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Abstract

Numerical simulation often resorts to iterative in-place sten-
cils such as the Gauss-Seidel or Successive Overrelaxation
(SOR) methods. Writing high performance implementations
of such stencils requires significant effort and time; it also
involves non-local transformations beyond the stencil kernel
itself. While automated code generation is a mature technol-
ogy for image processing stencils, convolutions and out-of-
place iterative stencils (such as the Jacobi method), the opti-
mization of in-place stencils requires manual craftsmanship.
Building on recent advances in tensor compiler construction,
we propose the first domain-specific code generator for itera-
tive in-place stencils. Starting from a generic tensor compiler
implemented in the MLIR framework, tensor abstractions
are incrementally refined and lowered down to parallel, tiled,
fused and vectorized code. We used our generator to imple-
ment a realistic, implicit solver for structured meshes, and
demonstrate results competitive with an industrial compu-
tational fluid dynamics framework. We also compare with
stand-alone stencil kernels for dense tensors.

CCS Concepts: « Software and its engineering — Com-
pilers; « Theory of computation — Parallel computing
models; « Applied computing — Physical sciences and
engineering.
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1 Introduction

We are interested in the parallelization and optimization
of Computational Fluid Dynamics (CFD) applications, and
more specifically implicit finite-volume numerical methods
to solve differential equations. This consists in discretizing
the space domain into small cells representing the conser-
vative fields of the simulation (mass density, momentum,
energy, etc., where the volume value of each field is aver-
aged over a given cell). Then, at every step of the simulation,
a solver based on the implicit method (for faster conver-
gence and scalability) proceeds by rewriting the differential
equations in the form of a large and sparse linear system

A-x=b (1)

where A is a square matrix of size m X m, x and b are two
column vectors of the same size m, and x contains the numer-
ical solution of the physical fields. An implicit CFD solver
can typically be split in two main phases:

1. first compute the vector b, iterating over the faces of
the cells to compute a numerical flux [34, 36] which
can be considered as a function of the two solutions
in adjacent cells separated by a common face;

2. then, rather than explicitly updating the fields in the
cell, solve the linear system using an iterative method
like Successive Overrelaxation (SOR), a variant of the
Gauss-Seidel method [12, 42].

It remains an open problem to design and implement a
domain-specific code generator for implicit finite-volume
solvers using state-of-the-art methods like SOR. Unlike the
Jacobi iterative method and all stencil codes occurring in
image processing and neural networks, SOR is an in-place
stencil computation, carrying an internal data dependence over
the space domain. Because of these internal dependences,
parallelization and vectorization of in-place stencils require
a wavefront schedule. This incurs additional control flow
and indexing overheads and higher complexity in model-
ing locality-enhancing transformations such as tiling (cache
blocking) and fusion. It is important to optimize such in-
place stencils, since in typical scenarios Gauss-Seidel and
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SOR converge quadratically faster than the methods free
of internal dependences such as Jacobi [19]. Unfortunately,
none of the popular domain-specific frameworks for stencil
computations and convolutions—such as Halide [31], TVM
[13], polyhedral tools like Polymage [29] or Tiramisu [4], or
simulation-oriented frameworks like ExaStencils [26] or De-
vito [27]—can model in-place stencils; until now, optimized
in-place stencils relied on manual craftsmanship [37].

In the following, we consider structured meshes only,
where the solution vector x can be represented by a multi-
dimensional array or tensor. We propose a domain-specific
code generator for in-place stencils, implementing state-of-
the-art parallelization, vectorization and optimization tech-
niques for the iterative method itself, and also enabling
non-local optimization over the end-to-end CFD solver. As
an additional contribution, we derive our implementation
from a generic tensor compiler based on the MLIR frame-
work [25, 38], demonstrating a high level of reuse of the
existing abstractions and incremental refinement logic of
the compiler, and leveraging MLIR’s natural extensibility.
We validate our approach by implementing a state-of-the-
art implicit solver demonstrating competitive results with a
manually optimized industrial CFD framework.

2 Parallelizing Iterative In-Place Stencils

We represent physical multi-fields (density, momentum, en-
ergy, etc.) with a tensor of rank k + 1, where the leading di-
mensions enumerate the n,fields! and the other dimensions
represent discretized physical space. The in-place stencil
computation of an iterative solver updates a tensor Y itera-
tively through the following equation, where every element
of the solution tensor Yis a linear or a nonlinear combina-
tion of neighboring tensor elements at current iteration Y
and previous iteration X :

ED[U, w,7] X Y[w,7] = B[o,7] + Zg(Y[0,7+ 7], X[0,7])

Fel
+ ) g(X[o, 7+ 7], X[0,1])

FeU

)
In (2), X and Y are two tensors of rank k + 1 and shape
(ny,ny,ny,...,ng) € N+ y represents the solution at the
current iteration and X represents the solution at the pre-
vious iteration; 7 € I—[S=1 [0,ng — 1] are the space coordi-
nates; B is a tensor with the same shape as X and Y, repre-
senting the flow across finite volume cells; D is a tensor of
rank k + 2, capturing interactions among physical fields.?
L and U model a fixed stencil pattern, where L is a subset
of {{r} \ rg € [~s4,54] and 7 < 0}3 modeling intra-iteration
dependences, and U is a subset of Hfi:l [—s4, s4] \ L modeling

1y stands for “variables”, and ny, is small, e.g. ny = 5 in our use case.
2B and D are typically dependent on X but are independent of Y.
37 < 0) in lexicographical order

dependences on the previous iteration. g : R™ X R" — R™
is a given function which takes as argument a neighboring
element Y[o,7+7] € R™ or X[v,7+7] € R™ and the central
element X[0,7] € R". The computation applies pointwise
to all variables v € [1,n,] and to all coordinate vectors 7
where the stencil does not overflow the tensor boundaries,
thatis VI € [1,k],s; < i; < n; — s;. A degenerate variant of
(2) applies to boundary coordinate vectors.

Practically, the tensor D can be inverted, then integrated
into tensor B and function g. This transformation enables
implementing the iterative computation of Y as an explicit
update. We prefer the more algebraic form of (2) as it is more
representative of the diversity of numerical applications con-
sidered in our domain-specific framework.

