Amino acids and the peptide bond ▷ Natural amino acids and their side chains Nb: 0 to 10 heavy atoms per side chain ▷ Peptide bond synthesis:

H H H H H H H H H N N N N O O O C C C OH H +H 2 O C α;1 C α;2 OH C α;1 O H R 2 C α;2 C R 1 OH R 1 R 2 (Ribosome)
Geometric models: Cartesian and internal coordinates ▷ Cartesian versus internal coordinates: {x i y i z i } i versus {d ij , θ ijk , σ ijkl } ▷ Bond length and valence angle The potential energy of (bio-)molecules: force fields 

V total = V bond + V angle + (Vproper + V improper ) + (V vdw + V electro ) (1) 
V bond : bonds V angle : covalent angles Vproper: proper dihedrals Protein model BLN69: model and force field ▷ Description:

-Three types of pseud-atoms a i : : hydrophobic(B), hydrophylic(L) and neutral(N) -Configuration space of intermediate dimension: 207 -Challenging: frustrated system -Exhaustively studied: DB of ∼ 450k critical points (Industry)

V BLN = 1 2 • Kr N-1 i=1 (d ij -Re ) 2 + 1 2 K 0 N-2 i=1 (θ i -θe ) 2 + ϵ • N-3 i=1 [A i (1 + cos ϕ i ) + B i (1 + 3 cos ϕ i )] +4ϵ N-2 i=1 N j=i+2 •C ij [( σ d ij ) 12 -D ij ( σ d ij ) 6 ]
▷ Disconnectivity graph: describes merge events between basins ▷Ref: Honeycutt, Thirumalai, PNAS, 1990 ▷Ref: Oakley, Wales, Johnston, J. Phys. Chem., 2011

Thermodynamics

▷ Quantities defined for a conformation x:

▶ potential energy: V (x)

▶ kinetic energy: K (x)

▶ total energy: E (x) = V (x) + K (x) ▶ Boltzmann's distribution: P eq (x) = e -βE (x) /Z , Z = Conformationx P eq (x)

▷ Quantities defined for ensembles: Molecule in water at temperature T ▶ q: vector of positions of atoms ▶ Potential energy:

▶
V (q)
▷ Potential energy landscape: 

V BLN = 1 2 • Kr N-1 i=1 (R i,i+1 -Re ) 2 + 1 2 K 0 N-2 i=1 (θ i -θe ) 2 + ϵ • N-3 i=1 [A i (1 + cos ϕ i ) + B i (1 + 3 cos ϕ i )] + 4ϵ N-2 i=1 N j=i+2 •C ij [( σ R i,j ) 12 -D ij ( σ R i,j ) 6 ]
▷ Open questions: The peptide bond and peptide rigid bodies ▷ The peptide bond defines a rigid body:

▶
C 1 N 2 C α;1 C α;2 x y ||C α;2 -C α;1 || = Const z ω νi νi+1 di di+1 di+2
Internal coordinates fixed ▷ Key ingredients of TLC:

▶
σ i = τ i + δ i . (2 
▶ Initially: six dihedral angles {(ϕ, ψ)} {i=1,2,3}
▶ Then: three pairs {δ i , τ i } ▶ Finally: three angles τ i ▷ The valence angle constraints: the θ i angles at the C α;i s must remain constant. ⇒ It is the coupling introduced by the θ i angles onto the rotation angles τ i yields a degree 16 polynomial. ▷Ref: Coutsias et al, 2004 The three local frames ▷ Local frames and individual rotations:

Cα;1 Cα;3 ξi N2 Ẑ1 rσ 1 X1 Ŷ Ŷ X1 Cα;2 rτ 1 rσ 0 C1 N1 Ŷ X1 Ẑ0 = Ẑ3 Ŷ X0 = X3 ξ0 η1 τ1 σ0 σ1 Xi = Ŷi × Ẑi = ( Ẑi • Ẑi+2) Ẑi -Ẑi+2
Nb: Ẑi = Unit vector along Cα;iCα;i+1

• Orthonormal local frames:

X2 Ŷ Ŷ X0 Ẑ2 α1 θ1 Ŷi ≡ Ẑi-1 × Ẑi Nb: Ŷi = Ŷ
▷ Angular description of the tripeptide:

         α i = ∠ Ẑi Ẑi-1 ξ i = ∠ -Ẑi rσ i η i = ∠ Ẑi rτ i δ i = ∠Plane(C α;i C α;i+1 C i ), Plane(C α;i C α;i+1 N i+1 ) (3) 
▷ Four tuple of angles for C α;i of tripeptide

T k : A k,i = {α i,i , η i,i , ξ i,i-1 , δ i,i-1 }
Rotations and dot product ▷ Rotations of C i and N i : the two cones problem

▶ N i , angle σ i : vector rσ i-1 about Ẑi-1 ▶ C i , angle τ i :
vector rτ i about Ẑi

Cα;1

Ẑ1 rτ 1 rσ 0 C1 N1 τ1 σ0 -Ẑ3 θ1 rτ 1 rσ 0 = θ1
▷ Expressions in local frames:

In( Xi-1 , Ŷ, Ẑi-1 ) : rσ i-1 = -cos ξ i-1 Ẑi-1 + sin ξ i-1 (cos σ i-1 Xi-1 + sin σ i-1 Ŷ) (4) In( Xi , Ŷ, Ẑi ) : rτ i = cos η i Ẑi + sin η i (cos τ i Xi + sin τ i Ŷ) (5)
▷ Valence angle constraint equation: θ i kept constant

⟨r σ i-1 ,r τ i ⟩ = -cos ξ i-1 cos η i cos α i (6) -cos ξ i-1 sin η i cos τ i sin α i -cos η i sin ξ i-1 cos σ i-1 sin α i + sin ξ i-1 sin η i (cos σ i-1 cos τ i cos α i + sin σ i-1 sin τ i ) = cos θ i . (7) 
Algebra: the degree TLC solutions via the 16 polynomial ▷ Change of variables:

u i = tan(τ i /2), w i = tan(σ i /2). (8) 
▷ Re-write the valence angle constraint -Eq. 19:

A i w 2 i-1 u 2 i + B i w 2 i-1 + C i w i-1 u i + D i u 2 i + E i = 0, (9) 
where the coefficients A i , B i , C i , D i , E i depend on the angles θ i , α i , η i , ξ i-1 .

