survival following mass
extinctions; pp. 41-60 in M.B. Hart (ed.), Biotic recovery from mass extinction events. Geological Society. Special Publication 102, London.

Hautmann, M., Bucher, H., Bruehwiler, T., Goudemand, N., Kaim, A., Nuetzel, A., 2011. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44(1), 71-85.

Hay, O.P., 1902. Bibliography and catalogue of the fossil vertebrata of North America. United States Geological Survey, Bulletin 179, 18-68.

Horacek, M., Richoz, S., Brandner, R., Krystyn, L., Spötl, C., 2007. Evidence for Recurrent Changes in Lower Triassic Oceanic Circulation of the Tethys: The $\delta^{13} \mathrm{C}$ Record from Marine Sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 252(1/2), 355-369. https://doi.org/10.1016/j.palaeo.2006.11.052.

Huxley, T.H., 1880. On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. Proceedings of the Zoological Society of London 1880, 649-662.

Jaekel, O., 1898. Ueber Hybodus. - Sitzungs-Berichte der Gesellschaft naturforschender Freunde zu Berlin, 1898,135-146.

Kasumzadeh, A.A., 2000. Sostojanié izuchennosti triasovykh otlozhenij Azerbaidzhana i problemy granizy permi i triasa [Advances in research of the Triassic deposits in Azerbaijan and problems of the Permian-Triassic boundary]. Baku: Nafta-Press. pp. 116.

Kato, T., Hasegawa, K., Ishibashi, T., 1995. Discovery of Early Triassic hybodontoid shark tooth from the southern Kitakami Massif. Journal of Geological Society of Japan 101(6), 466-469. [in Japanese]

Kent, B, W., 1994. Fossil sharks of the Chesapeake Bay region. Columbia, Maryland: Egan Rees \& Boyer, Inc. 145.

Koike, T., 1994. Skeletal apparatus and its evolutionary trends in a Triassic conodont Ellisonia dinodoides (Tatge) from the Taho Limestone, Southwest Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 173, 366-383.

Koot, M.B., 2013. Effects of the Late Permian mass extinction on chondrichthyan palaeobiodiversity and distribution patterns. Unpublished PhD thesis, Plymouth University, pp. 853.

Koot, M.B., Cuny, G., Tintori, A., Twitchett, R.J., 2013. A new diverse shark fauna from the Wordian (Middle Permian) Khuff Formation in the interior Haushi-Huqf area, Sultanate of Oman. Paleontology 56, 303-343.

Koot, M.B., Cuny, G., Tintori, A., Twitchett, R.J., 2015. New hybodontiform and neoselachian sharks from the Lower Triassic of Oman. Journal of Systematic Paleontology 13, 891-917.

Lehrmann, D.J., Payne, J.L., Felix, S., Dillett, P.M., Wang, H., Yu, Y., Wei, J., 2003. Permian -Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, South China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaeogeography. Palaeoclimatology. Palaeoecology 18, 138-152.

Lehrmann, D.J., Bentz, J.M., Wood, T., Goers, A., Dhillon, R., Akin, S., Li, X.W., Payne, J.L., Kelley, B.M., Meyer, K.M., Schaal, E.K., Suarez, M.B., Yu, M.Y., Qin, Y.J., Li, R.X., Minzoni, M., Henderson, C.M., 2015. Environmental controls on the genesis of marine microbialites and dissolution surface associated with the end-Permian mass extinction: new sections and observations from the Nanpanjiang Basin, South China. Palaios 30, 529-552.

Li, J.C., Sun, Z.Y., Cuny, G., Ji, C., Jiang, D.Y., Zhou, M., 2021. An unusual shark assemblage from
the Ladinian-Carnian interval of South China. Papers in Palaeontology. https://doi.org/10.1002/spp2.1404.

Looy, C.V., Twitchett, R.J., Bilcher, D.L., van Konijnenburg-van Cittert, J.H.A., Visser, H., 2001. Life in the end-Permian dead zone. Proceedings of the National Academy of Science 98, 7879-7883.