Finally, the lexicographic ordering restriction 7 < 0 on
neighboring tensor elements in L guarantees that the lexi-
cographic traversal of coordinate vectors is a valid schedule.
This enables systematic code generation into imperative loop
nests over arrays. In the following, we consider additional
transformations to improve performance.

2.1 Tiling

Loop tiling (or cache blocking) is an effective optimization
that exploits temporal locality in caches [1, 41]. The sufficient
validity condition for tiling is intra-iteration dependence dis-
tances being non-negative along all coordinates [21, 39],
which is not guaranteed by the lexicographic restriction
alone. For example, (ro,r1) = (-1,1) < (0,0), but it would
make the value of Y depend on “future” values when permut-
ing the traversal order of coordinate dimensions as the result
of tiling. This limits the tiling opportunities and poses the
first difficulty that only few traditional (out-of-place) stencil
code generators like Pluto handle it, by favoring paralleli-
pedic tiles aligned with the (skewed) parallel wavefronts.

We address this difficulty by implementing a restriction
on tile sizes, depending on the stencil pattern defined by
L: for any negative dependence distance, we force the tile
size along the associated dimension to be 1; this effectively
prevents permuting along this particular dimension.

Like most tiling frameworks, we rely on autotuning for
selecting tile sizes. We consider a range of sizes whose prod-
uct, multiplied by n, and the number of live tensors (3 in
the computation above) is bounded by the size of the largest
cache level private to a given core (L2 on mainstream CPUs).

2.2 Fusion

The next step in our optimization strategy is loop fusion.
After choosing tile sizes, the two-step stencil computations
are fused along the variable (physical fields) dimension and
space coordinates to exploit temporal locality on X and Y.
Then comes the problem of accumulating the B tensor:
since B is often iteration-dependent, it has to be computed
and one needs to select an appropriate temporary storage and



fusion strategy. The data reuse pattern for B is similar to out-
of-place stencil computations in image processing, hinting at
recomputing at the tile level as the most profitable strategy
[31]. This is what we observed in practice, and we chose to
compute B (and D) on the fly, storing one tensor block in a
temporary buffer, tuned to remain L2-cache-local. This
allows us to fuse one complete iteration of (2) at the tile level,
with redundant computations of B (and D) occurring across
tile boundaries due to the dependences from neighboring
elements in the stencil pattern.

Such a domain-specific, combined tiling and fusion strat-
egy is well known to CFD experts.

2.3 Sub-domain Parallelism

We are now interested in exposing thread-level parallelism.
It-erative  in-place  stencils involve intra-iteration
dependences preventing parallelization along the axes of
the coordinate space. Wavefronts of independent
computations can be ob-tained by partitioning the
computation along some linear combination of coordinate
vectors. For the Gauss-Seidel ex-ample, partitioning along i
+ j produces a parallel wavefront. The loop transformation
producing wavefronts is known as loop skewing [40].

Since we are dealing with a tiled coordinate space for lo-
cality, thread-level parallelization operates at or above the
granularity of the cache-oriented tiles. In CFD solvers, this
level is referred to as sub-domain parallelism. It consists in
partitioning the coordinate space into (hyper-)rectangular
sub-domains through another level of tiling. Based on the
sub-domain sizes and on the stencil pattern, we may con-
struct a partial execution order of sub-domains that satisfies
intra-iteration dependences; this partial execution order is
known as a schedule. A good schedule should allow indepen-
dent sub-domains to be executed in parallel. Dependences
across sub-domains can be derived from the L subset of the
stencil pattern. Since sub-domains are rectangular, one may
consider their corners only. For each corner ¢ and ¥ € U, we
determine to which sub-domain the element ¢ + 7 belongs
to; this is illustrated in Figure 1. This results in a uniform
dependence graph at sub-domain-level granularity.

The next step consists in computing a schedule mapping
sub-domains to natural integers. The optimal latency sched-
ule maps a sub-domain s to the longest path leading to s from
the initial sub-domain (holding space coordinates 0) or any
sub-domain depending only on boundary conditions. By con-
sidering the lexicographic ordering restriction 7 < 0, V7 € L.
The schedule can be expressed as:

0(s) = max(8(is +7)) +1 ®)

executed in the lexicographical order of 75, where the index
vector Is is the coordinate of a sub-domain.

In general, directly computing this schedule may result
in overhead, given the complexity of O(ns X |L|), where

Sub-domains Stencil
Pattern
I
faf LiRRE
] ]
| ]
N Sub-domain
_# Dependences
>
=
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Figure 1. Derivation of sub-domain dependences from a
stencil pattern: the red continuous arrows represent stencil
pattern dependences and the black dashed-line arrows rep-
resent sub-domain-level dependences.

ngq is the number of sub-domains. However, in practice the
number of subdomains is limited (< 100%) and the number
of vectors in L is small (< 100), e.g., a 5 X 5 X 5 stencil has
up to |L| < (5% — 1)/2 = 62 vectors. Schedule computation
is also performed once and reused across iterations, making
its overhead acceptable for our applications.

2.4 Vectorization

Classical loop and subword-level parallelism (SLP) vectoriz-
ers typically fail to vectorize loops with data-dependences
[23]. In general, they fail due to pattern matching limitations
or to the lack of node splitting or variable renaming transfor-
mations [11] capable of converting problematic dependences
into loop-independent ones, and to eliminate memory-based
dependences. They also tend to lack the performance models
to prioritize vectorization along outer loops with friendlier
data access strides [14]. But more specifically, they lack the
domain-specific knowledge that partial vectorization is prof-
itable on a subset of the in-place, internally dependent stencil
pattern; this is the approach we describe below.