▷ Perform another round of elimination for the w i-1 : yields three three biquadratic polynomials in three variables, namely P 1 (u 3 , u 1 ), P 2 (u 1 , u 2 ), P 3 (u 2 , u 3 )

▶ By the Bernshtein-Kusnirenko-Khovanskii theorem, at most 16 solutions.

▶ The bound is tight.

▷ Using resultants: degree 16 polynomial in 1 variable Coordinates:

2.0e-04% 2.0e-03% 2.0e-02% 2.0e-01% CβNi+1 Cβ -Oi-1 Cβ -O Oi-1Ni+1 Oi-1 -O Oi-1 -O C -Oi-1 N -Hi+1 HHi+1
• Cα;1(0, 0, 0)

• N1(-||Cα;1 -N1||, 0, 0) C1 N2 C2 Cα;2 x y z Cα;3 N1 C3 C1 N2 C2 Cα;2 Cα;1
Embedding tripeptides: recap

Cα;1 Cα;3 ξi N2 Ẑ1 rσ 1 X1 Ŷ Ŷ X1 Cα;2 rτ 1 rσ 0 C1 N1 Ŷ X1 Ẑ0 = Ẑ3 Ŷ X0 = X3 ξ0 η1 τ1 σ0 σ1 Xi = Ŷi × Ẑi = (Ẑi • Ẑi+2) Ẑi -Ẑi+2
Nb: Ẑi = Unit vector along Cα;iCα;i+1

• Orthonormal local frames: X2 Ŷ Ŷ X0 Ẑ2 α1 θ1 Ŷi ≡ Ẑi-1 × Ẑi Nb: Ŷi = Ŷ ▷ 1. From the position of legs: compute {α k,i , η k,i , ξ k,i-1 , δ k,i-1 } i∈{1,2,3}
▷ 2. TLC: find the (σ, τ ) angles such that: Strategy: validity intervals -details ▷ We wish to define a validity intervals:

⟨r σ i-1 ,r τ i ⟩ = cos θ i . ( 10 
{Iτ i , Iσ i } {Iτ i|δ , Iσ i|δ } {J (j) σi , J (j) τi } j = j + 1 j = 1 ( 
σ i-1 : Iσ i-1 = [σ i-1;-, σ i-1;+ ] ⊂ [0, π] τ i : Iτ i = [τ i;-, τ i;+ ] ⊂ [0, π].
such that σ i-1 ∈ Iσ i-1 and τ i ∈ Iτ i are tight necessary conditions ▷ Taken for granted: Initial Validity Intervals

Iτ i = {Iτ i , I ′ τ i } and Iσ i-1 = {Iσ i-1 , I ′ σ i-1 }.
▷ From Initial Validity Intervals to Rotated Validity Intervals:

+ δ i -δ i τi σi Iτ i I τi Iσ i I σi Iτ i|δ I τi|δ Iσ i|δ I σi|δ Iσ i = {Iσ i , I σi } Iτ i|δ = {Iτ i|δ , I τi|δ } Iτ i = {Iτ i , I τi } Iσ i|δ = {Iσ i|δ , I σi|δ } (B) (C) τi σi Cα;i Cα;i+1 Ci Ni+1 (A) Plane(Cα;iCα;i+1Ni+1) δi = Plane(Cα;iCα;i+1Ci) σi = τi + δi ▷ Using the coupling σ i = τ i + δ i : Depth One Validity Intervals (DOVI) for σ i-1 : J (1) σ i-1 = (Iσ i-1 ∩ I σ i-1 |δ ) ∪ (Iσ i-1 ∩ I ′ σ i-1 |δ ) ∪ (I ′ σ i-1 ∩ I σ i-1 |δ ) ∪ (I ′ σ i-1 ∩ I ′ σ i-1 |δ ) (11)
For τ i : mutatis mutandis.

Initial Validity Intervals: bounds ▷ Obs: limit cases for the dot product ⟨r σ i-1 , Ẑi ⟩ = cos(θ i ± η i ). Proof: Viète's law of cosines for the spherical triangle ABC :

cos x = cos θ i cos η i + sin θ i sin η i cos γ. ( 12 
)
Extreme values for γ = 0, π: cos(θ i ± η i ) Valence angle constraint: the case of σ i-1 (II) ▷ σ i-1;-: first limit case start with the dot product

⟨r σ i-1 , Ẑi ⟩ = -cos σ i-1 sin ξ i-1 sin α i -cos ξ i-1 cos α i . ( 13 
)
⟨r σ i-1;-, Ẑi ⟩ = cos(θ i + η i ) (14) 
from which we obtain

S -= + cos (θ i -η i )+cos ξ i-1 cos α i sin ξ i-1 sin α i σ i-1;-= arccos S - (15) 
When S -→ 1 -, σ i-1;-→ 0 + .Therefore,

S -> 1, (16) 
we set σ i-1;-= 0, so that any value σ i-1 ≤ σ i-1;+ is valid.