Lyu, Z., Orchard, M.J., Golding, M.L., Henderson, C.M., Chen, Z.Q., Zhang, L., Han, C., Wu, S.L., Huang, Y.G., Zhao, L.S., Bhat, G.M., Baud, A., 2021. Lower Triassic conodont biostratigraphy of the Guryul Ravine section, Kashmir. Global and Planetary Change 207, 103671.

Maisey, J.G., 1987. Cranial anatomy of the Lower Jurassic shark Hybodus reticulatus (Chodrichthyes: Elasmobranchii), with comments on hybodontid systematics. American Museum Novitates 2878, 1-39.

Manzanares, E., Pla, C., Ferrón, H., Botella, H., 2018. Middle-Late Triassic chondrichthyan remains from the Betic Range (Spain). Journal of Iberian Geology 44 (1), 129-138.

Manzanares, E., Escudero-Mozo, M.J., Ferrón, H., Martínez-Pérez, C., Botella, H., 2020. Middle Triassic sharks from the Catalan Coastal ranges (NE Spain) and faunal colonization patterns during the westward transgression of Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 539. https://doi.org/10.1016/j.palaeo.2019.109489.

Metcalfe, I., 1990. Triassic Conodont Biostratigraphy in the Malay Peninsula. Geological Society of Malaysia Bulletin 26, 133-45.

Meyer, H., 1849. Fossile Fische aus dem Muschelkalk von Jena, Querfurt und Esperst adt. Palaeontographica 1, 195-208.

Mutter, R.J., Neuman, A.G., 2006. An enigmatic chondrichthyan with Paleozoic affinities from the Lower Triassic of western Canada. Acta Palaeontologica Polonica 51(2), 271-282.

Mutter, R.J., Neuman, A.G., 2008. New eugeneodontid sharks from the Lower Triassic Sulphur Mountain Formation of Western Canada; pp. 9-41 in L. Cavin, A. Longbottom and M. Richter (eds.), Fishes and the Break-up of Pangaea. Geological Society, London, Special Publications, 295.

Mutter, R.J., Neuman, A.G., 2009. Recovery from the end-Permian extinction event: evidence from "Lilliput Listracanthus". Palaeogeography, Palaeoclimatology, Palaeoecology 284, 22-28.

Mutter, R.J, Rieber, H., 2005. Pyknotylacanthus spathianus gen. et sp. nov., a new ctenacanthoid from the Early Triassic of Bear Lake (Idaho, USA). Revista Brasileira de Paleontologia 8(2), 139-148.

Mutter, R.J., De Blanger, K., Neuman, A.G., 2007. Elasmobranchs from the Lower Triassic Sulphur Mountain Formation near Wapiti Lake (BC, Canada). Zoological Journal of the Linnean Society 149, 309-337.

Mutter, R.J., Neuman, A.G., De Blanger, K., 2008. Homalodontus nom. nov., a replacement name for Wapitiodus Mutter, de Blanger and Neuman, 2007 (Homalodontidae nom nov., ?Hybodontoidea), preoccupied by Wapitiodus Orchard, 2005. Zoological Journal of the Linnean Society 154, 419-420.

Nielsen, E., 1952. On new or little known Edestidae from the Permian and Triassic of East Greenland. Medd Gronl 144, 1-55.

Obruchev, D.B., 1965. Razvitié i smena morskich organizmov na rubezhe paleozoja i mesozoja
[Development and change of marine organisms at the Palaeozoic-Mesozoic boundary] [in

Russian]. Trudy Paleontologischeskii Institut 108, 266-267.

Patterson, C., 1966. British Wealden sharks. Bulletin of the British Museum (Natural History) Geology 11, 283-349.

Pielou, E., 1966. The measurement of diversity in different types of biological collections. The Journal of Theoretical Biology 13, 131-144.

Pitrat, C.W., 1973. Vertebrates and the Permo-Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 14, 249-264.