We consider two strategies to vectorize in-place stencils.
The first one vectorizes along the parallel wavefronts iden-
tified in Section 2.3. In this case, accessed elements are not
contiguous in memory, resulting in scatter and gather in-
structions under-utilizing memory bandwidth due to access
strides. The second one involves partial vectorization along
the axis of contiguous memory access. Due to the depen-
dences in the L part of the stencil pattern in (2), we can vector-
ize the summation with B (and its computation) as well as the
summation over the U pattern, but we may only vectorize a
subset of the iterations in the L pattern: g(Y o, T+7], X[v,1])
for 7 # 0 or i < —VF where VF is the vectorization factor. In
Figure 2, we illustrate this strategy on a 5-points 2D Gauss-
Seidel. We adopt the second strategy to partially vectorize
iterative in-place stencils.

3 Domain-Specific Code Generation

MLIR [25] is a recent compiler infrastructure that can be seen
as a conceptual successor of the vastly popular LLVMIR [24].



for i in range(1,Nx-1):
for j in range(1,VF*((Ny-1)//VF),VF):
# vectorized part
temp = b[i,j:j+VF] + x[i,j:j+VF] + x[i+1,j:j+VF]
temp += x[1,j+1:j+VF+1] + y[i-1,j:j+VF]
# unrolled sequential part
y[i,j] = dli,jI«(templo] + y[i,j-11)
y[i,j+11 = d[i,j+1]*(temp[1] + y[i,j1)
y[i,j+VF-1]1 = d[i,j+VF-1]x(temp[VF-1] + y[i,j+VF-21)
#peeled loop
for j in range(VF*((Ny-1)//VF) ,Ny-1):
y[i,3] = bli,jI+dli, jI*(x[1, j+11+x[i+1, jI+y[i-1,3]+y[i,3-11)

Figure 2. Partial vectorization of 5-points 2D Gauss-Seidel.

It offers unprecedented flexibility to define customized com-
piler internal representations (IR) as well as to freely mix
them with other existing representations within the same
module. This flexibility is achieved by adopting a few design
principles partially adapted from object-oriented program-
ming, such as separation of interfaces and implementations.

3.1 Code Generation Infrastructure

MLIR consists of multiple dialects, which are IR equivalents
of modular dynamic libraries. Practically, dialects gather spe-
cific instantiations of core IR components: attributes, opera-
tions, and types. An operation is an execution primitive that
has associated (operational) semantics. Operations produce
typed values that can be used as operands by other opera-
tions while enforcing static single assignment (SSA). Types
contain the properties of a value known at compile time,
such as the value being an integer or its bit size. Attributes
contain similar compile-time properties of an operation. The
IR is structured in (basic) blocks that reside in regions associ-
ated with certain operations. MLIR blocks use the functional
form of the SSA where PHI nodes are replaced with block
arguments [3]. For example, a function in MLIR is merely an
operation with the “name” and “signature” attributes, and a
region representing its body.

The sets of attributes, operations and types are fully open
and user-extensible. While the MLIR distribution includes a
set of generic dialects, they have no additional capabilities
compared to user-defined dialects that may be shipped as
separate libraries. Reuse and adaptation of existing dialects
is encouraged, but not mandatory.

This work builds on MLIR dialects designed for code gen-
eration [6, 38] in addition to designing its own dialect for
in-place stencils, described in Section 3.2. It generalizes the
linalg dialect, which defines tensor operations with a struc-
tured static mapping between the iteration space of the op-
eration and the data spaces of its operands and results, by
making this mapping dynamic. The linalg dialect itself sup-
ports kinds of tensor operations ranging from elementwise
unary to tensor contractions, to convolutions. It operates on
data that can be represented and accessed using the opera-
tions from the tensor dialect, which treats multidimensional
arrays as immutable SSA values, or from the memref dialect,
which models multidimensional arrays as in-memory buffers

with a specific layout such as column- or row-major. Con-
crete computational payload is decoupled from the computa-
tional structure and is represented using the arith and math
dialects, holding operations for simple arithmetic and for
libm-style math functions, respectively.

The lowering process converges to the 11vm dialect that
directly maps to LLVM IR and can be translated into object
files for any of the hardware platforms supported by LLVM.

3.2 CFD Dialect

We introduce a new cfd dialect with two operations:

e facelteratorOp to perform computation over the faces;
e stencilOp to model an iterative in-place stencil.

facelteratorOp computes the numerical flux with the fi-
nite volume method, then distributes the computed flux
across adjacent cells sharing a common face. This design
aims to avoid redundant computations. We use this opera-
tion to compute the tensor B in (2). Note that the existing
linalg.generic operation can perform such computations
using shifted slices of the input and output tensors; yet this
solution yields redundant computations (effectively dupli-
cated on both cells sharing a common face).

stencilOp implements one iteration of the in-place stencil.
It takes two input operands: X, the tensor representing the
solution at the previous iteration, and B the tensor resulting
from facelteratorOp. It produces one result: Y, the tensor
that represents the solution at the current iteration Y. The
subsets L and U of the stencil pattern are modeled together
as one attribute named stencil, denoted s below. It takes —1,
0 or 1 as element values (see Figure 4), such that:

e §[7] = —1 means that ¥ € L, in other words, the com-
putation of Y[, fi depends on Y[, T+7,

e §[F] = 1 means that7 € U,

e and §[7] = 0 means that ¥ ¢ L U U.

The stencil attribute is mainly used for parallel scheduling
and vectorization. The nbVar attribute represents the number
of multi-fields n,. Finally, a region holding the details of the
computation of D[v,1], g(Y[v,7+ F], X[o0,i]) for 7 € L and
g(X[o,i+7],X[o, i]) for ¥ € U. The only block of this region
has as many arguments as there are non-zero elements in
the stencil attribute. These arguments correspond to values
of X or Y (for stencil value —1 or 1, respectively) accessed
by the stencil. The example in Figure 3 implements a simple
5-points Gauss-Seidel kernel, with k = 2, n, = 1 and where
g(a,b) = afor V(a,b) € R%

The canonical lowering of stencilOp introduces nested
“for” loops with a k-dimensional rectangular iteration domain
derived from the input/output tensor shapes. In the body
of the innermost loop, the computations in the region of
stencilOp are inlined and the final computations to update

Y[o,1] are performed as shown in Figure 5.