▷ σ i-1;+ : mutatis mutandis

▷ Result: validity interval Iσ i-1 = [σ i-1;-, σ i-1;+ ] ⊂ [0, π]
C α valence constraints ▷ Conditions to define the four extreme angles: the case of σ i-1

-1 1

S - S + σi-1;- σi-1;+ π 0 Cosine: Angle: Initial Validity Interval
Definition 1. (Cα valence constraints) The Cα valence constraints are the necessary validity conditions defined by : ▶ Angle σ i-1;-: the condition σ i;-< σ i;+ requires S -≥ -1.

▶ Angle σ i-1;+ : the condition σ i;-< σ i;+ requires S + ≤ 1.

▶ Angle τ i;-: the condition τ i;-< τ i;+ requires T -≥ -1.

▶ Angle τ i;+ : the condition τ i;-< τ i;+ requires T + ≤ 1.

For the constraint to be verified all these conditions must be valid for all three {(σ i-1 , τ i )} pairs.

▷ Application: pick a tripeptide geometry {α i , ξ i , η i , δ i }, and check whether the four previous conditions are fulfilled.

Validity Intervals: Initial and Symmetric

▷ Angle σ i-1 : ▶ Validity interval Iσ i-1 = [σ i-1;-, σ i-1;+ ] ⊂ [0, π]
▶ Symmetric interval with respect to the plane C α;i C α;i+1 C α;i+2 :

I ′ σ i-1 = [σ ′ i-1;-, σ ′ i-1;+ ] Def = [2π -σ i-1;-, 2π -σ i-1;+ ].
Nb: values in (π, 2π).

▷ Angle τ i : mutatis mutandis Definition 2. (Initial validity intervals) The initial validity interval for σ i-1 are defined by:

Iσ i-1 = Iσ i-1 ∪ I ′ σ i-1 (17) 
Likewise, the initial validity interval for τ i are defined by:

Iτ i = Iτ i-1 ∪ I ′ τ i . ( 18 
)
Extreme angles: illustrations ▷ Dot product surface:

f (σ i-1 , τ i ) = ⟨r σ i-1 ,r τ i ⟩ (19) = -cos ξ i-1 cos η i cos α i (20) -cos ξ i-1 sin η i cos τ i sin α i -cos η i sin ξ i-1 cos σ i-1 sin α i + sin i-1 sin η i (cos σ i-1 cos τ i cos α i + sin σ i-1 sin τ i ) = cos θ i (21)
▶ angles σ i-1;-and σ i-1;+ correspond to planes orthogonal to the σ i-1 ; dito for τ i;-and τ i;+ ▷ Dot product surface and extreme angles σ i-1;-, σ i-1;+ , τ i-1;-, τ i-1;+ 

Rotated validity intervals (I)

▷ Along Cα edge:

σ i = τ i + δ i . (22) 
▷ Rotated interval for an angle: obtained from the value of its twin angle (from τ i for σ i , and vice-versa) ▶ for σ i-1 :

+ δ i -δ i τi σi Iτ i I τi Iσ i I σi Iτ i|δ I τi|δ Iσ i|δ I σi|δ Iσ i = {Iσ i , I σi } Iτ i|δ = {Iτ i|δ , I τi|δ } Iτ i = {Iτ i , I τi } Iσ i|δ = {Iσ i|δ , I σi|δ } ( 
I σ i-1 |δ = I σ i-1 |δ ∪ I ′ σ i-1 |δ with:
▶ I σ i-1 |δ : interval for σ i-1 obtained by applying Eq. ( 22) to I τ i-1 .

(Nb: uses the edge C α;i C α;i-1 of the C α triangle.) ▶ I ′ σ i-1 |δ : interval for σ i-1 obtained by applying Eq. ( 22) to I ′ τ i-1 . (Nb: uses the edge C α;i C α;i-1 of the C α triangle.)

▶ for τ i : dito Deep Validity Intervals: depth 1 ▷ Intervals obtained so far: ▶ The conditions on σ i-1 and τ i inherent to the conservation of the valence angles (Eq. ( 25)). ▶ The conditions exploiting rotated validity intervals, stemming from Eq. ( 22)

+ δ i -δ i τi σi Iτ i I τi Iσ i I σi Iτ i|δ I τi|δ Iσ i|δ I σi|δ Iσ i = {Iσ i , I σi } Iτ i|δ = {Iτ i|δ , I τi|δ } Iτ i = {Iτ i , I τi } Iσ i|δ = {Iσ i|δ , I σi|δ } (B) (C)
▷ Combination: intervals combined as follows

(I• i-1 , I ′ • i-1 ) × (I • i-1 |δ , I ′ • i-1 |δ
), which yields depth one validity intervals: Definition 5. (Depth one validity intervals) The depth 1 inter-angular interval set J

(1) σ i-1 for σ i-1 :

J (1) σ i-1 = (Iσ i-1 ∩I σ i-1 |δ )∪(Iσ i-1 ∩I ′ σ i-1 |δ )∪(I ′ σ i-1 ∩I σ i-1 |δ )∪(I ′ σ i-1 ∩I ′ σ i-1 |δ ) (23)
depth 1 inter-angular interval set J

(1)

τ i for τ i : dito.
Definition 6. (Depth 1 inter-angular constraint) The depth 1 inter-angular constraint for σ i-1 is J

(1)

σ i-1 ̸ = ∅.
The depth 1 inter-angular constraint for τ i is: J

(1)

τ i ̸ = ∅.
For the constraint be verified all these conditions must be valid for all three {(τ i , σ i-1 )} pairs. ▷ Depth 1 validity intervals:

Stringency of necessary conditions: assessment

Initialization via the limit conditions -from Viète law of cosines:

σ i-1;-, Ẑi ⟩ = cos(θ i + η i ), ⟨r σ i-1;+ , Ẑi ⟩ = cos(θ i -η i )
▶ Then refinement thanks to intersections with Rotated validity intervals ▷ Depth-n validity intervals:

▶ Given a DVI of depth j (initially, j = 1), apply the valence angle constraint to obtain the twin interval on τ i from σ i-1 and vice-versa, using 

⟨r σ i-1 ,r τ i ⟩ = cos θ i . (25) 
A k → ∅ + (Iτ k,i ∩ I τ k,i |δ ) 4 . (29) 
▷ The angular validity domain V k for T k : 

the angle τ k,i : the domain V k ⊂ A k such that ∀k, ∀i, ∀a ∈ V k : DOVIτ k,i (a) ̸ = ∅.
I max τ (A k,i ) = I min τ |δ (A k,i+1 ) or I min τ (A k,i ) = I max τ |δ (A k,i+1 )
⇒ two implicit equations in A k : two sub-manifolds (under the appropriate conditions)

Angle τk,i Iτ k,i Iτ k,i |δ I max τ (Ak,i) I max τ |δ (Ak,i+1) I min τ (Ak,i) I min τ |δ (Ak,i+1) Limit case: I max τ (Ak,i) = I min τ |δ (Ak,i+1)
Validity domain for the whole chain L with m tripeptides ▷ Angles τ : 3m angles τ (3 for each tripeptide)

▷ Recap per angle τ :

▶ For one angle: at most 4 Depth One Validity Intervals (DOVI)

▶ For each DOVI: 2 sub-manifolds of A k defined by the previous equations; yields (at most) 8 sub-manifolds in A k .

▷ For one tripeptide: 3 τ angles ⇒ 24 constraint surfaces in the 12 dimensional angular space A k .

▷ For the whole loop: total of 24m constraint surfaces.

A: 12m dimensional angular space for the m tripeptides V: necessary conditions based on validity intervals S: solutions i.e. loop can be embedded ▷ Sampling motions: sample the m -1 translations and m -1 rotations of the peptide bodies independently ▷ Ray in motion space, for r ∈ M: linear interpolation between the identity and the rigid motion corresponding to r :

M: 6(m - 
Ray(V ) = {γ(t) = Id + tV , with γ(0) = Id}. (30) 
▷ Restriction to each peptide body: defines a rigid transformation

γ k : [0, 1] → SE (3), γ k (0) = Id, (31) 
▷ Position of the k-th peptide body P k (t) at time t:

P k (t) = γ k (t)P k (0). ( 32 
)
Kinetic angular representation of a tripeptide Kinetic validity intervals of an angle τ k,i ▷ Functions returning the angles A k,i for C α;i at time t: ⇒ kinetic vector for the l-th rigid body of the i-th tripeptide:

             f (α) (k,i) (
A k,i (t) = (f (α) (k,i) (t), f (ξ) (k,i) (t), f (η) (k,i) (t), f (δ) (k,i) (t)). (34) 
▷ Kinetic validity intervals of angle τ k,i :

Iτ k,i (t) = [I min τ (A k,i (t)), I max τ (A k,i (t))] I τ k,i |δ (t) = [I min τ |δ (A k,i+1 (t)), I max τ |δ (A k,i+1 (t))] (35) 
▷ Nb: these are similar to std validity interval: initial VI + transposed VI 

I max τ (A k,i (t)) = I min τ |δ (A k,i+1 (t)) or I min τ (A k,i (t)) = I max τ |δ (A k,i+1 (t)) (36) 
Nb: yields 8 equations per angle τ .

Functional form of the time dependent equations ▷ Equations of the form: 

I max τ (A k,i (t)) = I min τ |δ (A k,i+1 (t)) or I min τ (A k,i (t)) = I max τ |δ (A k,i+1 ( 
▷ Example condition for kinetic depth 1 validity interval to be ̸ = ∅: (Open problems) Tripeptide Loop Closure 

I max τ (A k,i (t)) = I min τ |δ (A k,i+1 (t)) (40) 
{Iτ i , Iσ i } {Iτ i|δ , Iσ i|δ } {J (j) σi , J (j) τi } j = j + 1 j = 1 ( 
ε > 0, a number V (1 -ε)Vol(K ) ≤ V ≤ (1 + ε)Vol(K ).
▷ (ε, δ)-approximation algorithm: algorithm an ε-approximation with a probability at least 1 -δ. Application to the ratios R i

▷ Recall R i = K f i (x)dx K f i-1 (x)dx = K f i (x) f i-1 (x) f i-1 (x)
K f i-1 (x)dx dx ▷ Define Y = f i (X )/f i-1 (X ), and let X ∼ f i-1 (X )/ K f i-1 (x)dx.

▷ One has

E [Y ] = K f i (x) f i-1 (x) f i-1 (x) K f i-1 (x)dx dx = K f i (x)dx K f i-1 (x)dx . ( 43 
)
▷ Associated estimator: with X i a set of k iid RV ∼ f i-1 (x) / K f i-1 (y ):

Ri = 1 k j f i (X j ) f i-1 (X j ) . (44) 
▷ Importance sampling in disguise: R i has the form f (x)p(x) /q(x)q(x)dx with p(x) = 1/Vol(K ), f (x) = f i (x)Vol(K )

K f i-1 (y )dy q(x) = f i-1 (x) K f i-1 (y )dy . ( 45 
)
Using HMC to sample a distribution ▷ Goal: sample a distribution π(q)

▶ Define U(q) = -log (π(q)) and K (p) = 1/2∥p∥ 2 (Nb: unit masses) ▶ H(p, q) = U(q) + K (p)