Pla, C., Márquez-Aliaga, A., Botella, H., 2013. The chondrichthyan fauna from the Middle Triassic (Ladinian) of the Iberian Range (Spain). Journal of Vertebrate Palaeontology 33(4), 770-785. Rieppel, O., 1981. The hybodont sharks from the Middle Triassic of Monte San Giorgio, Switzerland. Neues Jahrbuch für Geologie und Palaontologie, Abhandlungen 161, 324-353.

Romano, C., Brinkmann W., 2010. A new specimen of the hybodont shark Palaeobates polaris with three-dimensionally preserved Meckel's cartilage from the Smithian (Early Triassic) of Spitsbergen. Journal of Vertebrate Paleontology 30, 1673-1683.

Romano, C., Koot, M.B., Kogan, I., Brayard, A., Minikh, A.V., Brinkmann, W., Bucher, H., Kriwet, J., 2016. Permian-Triassic osteichthyes (bony fishes): diversity dynamics and body size evolution. Biological Reviews 91, 106-147.

Scheyer, T.M., Romano, C., Jenks, J., Bucher, H., 2014. Early Triassic marine biotic recovery, the predators' perspective. PLoS One 9(3), e88987.

Scotese, C.R., 2014. Paleomap Project: Early Triassic Paleomap. http://www. scotese.
com/newpage8.htm.

Sengör, A.M.C., 1984. The Cimmeride Orogenic System and the tecton-ics of Eurasia. Geological

Society of America, Special Paper 195, 1-82.

Sepkoski, J.J., 1981. A factor analytic description of the Phanerozoic marine fossil record.

Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal 27, 466-467.

Simpson, E.H., 1949. Measurement of diversity. Nature 189, 688.

Stanley, S.M., 2016. Estimates of the magnitudes of major marine mass extinctions in earth history.

Proceedings of the National Academy of Sciences of the United States of America 113,

6325-6334.

Stensiö, E.A., 1918. Notes on some fish remains collected at Hornsund by the Norwegian Spitzbergen Expedition in 1917. Norsk Geologisk Tidsskrift 5, 75-78.

Stensiö, E.A., 1921. Triassic fishes from Spitsbergen. Part I. A. Holzhausern, Vienna, pp. 307.

Sweet, W.C., 1970. Uppermost Permian and Lower Triassic Conodonts of the Salt Range and Trans-Indus Ranges, West Pakistan; pp 2017-275 in B. Kummel and C. Teichert (eds.), Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan. University of Kansas, Department of Geology Special Publications, Kansas, America.

Thies, D., 1982. A neoselachian shark tooth from the Lower Triassic of the Kocaeli (= Bithynian) Peninsula, West Turkey. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1982, 272-278.

Thomson, K. S., 1982. An Early Triassic hybodont shark from Northern Madagascar. Postilla 186, 1-16.

Wang, N.Z., Yang, S.R., Jin, F., Wang, W., 2001. Early Triassic Hybodontoidea from Tiandong of

Guangxi, China-first report on the fish sequence near the Permian-Triassic Boundary in South China. Vertebrata PalAsiatica 39, 237-250. [in Chinese with English abstract]

Williams, M.E., 2001. Tooth retention in cladodont sharks: with a comparison between primitive grasping and swallowing, and modern cutting and gouging feeding mechanisms. Journal of Vertebrate Paleontology 21, 214-226.

Woodward, A.S., 1888. On the Cretaceous selachian genus Synechodus. Geological Magazine 3, 496-499.

Wu, G. C., Yao, J. X., Ji, Z. S., 2007. Triassic Conodont Biostratigraphy in the Coqen Area, Western Gangdise, Tibet, China. Geological Bulletin of China 26(8), 938-946 [in Chinese with English Abstract].

Yamagishi, H., 2004. Elasmobranch remains from the Taho Limestone (Lower-Middle Triassic) of Ehime Prefecture, Southwest Japan; pp. 565-574 in G. Arratia and A. Tintori (eds.), Mesozoic Fishes 3-Systematics, Paleoenvironments and Biodiversity. Verlag Dr. Friedrich Pfeil, München.

Yamagishi, H., 2006. Permo-Triassic elasmobranch fauna: diversity, paleobiogeography and recovery after the mass extinction. Unpublished PhD thesis, University of Tokyo, pp. 128.