%result = cfd.stencilOp
ins(%X: tensor<ix?x?xf64>, %B :
outs(%Y : tensor<ix?x?xf64>)
{nbvar = 1, stencil= [[0,-1,0],[-1,0,1],[0,1,01]} {

*bbo(%wd: f64, %wl: f64, %w0: 64, %wr: 64, %wu: f64):
/*...%/ compute %wd', %wl', %wQ', %wr', %wu' /x...%/
cfd.yield %cst, %wd', %wl', %wQ', %wr', %wu'
64, f64, f64, 64, f64, f64

}

tensor<ix?x?xf64>)

Figure 3. The new MLIR cfd.stencilOp operation captures
the static stencil pattern as an attribute, and the computation
of D and g as a region.

for i in range(Nx)
for j in range(Ny):

for i in range(Nx) WLi, 31 = (WLi-1, 3-11 + WCi-1, 31 + WCi-1, 3+1]
f°vf,[J "!]ra”%;g'.‘wi1 1 + WA + HE WLi, 311+ WEE, 31+ WEE, 3]
i, 33 = (WG -1, 31 + Wi, § - + Wi, j i j- i j i j
B e T PR St N +WLi+1, j-11 + WLi+1, 31 + WLi+1, j+11)/9.0
0 1 0 1 1 1
-1 1 1 -1 1 1
o|-1]o0 A, || = || <o

Figure 4. Stencil pattern attribute captures access directions.
(Left) 5-point, (right) 9-point Gauss-Seidel in-place stencil.

%FULL_Y = scf.for %i = ... iter_args(%argé = ...) {
%PART_Y = scf.for %j = ... iter_args(%Y = ...) {
// we map the body arguments of stencilOp to the
// elements in X and Y tensors
%14 = tensor.extract %Y[0, %i - 1, %j]

%16 = tensor.extract %Y[0, %i, %3 - 1]
%17 = tensor.extract %X[0, %i, %j]
%19 = tensor.extract %X[0, %i, %j + 1]

%21 = tensor.extract %X[0, %i + 1, %j]

%22 = tensor.extract %B[0, %i, %3j]

// inline the computation in stencilOp body

%33 = func.call @g(%14, %16, %17, %19, %21, %22)
%34 = tensor.insert %33 into %Y[0, %i0, %il1]
scf.yield %34 : tensor<ix?x?xf64>

3
scf.yield %PART_Y :
}

tensor<1x?x?xf64>

Figure 5. Simplified loop-level intermediate representation
lowered from cfd.stencilOp; iter_args operands are loop-
carried values yielded by each iteration.

3.3 Tiling and Fusion in MLIR

An important contribution of our work is the integration of
domain-specific compilation techniques into a state-of-the-
art tensor compiler. We extend the structured operation con-
cept of the linalg dialect, where a computational operation
“knows” how to decompose into instances of itself operating
on subsets of inputs and producing a subset of result [38].
At the time of writing, structured operations in linalg do
not include self-dependences (aside from reductions). We de-
sign cfg.stencilOp to be similarly decomposable, enabling
seamless integration with existing operations and transfor-
mations thereon. Specifically, we can compute the subsets
of X, B and D required to compute the updated value of Y
using the stencil pattern as illustrated in Figure 1.

Tiling. Similarly to other structured operations, tiling
can be implemented by generating the k-deep loop nest

%9 = cfd.tiled_loop (%i, %j) = (0, @) to (%max_i, %max_j)
ins (%arg7 = %4: tensor) outs (%arg8 = %8: tensor) {
%11 = arith.min (%tile_size_1, %max_i - %i)
%12 = arith.min (%tile_size_2, %max_i - %i)
// extract the slices for the tiling
%13 = tensor.extract_slice %arg7[0,%i,%3j] [1,%11,%12] [1,1,1]
%14 = tensor.extract_slice %arg8[0,%i,%j] [1,%11,%12]1 [1,1,1]
%15 = cfd.stencilOp ins(%14, %13) outs(%14)
{stencil = [[0,-1,0]1, [-1,1,11, [0,1,01], nbVar = 13} {
“bbo(%wd: f64, %wl: f64, %wo: f64, %wr: f64, %wu: f64):
/*...%/ compute %wd', %wl', %wQ', %wr', %wu' /x...%/
cfd.yield %cst, %wd', %wl', %wQ', %wr', %wu'

3
%r = tensor.insert_slice %15 into %arg8[0,%i,%j1[1,%11,%121[1,1,1]
cfd.yield %r

Figure 6. Simplified tiled IR featuring smaller-sized instances
of cfd.stencilOp; extract_slice and insert_slice operate
on rectangular data tiles selected through per-dimension
offset, size and stride tuples.

with each iteration producing a subset (tile) of the result-
ing Y, and then by using the operation self-decomposition
to generate the body of the loop. We build on the ‘tiled
multi-for” construct, originally proposed* then retired from
MLIR in favor of other composition mechanisms, to intro-
duce cfd. tiled_loop. This construct represents a loop nest
with explicit input and output tensors, and shoehorns the
loop nest into the structured operation abstraction to en-
able repeated tiling. It can be lowered to classical (parallel)
“for” loops after the MLIR bufferization pass that replaces
immutable tensors with mutable buffers. Furthermore, we
extend this construct with additional optional operands that
specify the groups of iterations can be executed in parallel,
which we leverage in Section 3.4. Figure 6 demonstrates the
result of tiling that leverages tensor.extract/insert_slice
operations for hyperrectangular subsetting.

Fusion after Tiling. The cfd dialect generalizes the op-
timization pattern known as “fusion after tiling” [38]. A
stencilOp can be fused with any “structured operation” such
as cfd.facelteratorOp or linalg.generic, the main compu-
tational operations occurring in a CFD application. Fusion
proceeds by constructing a DAG of dependences between
operations, which it traverses from the leaves up. When an
operand of a (tiled) structured operation is produced by an-
other structured operation (including cfd. tiled_loop), the
producer operation can be pulled into the loop nest surround-
ing the consumer operation with further adaptation to only
produce the subset of result required by the consumer. This
producer/consumer fusion [31] allows for rematerialization
and overlapping input data tiles unlike loop fusion.

3.4 Sub-domain Parallelism

introduce We may now present our strategy to lower a (tiled
and fused) DAG of structured operations into parallel com-
putations.