▶ Invariant measure used: µ(q, p) = exp(-H(q, p)) = π(q) exp(-K (p)), with π(q) = exp(-U(q))

▷ Sampling with HMC: algorithm ▶ fix travel time L > 0 ▶ Iterate ▶ resample p ∼ N (0, I n ) ▶ (q (t+1) , p (t+1) ) = Φ L (q (t) , p)

▷ Rmk: resampling p changes the energy level ▷ Nb: HMC and the curse of dimensionality: gliding near the typical set ▷Ref: Betancourt, ArXiv, 2018

  per a.a. type: ▶ bivariate distribution for (ϕ, ψ) ▷ Side chain: 20 natural amino acids Exple

V

  improper : improper dihedrals V vdw : van der Walls V electro : electrostatics ▷ Examples: ▶ AMBER: Su = (73, 133, 112, 3, 14, 758) 1093 unique parameters ▶ CHARMM: Su = (85, 152, 209, 13, 33, 1) 493 unique parameters ▶ MARTINI: Su = (16, 4, 0, 2, 21, 3)

  Average of observable O wrt an ensemble: < O >≡ Conformationx O(x)P eq (x) ▶ Exple: average total energy U =< E > ▶ NVT: Helmholtz free energy A = U -TS = k B T ln Z ▶ NPT: Gibbs free energy G = U + PV -TS = H -TS Density of states and partition functions Dialanine Ψ Φ

▷

  Density of states (DoS):▶ Push forward of the Lebesgue measure by the potential energy V :▶ For any v0 < v1:g ([v0, v1]) = X 1 [v 0 ,v 1 ] (V (q))dq▷ Partition function for A ⊂ X : integrate Boltzmann's factor Z A (T ) = A e -βu dg (u) ▷ NB: n atom: d = 3n Cartesian coordinates. Exple: antibody: d ∼ 42, 000 Key difficulties rephrased ▷ Key difficulties: ▶ Identify low (potential/free) energy conformations ▶ Predict observables: thermodynamics / kinetics ▷ This mini-lecture: ▶ Conformational changes in internal coordinates: Tripeptide Loop Closure ▶ Thermodynamics and the volume of polytopes (Open problem) Complexity of Potential Energy Landscape ▷ Consider a force field of the following type:

Challenge▶▶⇒

  Number of critical points (local minima, index one saddles) ▶ (Topological) Persistence of local minima ▶ Geometry of the catchment basins (stable manifolds for -∇V ) ▷ Rationale: ▶ Separation bounds for polynomials ▶ Complexity results à-la Yomdin-Comte / Tame geometry Mining molecular flexibility: novel tools, novel insights PART 1: Introduction to Structural Bioinformatics PART 2: Protein structure and geometry PART 3: Thermodynamics and the volume of polytopes PART 4: Outlook Mining molecular flexibility: novel tools, novel insights Dynamics of proteins: specification ▷ Input: structure(s) of biomolecules + potential energy model ▷ Output ▶ Thermodynamics: meta-stable states and observables ▶ Kinetics: transition rates, Markov state models ▷ Time-scales ▶ Biological time-scale > millisecond ▶ Integration time step in molecular dynamics: ∆t ∼ 10 -15 s Chodera et al, eLife, 2019; Youtube link Overarching goal: Tired of molecular dynamics? Aim at seven-league boots. . . Molecular dynamics (Newton's equations of motion): ∆t ∼ 10 -15 s ▶ Aim at move sets moving atoms of several angstroms in one go, while retaining high quality conformations ▶ Could result in a gain of several orders of magnitude in simulation time, ▶ Problem : design the seven-league boots. . . Left+right legs: fixed ▶ Bond lengths: fixed ▶ Valence angles: fixed ▶ ω angles: fixed ▶ Six {ϕ, ψ} dihedral angles: free Overall: 5 moving atoms ▷ Num. of tripeptide types with the 20 natural amino acids: ▶ 20 × 20 × 20 = 8000 types ▷ Tripeptides in the Protein Data Bank: ∼ 2.6 million tripeptides in high resolution loops, upon filtering out sequence redundancy The Tripeptide loop closure -TLC ▷ TLC: for 3 amino acids, fix all internal coordinates BUT the (ϕ i , ψ i ) i=1,2Find all possible values (ϕ i , ψ i ) i=1,2,3 compatible with the fixed internal coordinates ▷ Theorem: at most 16 solutions a.a. 3 a.a. sandwiching SSE-CDRs ▷Ref: Go and Scheraga, Macromolecules, 1970 ▷Ref: Coutsias et al, J. Comp. Chem., 2004

▷▷

  Nb: the bound it tight. ▷ Robust solutions: requires some care since π is involved ▷Ref: Cox,Little,O'Shea, Using algebraic geometry, 2005 Mining molecular flexibility: novel tools, novel insights of solutions and atomic displacements ▷ Dataset: ∼ 2.6 million tripeptides in loops from high-resolution non redundant Modeling: necessary distance / angular constraints for TLC to admit solutions Interpolatory properties of TLC reconstructions in the 3 Ramachandran domains ▷ Method: for the 3 Ramachandran domains (since 3 peptides):▶ compare the distribution of data versus reconstructions ▶ distinguish on a per-class amino acid basis

▶

  Tripeptide such that : left leg N i C α;i fixed, right leg C α;i+2 C i+2 free to move ▶ Six dihdedral angles {ϕ i , ψ i } free ▷ Question: provide necessary conditions on the position of the first and last segment-the legs, for the Tripeptide Loop Closure (TLC) algorithm to hold solutions.▷ Nb: the relative position of legs suffices; in that case, position + orientation of C α;i+2 C i+2 yields a 5-dim search space.