Yamagishi, H., 2009. Chondrichthyans. pp196-202 in Y. Shigeta, Y. D. Zakharov, H. Maeda and A. M. Popov (eds.), The Lower Triassic system in the Abrek Bay area, South Primorye, Russia. National Museum of Nature and Science Monographs, Tokyo, 38.

Yan, C., 2013. Study on Early-Middle Triassic conodont biostratigraphy in Nanpanjiang area:
[Dissertation]. China University of Geosciences, Wuhan, pp. 1-99. [in Chinese with English abstract]

Yang, S.R., Wang, X.P., Hao, W.C., 1984. New knowledge of the Lower Triassic of Zuodeng, Tiandong County of Guangxi Province, China; pp. 105-117 in T.K. Huang (ed.), Selected Papers in Honor of Prof. Yoh S.S. on the Sixty Years for his Geological Study and Education. Beijing:

Zhang, M.M., 1976. A new species of helicoprionid shark from Xizang. Scientia Geologica Sinica 1976, 332-336. [in Chinese with English abstract]

Zhao, G.C., Wang, Y.J., Huang, B.C., Dong, Y.P., Li, S.Z., Zhang, G.W., Yu, S., 2018. Geological reconstructions of the East Asian blocks; from the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews 186, 262-286.

Zhao, J., Huang, B.C., Yan, Y.G., 2019. The Middle-Late Triassic closure of the East Paleotethys Ocean: Paleomagnetic evidence from the Baoshan Terrane, China. Acta Geologica Sinica (English Edition) 93(6), 1978-1979.

Zhao, J.K., 1959. Ammonites from the Lower Triassic of western Guangxi. New species of Palaeontologia Sinica, Volume 9, The Science Press, Beijing, China.

Table 1
Dominance and evenness of shark teeth.

	Zuodeng	Oman	Southwest Japan
Simpson index (D) ${ }^{\mathrm{a}}$	0.177	0.547	0.934
Shannon Index $(\mathrm{H})^{\mathrm{b}}$	1.918	0.960	0.167
${\text { Evenness }(\mathrm{E})^{\mathrm{c}}}^{0.873}$	0.493	0.152	

${ }^{\text {a }} \mathrm{D}$ values range from a minimum value of [1/total number of teeth in a fauna] to a maximum value of 1 ; the larger the value of D , the lower the diversity and the higher the dominance of only a few taxa.
${ }^{\mathrm{b}} \mathrm{H}$ values range from a minimum value of 0 to a maximum value of \ln [total number of taxa in a fauna] whereby higher values indicate that teeth are distributed more evenly among the taxa.
${ }^{\mathrm{c}} \mathrm{E}$ values range from a minimum value of 0 to a maximum value of 1 whereby higher values indicate similar proportions of teeth in the taxa, and lower values indicate dissimilar abundances of teeth among the taxa.

FIGURE 1. Geological setting and photograph of the Zuodeng section. A, showing the location of the Zuodeng locality, Tiandong County, Baise City, Guangxi Province. B, palaeogeographical map of the Nanpanjiang Basin (modified from Yan 2013). C, photograph of shark strata (Layers 8-9, Yang et al., 1984) of Luolou Formation at ZD I section. D, photograph of shark strata (Layer 11, Yang et al., 1984) of Luolou Formation at ZD II section. NB = Nanpanjiang Basin.

FIGURE 2. Stratigraphic distribution of the fossils recovered from the Smithian-Spathian boundary of the Zuodeng locality. A, the stratigraphic column re-drawn based on Wang et al., 2001; B, ZD I section, C, ZD II Section. (modified from Yan 2013). N. dieneri $=$ Neospathodus dieneri, $\mathrm{HM}=$ Hindeodus minutus, $\mathrm{HP}=$ Hindeodus parvus, $\mathrm{II}=$ Isarcicella isarcica, NC $=$ Neospathodus cristagalli, $\mathrm{CC}=$ Clarkina carinata, $\mathrm{NW}=$ Novispathodus waageni, D. discreta $=$ Discretella discreta, I. collinsoni $=$ Icriospathodus collinsoni, $\mathrm{TH}=$ T. homeri $=$ Triassospathodus homeri, N. waageni $=$ Novispathodus waageni, $\mathrm{PP}=$ Pachycladina-Parachirognathus, $\mathrm{NP}=$ Novispathodus pingdingshanensis. $\mathrm{Ch}=$ Changhsingian, $\mathrm{He}=$ Heshan.