4https://discourse.llvm.org/t/rfc-add-linalg-tileop/2833
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A naive lowering of tiled_loop into a nest of “parallel for”
loops would not respect the intra-iteration dependences of
stencils. To handle those, we introduce a utility operation:
%rows, %cols = cfd.get_parallel_blocks[%M, %N]

{block_stencil = [[-1,-1,0],[-1,0,0],[ 0,0,0]1}

This operation accepts as operands the number of subdo-
mains (outer tiled_loop iterations) along each tiled dimen-
sion. Its block_stencil attribute captures the subdomain
dependence pattern, derived from the stencil pattern in Fig-
ure 4, similarly to stencil but only using 0 and —1 as values.
It computes the subdomains that can be executed in parallel
wavefronts and produces two values that encode sets of inde-
pendent subdomains as a matrix of linearized indices in the
compressed sparse row (CSR) format, with each row contain-
ing indices of one independent subset and being scheduled
after all previous rows. This format can be directly consumed
by our cfd.tiled_loop operation.

Such a tiled_loop with groups of independent iterations
can be lowered into a sequential “for” loop iterating over
groups that contains a “parallel for” loop iterating over in-
dependent iterations within a group Iterations of the outer
loop serve as synchronization points between groups. Note
that we always produce one coalesced parallel loop to better
exploit the single degree of parallelism available on CPU.
The CSR format allows for naturally extracting the indices
of the original tiled_loop and the “parallel for” loop is read-
ily convertible to OpenMP using MLIR. The block_stencil
operation is converted into a direct implementation of (3)
using MLIR’s arithmetic and control flow dialects.

3.5 Vectorization

The transformations above yield a parallel loop structure con-
taining small instances of stencilOp. These are amenable to
vectorization, performed alongside the conversion to loops
expressed in the MLIR cfg dialect [38], with the stride of the
innermost loop set to the vectorization factor VF. We go over
the block arguments of stencilOp, each of which corresponds
to a value accessed by a stencil and, instead of extracting sin-
gle scalars from a tensor, use MLIR’s mid-level abstractions
vector.transfer_read/write to extract VF-sized vectors di-
rectly. MLIR provides the lowerings from these abstractions
to efficient hardware vector operations, and its arithmetic
operations transparently apply to vectors elementwise, sim-
plifying our implementation. As indicated in Section 2.4,
stencil value accesses from the L subset cannot be vectorized.
For these accesses, we replicate scalar operations VF times,
resulting in partial loop unrolling for non-vectorizable parts
only. Finally, when the last tensor dimension is not statically
known to be divisble by VF, we peel off the trailing iterations
to ensure divisibility. The result is illustrated in Figure 7.

4 Performance Results and Analysis

Let us now evaluate the performance of our code generation
strategy. All experiments are performed on a dual-socket

%15 = scf.for %i = ... step 1 iter_args(%arglo = ...) {
%19 = scf.for %j = ... to %ub floordiv 8 step 8
iter_args(%Y = %arglo) {
%21 = arith.addi %arg9, %c-1 : index
// map block arguments of stencilOp to vectors
// extracted from X and Y tensors
%22 = vector.transfer_read %Y[0,%i - 1,%j]1 ... : vector<8xf64>
%23 = vector.transfer_read %X[0,%i,%j] ... : vector<8xf64>

// inline a part of stencilOp region in a vectorized form
%30 = vector.fma 0, %22, ... : vector<8xf64>
%31 = vector.fma 0, %23, %30 : vector<8xf64>
%35
%36
%38

%49
%50

tensor.extract %Z[0, %i, %j]
vector.extract %23[0]

math.fma %35, %36, ... : f64
tensor.insert %38 into %Z[0, %i, %1]
tensor.extract %49[0, %i, %i + 1]

// 7th unrolled scalar operation

%75 = tensor.extract %74[0, %i, %j + 7]

%76 = vector.extract %23[7] : vector<8xf64>
%78 math.fma %75, %76, ... : f64

%80 = tensor.insert %78 into %74[0, %i, %j + 7]
scf.yield %80

3

// peeled loop

%20 = scf.for %j = %ub floordiv 8 to %ub step 1 iter_args(%Z=%19)
%22 = tensor.extract %Y[0, %i - 1, %j]

%24 = tensor.extract %Y[0, %i, %j - 1]

%25 = tensor.extract %Z[0, %i, %3]

%39 = math.fma %22, %24, %25

%42 = tensor.insert %39 into %Y[Q, %i, %j]

scf.yield %42

3
scf.yield %20

Figure 7. Generated code after vectorizing stencilOp with
a peeled scalar loop: space dimension k = 2, number of
fields n, = 1 and VF = 8. This generated code follow same
structure as Figure 2

system with two Intel Xeon 6152 CPUs @ 2.10GHz. Each
CPU has two NUMA nodes, each one associated with 11
cores, for a total of 44 cores partitioned over four NUMA
nodes. Each core has two AVX512 vector units, 32KB of L1D
and 1MB L2 cache per core, and a common 32MB L3 cache
per NUMA node. In the following, we compare with the
Pluto polyhedral compiler [8], we conduct an ablation study
of the different transformations, and we demonstrate the
effectiveness of our code generator on a realistic CFD solver.

4.1 Comparison with a Polyhedral Compiler

We consider three in-place stencil kernels with increasingly
complex stencil patterns, and one slightly more realistic (yet
still static control) imperfectly nested example also featuring
an in-place stencil computation:

(a) two-dimensional Gauss-Seidel 5 points stencil of order
1 (cross shape in 3 X 3 stencil);

(b) two-dimensional Gauss-Seidel 9 points stencil of order
1 (full 3 x 3 stencil);

(c) two-dimensional Gauss-Seidel 9 points stencil of order
2 (cross shape in 5 X 5 stencil);

(d) three-dimensional Gauss-Seidel 6 points stencil of or-
der 1 implementing the heat equation in-place.
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Figure 8. Stencil patterns of the four use cases.