)▷

  Our goal: ▶ Conditioning of the solutions wrt the {α, ξ, η, δ} via necessary conditions ▶ Ability to sample uniformly solutions given the necessary conditions Strategy: validity intervals -outline ▷ Two types of constraints: ▶ Coherence along each edge of the Cα triangle -via ω angle ▶ Constraint on θ i at each Cα ▷ A sequential and iterative construction: interval types used ▶ Initial VI ▶ Rotated VI ▶ Deep VI and Restricted Deep VI

  IVI) Initial Validity Intervals (RVI) Rotated Validity Intervals (RDVI) Restricted Deep Validity Intervals • Union and intersections • ±δi along each Calpha edge {K (j) σi , K (j) τi } • ±δi along each Calpha edge • Union and intersections • From dot product equation • From boundary conditions and Viète's law of cosines (DVI) Deep Validity Intervals • (DOVI) Depth One Validity Intervals

▷

  + ηi) cos θi cos ηi Viète formula of cosines cos x Final step: ▶ plug the extreme values into the dot product ⟨r σ i-1 ,r τ i ⟩ ▶ ⇒ polynomial in cos, sin of the 12 angles + the 3 σs

  Nb: α i = 100, χ i-1 = 50, η i = 50 (A) Whole surface (B) With horizontal plane cos θ i = cos 9 • . Intersection curve: 1 c.c. (C) With horizontal plane cos θ i = cos 35 • . Intersection curve: 2 c.c. Dot surfaces and their classification Definition 3. (Signature at Cα) Consider the endpoints of the validity intervals, in this order σ i-1;-, σ i-1;+ , τ i;-, τ i;+ . The signature of a TLC problem is a string in {N, P, Z } 4 -one letter for each each extreme angle, with the following convention: ▶ letter N for cos(endpoint) < -1, ▶ letter P for cos(endpoint) > 1, ▶ letter Z for -1 < cos(endpoint) < 1. PNZZ PZZN ZNZN Dot surfaces and validity intervals for the dataset of random TLC instances. (A) The 7 signatures (Def. 3) in terms of extreme angles for the data set of random TLC instances. In all cases, the green plane corresponds to cos θ i = cos 111.6 • . A signature reads as follows: N:negative ie dot product < -1; Z: zero ie dot product ∈ [-1, 1]; P: positive ie dot product > 1. (B) Validity intervals.

Definition 4 .

 4 (Rotated validity intervals) The rotated validity intervals for the angles and τ i are defined by:

  (Cα;iCα;i+1Ci), Plane(Cα;iCα;i+1Ni+1) (A)

▷▷

  Reminder: the search space is 5D ▷ Evaluation of the stringency of validity intervals: ▶ Take random instances of peptides -in the 5D space ▶ Identify positives (P) and negatives (N) ▶ Given that N = True Negative + False Positives Strigency of necessary condition c : Nb: projecting the 5D points into 3D: coordinates of C α;i+2 Stringency of necessary conditions: results ,B) Random TLC instances: position of C α;i+2 . Blue/red: fertile/sterile point. ▶ (C) Cα valence constraints: False Positives in yellow ▶ (D) Depth 1 validity intervals: False Positives in yellow ▷ Nb: FP reduced significantly...but beware of the bias due to the 3D projection!

▷▷▶▶▶▷F

  Classical approaches: ▶ Molecular dynamics: cost + handling loop closure ▶ Non rigid geometry-but solution space is continuous (manifold) ▶ Data driven/combinatorial greedy methods + inverse kinematics ▶ Dihedral angles only/rigid geometry + inverse kinematics (TLC) Open questions: ▶ Global loop parameterization amenable to sampling: all a.a. on equal footing ▶ Uniform sampling in {(ϕ, ψ)} angle space, ▶ Connection with thermodynamics, ▶ Complexity: how hard are these problems? ▷Ref: Dod et al 1983; Cortés and Siméon, 2004; Levitt, Guibas et al, 2005; Snoeyink et al, 2005; Latombe et al, 2005; Cortés et al 2019, etc ▷Ref: Cazals et al; 2022 Loop sampling: difficulties and main approaches ▷ Main difficulties ▶ Space of solutions: a continuous space -if #dihedral angles > 6 Walking on this constrained manifold: geometrically/numerically difficult ▶ Incremental construction based on tripeptides: combinatorial explosion ▷ A mixed discrete -continuous approach ▶ Rosetta KIC for a chain with n amino acids: perturb the dihedral angles of n -3 a.a.; then close the chain on the last 3 with TLC ▶ Concatenation of solutions yielded by tripeptides: grow chains from left and right; close with TLC ▷ The problem remains difficult: ▶ Practice: orphan loops in databases / IDPs ▶ Theory: no global parametric solution ▷Ref: Kolodny, Guibas, Levitt, Koehl, 2005 ▷Ref: Kortemme et al, Nat. Methods, 2009 ▷Ref: Cortes et al, Bioinformatics, 2018 ▷Ref: Deane et al, Bioinormatics, 2018 ▷Ref: Cazals, O'Donnell; Submitted Global geometric model ▷ Loop studied L: M = 3 × m amino, m tripeptides: L = T 1 , . . . , Tm ▷ Loop decomposition: rigid peptide bodies and their complements For one peptide body: SE (3) = SO(3) × R 3 For one tripeptide: solution space of TLC. . . except that ▶ The angular parameterization of TLC {α, ξ, η, δ}: depends on SE (3) × SE (3) since the left and right legs come from P i-1 and P i-1 Loop sampling: spaces involved and solution sketch ▷ Loop decomposition into: rigid peptide bodies and tripeptides cores d e b od ie s: af te r ri gi d m ot io n s Random sampling of loop conformations using Hit-and-Run: A: 12m dimensional angular space for the m tripeptides V: necessary conditions based on validity intervals S: solutions i.e. loop can be embedded M: 6(m -1) dimensional space for the motions of the m -1 peptide bodies Clash free solutions in S ▶ Aim: perform rejection sampling in a region V containing all valid loop geometries. ▶ How: with Hit-and-Run in a domain characterizing necessary conditions -cf validity intervals Loop sampling: spaces involved and solution sketch ▷ Global parameterization of the conformational space of the loop: based on rigid bodies associated with peptide bonds ▶ M: motion space for the m -1 peptide bodies, essentially (SE (3)) m-1 ▶ A: 12m-dimensional angular space coding the geometry of tripeptides ▶ V: domain bounded by hyper-surfaces corresponding to Validity Constraints Necessary Constraints for TLC to admit solutions ▶ S: the fertile space, where TLC admits one solution for each tripeptide ▶ F : clash free solutions in S for {N, Cα, C , O, C β } pairs ▷ Number of solutions: i (num solutions tripeptide i) A: 12m dimensional angular space for the m tripeptides V: necessary conditions based on validity intervals S: solutions i.e. loop can be embedded M: 6(m -1) dimensional space for the motions of the m -Clash free solutions in S Validity domain for tripeptide T k and the whole chain L ▷ Rigid body l of tripeptide T k : angles tuples ⇝ Depth One Validity Intervals DOVIτ k,i (•) :