FIGURE 3. Teeth of Omanoselache halli. A-E, anterior tooth, GMPKU-P-3750; F-J, anterolateral tooth, GMPKU-P-3751; K-O, anterolateral tooth, GMPKU-P-3752; P-T, lateral tooth, GMPKU-P-3753; U-Y, posterior tooth, GMPKU-P-3754. A, F, K, P and \mathbf{U} in lingual views; B, G, \mathbf{L}, \mathbf{Q} and \mathbf{V} in labial views; $\mathbf{C}, \mathbf{H}, \mathbf{M}, \mathbf{R}$ and \mathbf{W} in apical views; $\mathbf{D}, \mathbf{I}, \mathbf{N}, \mathbf{S}$ and \mathbf{X} in basal views; \mathbf{J} and \mathbf{O} in mesio-apical views; \mathbf{E} and \mathbf{T} in disto-apical views; \mathbf{Y} in mesio/disto-apical view. Scale bars equal $200 \mu \mathrm{~m}$. Microstructure of the enameloid of Omanoselache halli. Z, GMPKU-P-3799, etched 5 seconds in 10% HCL, crystallites at crown surface. $\mathbf{A}^{\prime}-\mathbf{C}^{\prime}$, GMPKU-P-3790, $\mathbf{A}^{\prime}-\mathbf{B}^{\prime}$, etched 30 seconds in 10% HCL, crystallites of vertical ridges in A^{\prime} and longitudinal crest in B^{\prime}; \mathbf{C}^{\prime}, etched 30 seconds in $10 \% \mathrm{HCL}$, dentine of the lower part of the crown. Scale bars: $\mathbf{Z}^{\prime}-\mathbf{B}^{\prime}$, equal $2 \mu \mathrm{~m} ; \mathbf{C}^{\prime}$ equals $50 \mu \mathrm{~m}$.

FIGURE 4. A-U. Teeth of Hybodus sp. A-E, GMPKU-P-3780; F-J, GMPKU-P-3781; K-O, GMPKU-P-3782; P-S, GMPKU-P-3783. A, F, K and \mathbf{P} in lingual views; B, G, L and \mathbf{Q} in labial views; $\mathbf{C}, \mathbf{H}, \mathbf{M}$ and \mathbf{R} in apical views; \mathbf{D}, \mathbf{I} and \mathbf{N}, in basal views; $\mathbf{E}, \mathbf{J}, \mathbf{O}$ and \mathbf{S} in lateral views. Scale bars equal $200 \mu \mathrm{~m}$. Microstructure of the enameloid of Hybodus sp. T-U, GMPKU-P-3782. T, etched 15 seconds in 10% HCL, crystallites of cutting edge. \mathbf{U}, etched 20 seconds in $10 \% \mathrm{HCL}$, crystallites of labial face on the apex. V-W. Microstructure of the enameloid of Favusodus orientalis. GMPKU-P-3775. V, etched 20 seconds in 10% HCL, enameloid of the longitudinal section of the crown. W, etched 25 seconds in $10 \% \mathrm{HCL}$, crystallites at the occlusal crown surface.

Scale bars: T-U, \mathbf{W} equal $2 \mu \mathrm{~m} ; \mathbf{V}$ equals $20 \mu \mathrm{~m}$.