The stencil patterns of the four use cases are given in
Figure 8. The baseline implementation for each use case is
written in C. The (c) use-case is the “seidel” benchmark of
the PolyBench suite,” and the three others follow the static
control coding rules of PolyBench to enable polyhedral com-
pilation. While the first three kernels are usual suspects,
Figure 9 provides the polyhedral-friendly implementation
of the 3D heat equation using the Gauss-Seidel method. Ev-
ery iteration starts with the computation of the laplacian
of the temperature using a finite difference method, then
the temperature increment is determined using the Gauss-
Seidel method, and finally we update the temperature by
accumulating the temperature increment.

for (t = 1; t <= TSTEPS; t++) {
// Compute RHS

for (i = 1; i < _PB_N-1; i++)
for (j = 1; j < _PB_N-1; j++)
for (k = 1; k < _PB_N-1; k++)
Rhs[i][jIKk] =

(TCi+110310Kk] - 2.0 = TCiJ[j1CKk] + TLi-11031Ck])
+ (TCiJCj+11Ck] - 2.0 » TCLil[j1Ck] + TCil[j-110kI)
+ (TCi10jICk+1] - 2.0 » TCiJ[3ICK] + TLilL31Ck-11);
// Gauss-Seidel iteration
for (i = 1; i < _PB_N-1; i++)
for (j = 1; j < _PB_N-1; j++)
for (k = 1; k < _PB_N-1; k++)
dT[iI[310k] =
SCALAR_VAL (lambda) * (Rhs[i][j1[k] +
(dTLi-130310k] + dTCi+1I0jI0k] + dTCiJLj-110K] +
dTCiI0j+110k] + dTLi1031Ck-11 + dTLiI031Ck+11));
// Update the temperature solution
for (i = 1; i < _PB_N-1; i++)
for (j = 1; j < _PB_N-1; j++)
for (k = 1; k < _PB_N-1; k++)
TLi1[310k] = TLiJ[310k] + dTCiI0310kT;

Figure 9. 3D heat equation implemented using Gauss-Seidel.

We compare these baseline implementations with a func-
tionally equivalent MLIR implementation using the cfd di-
alect. Figure 10 shows a simplified MLIR implementation of
the 3D heat equation introduced in Figure 9.

Pluto implements state of the art polyhedral analyses and
transformations [8], including the extraction of parallel wave-
fronts and to tile and fuse in-place stencils. We use the op-
tions —parallel -tile to generate tiled OpenMP code.

Pluto analyzes the static control code region delimited by
scop pragmas. By default, these are set to enclose the largest
static control code region of the kernel, which includes the
stencil iteration loop. However, we observed that this does
not always yield the best performance, as it favors parallel-
ogram tiles aligned with the (skewed) parallel wavefronts,

Shttps://sourceforge.net/projects/polybench/.

%9:3 = scf.for ... iter_args(%arg5, %arg6, %arg7) {
%10 = tensor.extract_slice %arg5[...]

// RHS computation (pointwise)
%RHS = linalg.generic ins(...) outs(...){
*bbo(%arg8d: f64, %arg9: f64, %arglo: f64, %argll: 64, %argl2: f64,
%argl3: f64, %argl4: 64, %argl5: f64):
%27 = arith.mulf %arg8, %cst : f64
%28 = arith.subf %arg9, %27 : f64
%29 = arith.addf %28, %arglo : f64
%30 = arith.subf %argll, %27 : f64
%31 arith.addf %30, %argl2 : f64
%32 arith.addf %29, %31 : f64
%33 = arith.subf %argl3, %27 : f64
%34 = arith.addf %33, %argl4 : f64
%35 = arith.addf %32, %34 : f64
linalg.yield %35 : f64
}
// Gauss-Seidel solver (stencil).
%22 = cfd.stencilOp ins(%11, %RHS) outs(%11)
{stencil = [[[o, 0, 0], [ o,-1, o], [0, o, 0]1,
[fo,-1, o1, [-1, o, 11, [0, 1, 011,
(fe, o, o1, [ o, 1, 01, [0, 0, 111>} {
*bbo(%arg9: f64, ..., %argl4: f64):
cfd.yield %cst, %arg9, ..., %argl4
}
// Temperature solution update (pointwise)
%23 = linalg.generic ins(%22) outs(%10) {
“bbo(%arg8: f64, %arg9: f64):
%27 = arith.addf %arg8, %arg9 : f64
linalg.yield %27 : f64

%24 = tensor.insert_slice %23 into %arg5[...]
scf.yield %24, ...

Figure 10. Pseudo-MLIR for an in-place 3D heat solver.

inducing control flow overhead. As a result, we also consider
a second implementation where the scop pragmas enclose
the (independent) spatial loops only.We refer to the default
PolyBench(-like) implementation by C+Pluto 1 and to the
second implementation by C+Pluto 2.

The reader may consider the strategy of our MLIR code
generator as a trade-off between the two extreme Pluto con-
figurations: parallel wavefronts are derived from the com-
plete kernel (including the iteration loop), while tiling is
effective on the spatial loops only. Also, notice that fusion is
only useful to the (d) use-case (the 3D heat equation), as the
3 others implement perfectly nested loops.

The size of space and the number of iterations are provided
in Table 1. We have performed auto-tuning for the tile size
for both MLIR and Pluto for 1, 10 and 44 threads. The chosen
tile sizes are given in Table 2 and Table 3.

Figure 11 shows the speedup relative to sequential execu-
tion (without Pluto) of C+Pluto 1, C+Pluto 2 and MLIR
versions, for 1 and 10 threads. The C compiler is clang 14
with optimization flags -03 and -march=native. Every mea-
surement corresponds to the median of 25 runs, and black
bars show the confidence interval for 95%.

The MLIR-generated versions consistently outperform
Pluto. This is due to automatic vectorization performing
poorly on in-place stencils, aggravated by Pluto’s skewed
parallelogram tiles. The performance gap is not as wide in
the multi-threaded case, as the kernels rapidly hit the mem-
ory bandwidth limits of a given NUMA node. The 9-points
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Table 1. Gauss-Seidel kernel test case configurations.