F

  A: 12m dimensional angular space for the m tripeptides V: necessary conditions based on validity intervals S: solutions i.e. loop can be embedded M: 6(m -1) dimensional space for the motions of the m -1 peptide bodies Clash free solutions in S ▷ Non empty intersection for 2 Iτ k,i ∈ Iτ k,i and I τ k,i |δ ∈ I τ k,i |δ : conditions are

  Clash free solutions in S Motion space for peptide bodies TLC for peptides with moving legs ▷ Configuration spaces for motions: ▶ One peptide body: R : (S 2 × [0, A)) × (S 2 × [0, 2π)) ⊂ SE (3) ▶ The m -1 peptide bodies in the loop L: M = R m-1

▶▶

  For each angle τ k,i : find the closest intersection with the 24 hyper-surfaces, along the 1D curve defined by the rigid motion interpolation. ▶ Let tmax be the corresponding value of t: draw ts ← Uniform(0, tmax ) ▶ Apply the rigid transforms defined by ts to the m -1 peptide bodies ▶ Solve the m individual TLC problems VMD demo Loops sampling: ϕ, ψ and ω ▷ Typical values of the torsion angle ω: ▶ SSE? ▶ loops? Loops sampling: ϕ, ψ and ω ▷ Typical values of the torsion angle ω: ▶ SSE? π ± 2 -3 • ▶ loops? π ± 15 • The loop is a complementarity-determining region (CDR-H3) from PG16, an antibody with neutralization effect on HIV-1. ▶ pdbid: 3mme, chain A; residues: 93-100, 100A-100T, 101, 102. Conformations generated by algorithm MLS 1;1 One;250 . (A) Variable domain (red) and the 30 a.a. long CDR3. (B,C) Side/top view of 250 conformations. ▷ Generation speed: ∼ 10 conformations per second Results: sampling and study of fluctuations atoms) for the 12 amino acid long loop PTPN9-MEG2.

•▷

  From boundary conditions and Viète's law of cosines (DVI) Deep Validity Intervals • (DOVI) Depth One Validity Intervals ▷ Open problem: do Deep Validity Intervals converge to the solutions of the degree 16 polynomial? ▷ Open problem: Can one leave the realm of zero dimensional problems, and obtain solutions as one (?) dimensional algebraic sets? Mining molecular flexibility: novel tools, novel insights PART 1: Introduction to Structural Bioinformatics PART 2: Protein structure and geometry PART 3: Thermodynamics and the volume of polytopes PART 4: Outlook Density of states and partition functions Dialanine Ψ Φ Molecule in water at temperature T ▶ q: vector of positions of atoms ▶ Potential energy: Density of states (DoS): ▶ Push forward of the Lebesgue measure by the potential energy V :▶ For any v0 < v1:g ([v0, v1]) = X 1 [v 0 ,v 1 ] (V (q))dq▷ Partition function for A ⊂ X : integrate Boltzmann's factor Z A (T ) = A e -βu dg (u) ▷ NB: n atom: d = 3n Cartesian coordinates. Exple: antibody: d ∼ 42, 000 Volume of polytopes: hardness, randomized algorithms ▷ Hardness: no polynomial time algorithm with approx factor (cd/ log d) dunless P=NP ▷ ε-approximation of the volume: for any parameter