FIGURE 5. A-P. Teeth of Favusodus orientalis. A-E, GMPKU-P-3771; F-I, GMPKU-P-3772; J-L, GMPKU-P-3773; M-P, GMPKU-P-3774. Q-D'. Teeth of Euselachii gen. et sp. indet. Q-U, GMPKU-P-3777; V-Z, GMPKU-P-3778; $\mathbf{A}^{\prime}-\mathbf{B}^{\prime}$, GMPKU-P-3779; $\mathbf{C}^{\prime} \mathbf{-} \mathbf{D}^{\prime}$, GMPKU-P-3792. A, F, $\mathbf{J}, \mathbf{M}, \mathbf{Q}, \mathbf{V}, \mathbf{A}^{\prime}$ and \mathbf{C}^{\prime} in lingual views; $\mathbf{B}, \mathbf{G}, \mathbf{N}, \mathbf{R}, \mathbf{W}, \mathbf{B}^{\prime}$ and \mathbf{D}^{\prime} in labial views; $\mathbf{C}, \mathbf{K}, \mathbf{H}, \mathbf{O}, \mathbf{S}$ and \mathbf{X} in apical views; $\mathbf{D}, \mathbf{I}, \mathbf{T}$ and \mathbf{Y} in basal views; \mathbf{E}, \mathbf{L} and \mathbf{P} in disto-apical views; \mathbf{U} and \mathbf{Z} in lateral views. All scale bars equal $200 \mu \mathrm{~m}$.

FIGURE 6. Teeth of Safrodus tozeri. A-E, anterior tooth, GMPKU-P-3762; F-J, anterolateral tooth, GMPKU-P-3763; K-O, lateral tooth, GMPKU-P-3764; P-T, lateral tooth, GMPKU-P-3765; $\mathbf{U - Y}$, GMPKU-P-3766; Z-D', posterolateral tooth, GMPKU-P-3767. E' \mathbf{I}^{\prime}, posterolateral tooth, GMPKU-P-3768. A, F, K, P, U, \mathbf{Z} and \mathbf{E}^{\prime} in lingual views; $\mathbf{B}, \mathbf{G}, \mathbf{L}, \mathbf{Q}, \mathbf{V}, \mathbf{A}^{\prime}$ and \mathbf{F}^{\prime} in labial views; $\mathbf{C}, \mathbf{H}, \mathbf{M}, \mathbf{R}, \mathbf{W}, \mathbf{B}^{\prime}$ and \mathbf{G}^{\prime} in apical views; $\mathbf{D}, \mathbf{I}, \mathbf{N}, \mathbf{S}, \mathbf{X}, \mathbf{C}^{\prime}$ and \mathbf{H}^{\prime} in basal views; \mathbf{D}^{\prime} in mesio-apical view; $\mathbf{E}, \mathbf{J}, \mathbf{O}, \mathbf{T}, \mathbf{Y}$ and \mathbf{I}^{\prime} in lateral views. All scale bars equal $200 \mu \mathrm{~m}$.

FIGURE 7. A-E. Tooth of Polyfaciodus pandus. anterolateral tooth, GMPKU-P-3770. F-J. Tooth of Synechodus aff. triangulus. GMPKU-P-3769. K-M. Microstructure of the enameloid of Safrodus tozeri. GMPKU-P-3762, etched 5 seconds in 10% HCL. K, crystallites at the apex of the main cusp; $\mathbf{L}-\mathbf{M}$, crystallites of the lower part of the crown. \mathbf{A} and \mathbf{F} in labial views; \mathbf{B} and \mathbf{G} in lingual views; \mathbf{C} and \mathbf{H} in apical views; \mathbf{D} and \mathbf{I} in basal views; \mathbf{E} in mesio/disto-apical view; \mathbf{J} in mesio-apical view. Scale bars: A-J, equal $200 \mu \mathrm{~m}$; K-L, equal $2 \mu \mathrm{~m}$.

FIGURE 8. The palaeobiogeographic distribution and relative abundance of major groups of Chondrichthyes among western Neotethys and eastern Palaeotethys during the Early Triassic. Palaeogeographic maps modified from Scotese (2014) and Lyu et al., (2018). 1 represents Zuodeng; 2 represents Oman; 3 represents southwest Japan. $\mathrm{N}=$ the number of teeth in a given shark fauna. The red dash line represents the hypothetical migration route.