Case Domain size  Iterations
5-point 2D 2000 x 2000 500
9-point 2D 4000 x 4000 200

9-pt 20 order 2000 x 2000 500
Heat 3D 256 X 256 X 256 50

Table 2. MLIR tile sizes configurations.

Case Tile size 1-10 threads Tile size 44 threads

5-point 2D 64 X 256 32X 64

9-point 2D 1 X128 1 X128

9-pt 2°d_order 64 X 256 64 X 128
Heat 3D 4X 26 X 256 426 x 128

Table 3. Pluto tile sizes configurations.

Case Tile size 1-10 threads Tile size 44 threads

5-point 2D 16 X 16 16 X 16

9-point 2D 16 X 32 32 % 32

9-pt 2°-order 16 X 16 16 X 16
Heat 3D 4% 16 X 256 4x16x 128
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Figure 11. Optimization of four stencil kernels.
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Figure 12. Autotuned speedup for 44 threads.

Gauss-Seidel use case is an exception where C+Pluto 2 out-
performs our code generator. This is due to the restriction
we enforce on tile sizes in presence of a negative dependence
distance; we had to choose a tile size of 1x 128 as explained in
Section 2.1. This time, Pluto’s support for parallelogram tile
shapes comes to the rescue despite hampering vectorization:
it enables more parallelism and broader opportunities for

tile size autotuning. Finally, for heat 3D, MLIR outperforms
Pluto but only by 110% — 150%. This use case consists of three
stencils, two of which are out-of-place and one is in-place.
We only benefit from additionally vectorizing the in-place
stencil, hence the lower overall speedup.

We have also evaluated the performance with 44 threads as
shown in Figure 12. The lower performance on the 9-points
Seidel is due to the constraints on subdomain tile sizes as
explained previously. We also notice some NUMA effects
that undo the benefits of vectorization.

For the sake of completeness, we also evaluate our method
on out-of-place iterative stencils such as the Jacobi method
(i.e., the L subset of the pattern is empty). Performance re-
sults are similar to Pluto: considering a 5-points Jacobi stencil,
MLIR-generated code reaches about 90% of the performance
of C+Pluto 1 and 110% of that of C+Pluto 2. These varia-
tions are due to parallelogram tiling: while it hampered the
vectorization of in-place stencils, parallelogram tiles do not
interfere with the vectorization of out-of-place stencils [7].

4.2 Ablation Study

Let us now detail the performance impact of each transfor-
mation. We focus on the MLIR implementation of the (d)
use-case (3D heat equation with the Gauss-Seidel method),
introduced in the the previous section, scaling its domain size
to 514 X 514 X 514 to improve scalability. Figure 13 shows the
speedup as a function of the number of threads, considering
4 different transformations scenarios:

(Tr1) sub-domain parallelism without fusion (6 X 12 X 256):
tiling (6 X 6 X 128) the 3 operations separately;

(Tr2) sub-domain parallelism with fusion: the 3 operations
are tiled and fused before being parallelized,;

(Tr3) sub-domain parallelism without fusion combined with
vectorization;

(Tr4) sub-domain parallelism with fusion combined with
vectorization.

The sequential execution of (Tr1) serves as the baseline. First
of all, we see that performance scales almost linearly until
8 threads, before meeting diminishing returns. This is pri-
marily due to NUMA effects and synchronization overheads:
the total bandwidth available (to the L3 cache and mem-
ory) increases when spreading over 2 to 4 NUMA nodes, but
synchronization barriers at every iteration hurt scalability
when crossing NUMA node boundaries. Comparing (Tr2)
and (Tr1), or (Tr4) and (Tr3), we observe that combining tiling
(cache-blocking) with fusion improves scalability beyond 24
threads. On the other hand, while vectorization improves
performance dramatically on lower thread counts, it is not
sufficient to achieve good performance beyond 16 threads.
The combination of all transformations in (Tr4) yields the
best performance and continues to improve above 16 threads.
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Figure 13. Impact of different optimizations applied to 3D
heat Gauss-Seidel: the relative speedup in function of the
number of threads using different code transformations.

4.3 Euler Equation: LU-SGS

Let us conclude this empirical evaluation with the realistic
simulation of the flow of an ideal and inviscid gas. We select
the 3D Euler model for this purpose, the Roe method [34] to
compute the numerical flux, and the LU-Symmetric Gauss
Seidel method (LU-SGS) [12] for the numerical inversion of
the obtained linear system. The LU-SGS method applies a
forward Gauss-Seidel sweep followed by a backward Gauss-
Seidel sweep where the iteration domain is inverted. For
a complete description of the numerical method, we refer
to Chapter 4.2 of E. Otero’s PhD thesis [30]. To model the
backward Gauss-Seidel sweep with cfd.stencilOp, we use
an optional integer attribute which takes the value 1 for the
forward sweep and —1 for the backward sweep. In the case
of the backward sweep, the dependences are also in the op-
posite direction, which means that the signs of the stencil
pattern attribute must be inverted. The graph in Figure 14
summarizes the computational steps and the MLIR opera-
tions involved in the LU-SGS solver for the Euler equation.
We conduct a 3D numerical simulation using this MLIR im-
plementation, and comparing with the elsA industrial frame-
work. The size of the space domain is set to 512 X 512 X 512,
with periodic boundary conditions. For the MLIR implemen-
tation, we implement the following transformations:

e sub-domain parallelism with fusion: the sub-domain
size is 8 X 16 X 128;

o tiling with fusion for cache-blocking: the tile size is
setto 4 X 4 X 128;

e vectorization with VF = 8.

The elsA framework implements very similar optimization
recipes, but was manually implemented in Fortran and C
(sub-domain parallelism, fusion, L3 cache-blocking and vec-
torization). The simulation runs over 50 time iterations with
the same initial conditions in both MLIR and elsA frame-
works. We evaluate the average time needed to perform the
computation of one cell per iteration and per thread:

elapsed_time
teenn = nb_threads x psed_

nb_iteration X nb_cells

dw RHS w

\
w

Figure 14. Computational graph of LU-SGS for the Euler
equation with MLIR operations.
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Figure 15. Cell execution time per iteration and per thread.

Figure 15 shows the average computation time ¢, as a func-
tion of the number of threads for both MLIR and elsA. For
elsA, we only provide results up to 22 threads, which corre-
sponds to the number of cores on one socket. Indeed, elsA’s
OpenMP implementation is optimized for single-socket ex-
ecution, while a hybrid MPI/OpenMP strategy is used on
larger NUMA systems. The performance is similar indicating
that we successfully automated the generation of optimized
code that replicates the manual optimizations in elsA.

5 Related Work and Design Discussion

Let us now present the most closely related work. We also
take the opportunity to discuss some of our design choices.

CFD Solvers. Commercial and open-source CFD simula-
tion environments include YALES2 [28], AVBP [35], elsA
[9, 10], CEDRE [33], SU2 [16]. These applications cover a
large spectrum of physical models (incompressible, com-
pressible or weakly compressible flows, reactive flows, mul-
tiphase flows and turbulence modeling), mesh types (struc-
tured, unstructured or adaptive meshes), numerical methods
(implicit or explicit time integration), upwind (like Roe and
HLL/HLLC [34, 36]) or central (LAX-FRIEDRICH, Jameson)
schemes, high order methods, etc. Because of this variability,
CFD solvers largely rely on custom-built implementations in
C, C++ or Fortran: it has been very difficult for generic pack-
ages of numerical methods such as PETSc [5] to find their
way into state-of-the-art systems. This variability combined
with the manual implementation of numerical methods in-
duce high complexity and maintenance cost for CFD experts.



All these solvers rely on iterative stencil computations,
both in-place and out-of-place. Thus, they often use similar
optimization strategies as the ones we proposed in this paper.
For example in YALES2 [28], the authors consider a double
domain decomposition, the first for sub-domain parallelism
and the second for cache-blocking. In [22], the formation of
hierarchical wavefronts for LU-SGS enables coarse-grained
parallelism and vectorization. For structured grids, such a
vectorization strategy involves scatter and gather instruc-
tions, while for unstructured grids meshes may be ordered
along wavefronts to benefit from contiguous memory access.

Our approach acknowledges the diversity of models and
methods and that numerical libraries cannot handle such
variability while offering competitive performance. We ad-
vocate for a generative approach instead, following the pi-
oneering works of FEniCS [2] and Firedrake [32]. Yet the
kernel code generators in these frameworks did not handle
in-place stencils, and this limitation persists [27].

Stencil Code Generators. The experimental evaluation
of stencil kernels considered Pluto as a reference. Indeed,
general-purpose polyhedral compilers implement the kind
of wavefront parallelization needed to optimize in-place
stencils, but this is not the case of domain-specific code
generators for stencil, as we have seen in the introduction
[4, 13, 26, 27, 29, 31]. Note that ExaStencils [26] has been
evaluated on a colored variant of the Gauss-Seidel method,
but this variant is effectively an out-of-place stencil with
inferior convergence guarantees.

In addition to the default parallelogram tiles, Pluto offers
a diamond tiling strategy which allows to tile across sten-
cil iterations without resorting to wavefront parallelism [7].
Overlapped tiling is another alternative with similar prop-
erties, implemented in Halide [31] and Polymage [29]. Such
strategies are not applicable to in-place stencils, and when
running Pluto on the out-of-place Jacobi stencil we did not
activate this option for fairness reasons.

AMdne Scheduling. Rather than constructing an explicit
dependence graph in Section 2.3, we could have resorted to
affine scheduling to derive a schedule from a reduced repre-
sentation independent on the size of the coordinate space.
This approach widely used in polyhedral compilation [8, 17].
In the uniform dependence case of stencil computations,
with the ordering hypothesis we enforced on intra-iteration
dependences, it is always possible to construct a schedule as
a linear form: 6 (7) = i - T where 7 is a vector of size equal to
the space dimension and 7 is the coordinate of an element or
sub-domain. A valid schedule satisfies —7i - 7 > 1 for every
vector 7 € L. Optimizing a schedule consists in minimizing

its latency max-~(7 - (T— j)) which can be reduced to a linear

Lj
optimization problem. While such a schedule is independent
on the problem size, it is only optimal “up to a constant” [15].
Piecewise affine schedules [18] or index-set splitting [20]

can overcome this problem, with extra heuristic complexity.
Given that graph scheduling is practical in our context, we
did not investigate affine scheduling further.

Non-rectangular Tiling. The tiling policy presented in
Section 2.1 may appear overly restrictive—setting the tile
size of dimensions with negative distances to 1. A more
relaxed constraint—considered in advanced vectorization
techniques—consists in setting the tile size of such a dimen-
sion to the minimum positive offset in the L subset [1], but
we did not observe real-life scenarios of higher order stencils
where this would be beneficial.

A more promising approach to lift the restriction would be
to implement parallelogram tiling with “skewed” tile shapes
aligned with the sub-domain schedule wavefronts, which
is exactly what Pluto does [8]. The empirical results have
not been encouraging however, mostly due to the loss of
vectorization opportunities. Indeed, unlike rectangular tiles,
parallelogram ones lead to chaotic intersections at bound-
aries of the coordinate space, resulting in a variety of so-
called “partial tiles”, where the boundary conditions prevent
effective vectorization. It remains an open problem whether
further autotuning and hybrid strategies could deliver better
results than plain rectangular tiles.

6 Conclusion

We presented a domain-specific code generator for iterative
in-place stencils, the cornerstone of computational fluid dy-
namics (CFD) simulations. The proposed code generation
strategy and optimizations are implemented in MLIR, inte-
grated with the generic tensor compilation abstractions and
transformations provided by the framework. We evaluated
the performance and expressiveness of our code generator
on a realistic use case: the end-to-end implementation of
an implicit CFD solver. We demonstrated its competitive-
ness with an industry-grade solver. Empirical evaluation
on stencil kernels also outperform traditional polyhedral
source-to-source parallelization and optimization.
Leveraging the MLIR framework, the next steps include
portability experiments on GPU and heterogeneous plat-
forms with hardware accelerators. This may involve further
research on piecewise affine scheduling, and layout transfor-
mations to exploit fine-grained parallelism on GPUs.
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