▷▶▷▶

  Complexity, the O ⋆ (n)otation: ▶ O(d 4 ): upper bound as a function of the dimension d ▶ O ⋆ (d 4 ): term in log d, ε, δ removed; focus on the dimension solely ▷Ref: Cousins, Vempala, SIAM J. Comp., 2018 Random walk: hit-and-run ▷ Goal: sample point in K according to a prescribed density f ▷ (Random-direction) hit-and-run: random point x W after W steps pick a random vector ▶ move to random point on the chord l ∩ K , chosen from the distribution induced by f on l ▷ Comments: ▶ risk of being trapped near a vertex ▶ large W helps forgetting the origin x0 ▷ Thm (Berbee et al) The limit distribution induced by HR is uniform in K . ▷ Thm (Vempala et al) HR can be modified to sample an isotropic Gaussian (restricted to K ). ▷ Thm (Lovász) Let r and R denote the radii of the largest inscribed and circumscribed balls for K . One sample generation: O ⋆ (d 3 ). ▷ NB: precise statement in terms of total variation distance omitted ▷Ref: Berbee et al, Math. Prog., 1987 ▷Ref: Lovász, Math. Prog. Ser. A, 1999 Randomized algorithms: complexity ▷ Thm. For a convex body K given by a membership oracle, and such that B ⊂ K ⊂ RB, an (ε, δ)-approximation can be obtained in time Cooling schedule i.e. sequence of Gaussians f0, . . . , fm: ▶ f0: sharply peaked in K ▶ fm: uniform distribution i.e. am = 0 ▷ Complexity, overview: m = O ⋆ ( √ d) functions used. Each ratio in the telescoping product is estimated (with guarantees) using O ⋆ ( √ d) samples. The complexity of generating a given sample being O ⋆ (d 3 ), the overall algorithm has complexity O ⋆ (d 4 ). ▷Ref: Lovász, Vempala, J Comp. Syst. Sciences, 2006 ▷Ref: Cousins, Vempala, SIAM J. Comp., 2018 A practical algorithm: outline ▷ Method: ▶ multi-phase Monte-Carlo using m = O( √ d) logconcave functions {f 0 , . . . , f m-1 }, ▶ f i (x) ∝ e -a T i x or f i (x) ∝ exp(-a i ∥x∥ 2 ) At each step: estimate r k ≈ K f k (x)dx / K f k-1 (x)dx ▷Ref: Cousins and Vempala, Math. Prog. Comp., 2016

  

  

▷

  The 3n -6 degrees of freedom of a molecule:

			-types for atoms (element, bonds)
			-covalent: bond lengths, angles
	d	θ	-non covalent: pairwise distances -solvent model

▷ Potential energy: non linear function

  )

	Cα;i+1
	Ni+1
	Ci
	Cα;iCα;i+1
	Cα;i
	Cα;i+1Ni+1
	CiCα;i
	δi
	δi = ∠Plane(Cα;iCα;i+1Ci), Plane(Cα;iCα;i+1Ni+1)

  t) : function computing the angle α k,i at time t f

	f	(ξ) (k,i) (t) : function computing the angle ξ k,i at time t (η) (k,i) (t) : function computing the angle η k,i at time t	(33)
	f	(δ) (k,i) (t) : function computing the angle δ k,i at time t	

  Kinetic validity intervals for angle τ k,i Definition 9. (Kinetic depth 1 validity intervals) Obtained by intersecting the original and transposed VI Iτ k,i (t) ∩ I τ k,i |δ (t): Case study for k,i : Iτ k,i ∈ k,i (t) and I τ k,i |δ (t) ∈ I τ k,i |δ (t) ▶ (A)The interiors of the two intervals intersect.▶ (B)The intervals intersect on their boundary. The arrow indicate the derivative of the endpoints of intervals with respect to time t.▷ Two conditions for two kinetic intervals Iτ k,i (t) ∈ Iτ k,i (t) and I τ k,i |δ (t) ∈ I τ k,i |δ (t):

	(A)					(B)	
				I max τk,i|δ (Ak,i+1(t0))	I max τk,i (Ak,i(t))		I max τk,i|δ (Ak,i+1(t))
	τk,i (Ak,i(t0)) I max	Iτ	k,i (t0)	I min τk,i (Ak,i(t0))	Iτ	k,i (t)	I min τk,i (Ak,i(t))
				Iτ	k,i |δ (t0)			Iτ k,i |δ (t)
								I min τk,i|δ (Ak,i+1(t))
	τk,i			I min τk,i|δ (Ak,i+1(t0))	τk,i	
						Limit case:
			Iτ k,i (t) ∈ Iτ k,i (t)		
			Iτ k,i |δ (t) ∈ Iτ k,i |δ (t)	I max τk,i (Ak,i(t)) = I min τk,i|δ (Ak,i+1(t))
	▷						
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Angular representations: tripeptide and loop ▷ Angular representation of a tripeptide: the 2 × 4 angles Definition 7. Let A k,i = {α k,i , η k,i , ξ k,i-1 , δ k,i-1 } be the set of angles associated with C α;i in the k-th tripeptide T k . The angular representation of a tripeptide T k is the 12-tuple A k = {A k,1 , A k,2 , A k,3 }. The corresponding 12-dimensional space is denoted A k .

Definition 8. (Angular conformational space A) The angular conformational space of the loop L is the 12m dimensional space defined by the product of the m angular space of the individual tripeptides:

Validity Intervals and Depth One Validity Intervals (DOVI)

▷ Validity intervals: for each angle τ k,i , one can compute 2+2 intervals on S 1 , representing (stringent) necessary conditions for TLC to admit solutions:

Indeed:

▶ Iτ k,i : obtained from the conservation of the valence angle at C α;i

▷ Intersection of validity intervals: necessary conditions expressed as intervals

Limit case: equation in the 12 dimensional space A k .

HMC in a polytope: a curved billiard walk

▶ Reflexions on boundaries of K ▶ Analytical solutions for trajectories: harmonic oscillator ▷ Parameters:

▶ Max number of reflexions Max reflex should be large for the RW to forget its origin and mix

, p) = q (1)

▷ Nb: numerics are tricky due cascaded constructions. It may not be possible to evaluate the Test_to_zero predicate ... even if never faced in Sampling a target distribution with HMC: ▶ PDMP events: as usual ▶ Reflexions on the boundary ▷ Protocol: find the smallest number of samples so that the estimated volume is within err % from the exact value ▷ Linear regression in log log scale for the three polytopes: