
HAL Id: hal-04116827
https://hal.science/hal-04116827

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Automating Cryptographic Hardware
Implementations: a Case Study of HQC

Carlos Aguilar-Melchor, Jean-Christophe Deneuville, Arnaud Dion, James
Howe, Romain Malmain, Vincent Migliore, Mamuri Nawan, Kashif Nawaz

To cite this version:
Carlos Aguilar-Melchor, Jean-Christophe Deneuville, Arnaud Dion, James Howe, Romain Malmain,
et al.. Towards Automating Cryptographic Hardware Implementations: a Case Study of HQC. Inter-
national Workshop on Code-Based Cryptography, CBCrypto 2022, May 2022, Trondheim, Norway.
pp.0. �hal-04116827�

https://hal.science/hal-04116827
https://hal.archives-ouvertes.fr


Towards Automating Cryptographic Hardware
Implementations: a Case Study of HQC

Carlos Aguilar-Melchor1, Jean-Christophe Deneuville2, Arnaud Dion3, James
Howe1, Romain Malmain4, Vincent Migliore5, Mamuri Nawan6, and Kashif

Nawaz6

1 SandboxAQ, Palo Alto, USA. {carlos.aguilar,james.howe}@sandboxaq.com
2 ENAC, University of Toulouse, France, jean-christophe.deneuville@enac.fr
3 ISAE-SupAero, University of Toulouse, France, arnaud.dion@isae-supaero.fr

4 EURECOM, France, romain.malmain@eurecom.fr
5 INSA / LAAS-CNRS, University of Toulouse, France, vincent.migliore@laas.fr
6 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE,

mamuri@tii.ae, kashif.nawaz@tii.ae

Abstract. While hardware implementations allow the production of
highly efficient and performance oriented designs, exploiting features
such as parallelization, their longer time to code and implement often
bottlenecks rapid prototyping. On the other hand, high-level synthesis
(HLS) tools allow for faster experimentation of software code to a hard-
ware platform while demonstrating a reasonable extrapolation of the
expected hardware behavior. In this work, we attempt to show a rapid,
fast prototyping of the well known HQC algorithm, using HLS, and show
how with a modification of certain parameters, varying degrees of com-
parable results can be obtained. These results, in turn, could be used
as a guide for HDL-RTL developers to enhance their designs and bet-
ter prototyping time in the future. Additionally, we also demonstrate
that it is possible to benefit from HQC’s versatility; by achieving a low
hardware footprint whilst also maintaining good performances, even on
low-cost FPGA devices, which we demonstrate on the well known Artix-7
xc7a100t-ftg256-1.

1 Introduction

Quantum-resistant cryptography, more colloquially known as Post-Quantum
Cryptography (PQC), has emerged as one of the leading research fields in the
broader scope of theoretical and applied cryptography. This research field has
appeared due to the likely realization of quantum computers in the next few
decades, which threaten the current public-key cryptography standards ubiqui-
tously used today. Indeed, with a large fault-tolerant quantum computer, quan-
tum algorithms are able to trivially solve discrete logarithms and factor very
large numbers, which has been the cornerstone of our public-key cryptography
standards for the last few decades. In 2016, the National Institute of Standards
and Technology (NIST) [15] initiated an open call for post-quantum crypto-
graphic algorithms for public evaluation. This standardization process started



with having 69 accepted submissions for either a key encapsulation mechanism
(KEM) or a digital signature scheme (DSS) to in 2022 where we received the
first PQC standards; one KEM selection, CRYSTALS-Kyber, and three DSS selec-
tions, CRYSTALS-Dilithium, SPHINCS+, and Falcon [4]. Additionally, four KEM
candidates were promoted to a fourth round for further analysis, with the po-
tential of them being standardized in the future. Three of these KEMs are based
on code-based cryptography, being seen as a good alternative to CRYSTALS-
Kyber, a lattice-based cryptography scheme, and which would add diversity to
NIST’s PQC suite of standards. These three candidates are BIKE, HQC and Clas-
sic McEliece. NIST have stated that at the end of the fourth round they intend
to standardize at most one of the two former candidates, and also that they are
in no rush to standardize the latter [4].

This standardization process partially motivates the purpose of this research.
Since the beginning, NIST have stated their desire for hardware designs of these
PQC candidates, and have in the past used these results to compare similar
proposals in their decision process. We add to this line of research by proposing
hardware designs for the code-based KEM HQC, specifically for HQC-128. We
utilize tools and techniques for the rapid prototyping of schemes in hardware,
specifically high-level synthesis (HLS), which has proven in the past to signifi-
cantly increase design time for hardware engineers by converting especially de-
signed software code to hardware languages such as VHDL. This strategy was
recently shown successful by Guerrieri, Da Silva, Regazzoni, and Upegui for PQC
candidates based on lattice-based cryptography [11].

1.1 Design Artifacts

The source code of the HLS designs are available for download at under an open
source license at https://pqc-hqc.org/implementation.html.

1.2 Outline of the Paper

The remainder of the paper is structured as follows. Section 2 gives some mathe-
matical preliminaries and a background on the HQC algorithm. Section 3 details
the HLS synthesis design and implementation. Section 4 presents our results and
compares this HQC design to other, existing designs, both in hardware and soft-
ware. Section 5 concludes the paper and provides future research directions.

2 Preliminaries and Background

Hamming Quasi-Cyclic (HQC) is a public-key encryption scheme that relies on
the hardness of —as its name suggests— decoding random quasi-cyclic codes in
Hamming metric. The construction itself shares similarities with Alekhnovich’s
cryptosystem [5], which uses random linear codes, making it inefficient in prac-
tice. HQC was originally proposed in 2016 by Aguilar et al. using BCH codes
tensored with a repetition code [2, 3]. Aragon et al. later proposed an improved

2

https://pqc-hqc.org/implementation.html


version using Reed-Muller concatenated with Reed-Solomon codes [6] named
HQC-RMRS. The version that is currently considered in the NIST standard-
ization process is an IND-CCA2 KEM variant (see [1, Section 2.3.2]) of HQC-
RMRS, obtained by applying the Fujisaki- Okamoto (FO⊥) transform to the
IND-CPA public-key encryption scheme [12].

This section describes the notations used throughout this paper, and recalls
the description of the HQC encryption scheme. For conciseness, we refer the
reader:

– to [13] for additional details on Reed-Muller and Reed-Solomon codes;
– to [10] for an introduction to code-based cryptography;
– to [3, 6] for full details about HQC (original and RMRS versions), including

the security proof and decryption failure analysis; and
– to [12] for full details about the PKE-KEM conversion.

2.1 Notations

Throughout this document, Z denotes the ring of integers and F2 the binary
field. Additionally, we denote by ω(·) the Hamming weight of a vector i.e. the
number of non-zero coordinates, and by Sn

w (F2) the set of words in Fn
2 of weight

w. Formally:
Sn
w (F2) = {v ∈ Fn

2 , such that ω(v) = w} .

V denotes the vector space Fn
2 of dimension n over F2 for some positive n ∈ Z.

Elements of V can be interchangeably considered as row vectors or polynomials
in R = F2[X]/(Xn−1). Vectors/Polynomials (resp. matrices) will be represented
by lower-case (resp. upper-case) bold letters. For a vector v, vk denotes its k-th
coordinate. For the sake of conciseness, we will say that a prime integer n is
primitive if 2 is a primitive n-th root of unity, equivalently if the polynomial
(Xn − 1)/(X − 1) is irreducible in F2[X].

For u,v ∈ V, we define their product similarly as in R, i.e. uv = w ∈ V
with

wk =
∑

i+j≡k mod n

uivj , for k ∈ {0, 1, . . . , n− 1}. (1)

HQC takes great advantage of matrices with a cyclic structure. Following [3],
rot(v) for v ∈ V denotes the circulant matrix whose i-th column is the vector
corresponding to vXi. This is captured by the following definition.

Definition 1 (Circulant Matrix). Let v = (v0, . . . , vn−1) ∈ Fn
2 . The circulant

matrix induced by v is defined and denoted as follows:

rot(v) =


v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
. . .

...
vn−1 vn−2 . . . v0

 ∈ Fn×n
2 (2)

3



As a consequence, it is easy to see that the product of any two elements
u,v ∈ R can be expressed as a usual vector-matrix (or matrix-vector) product
using the rot(·) operator as

u · v = u× rot(v)⊤ =
(
rot(u)× v⊤)⊤ = v × rot(u)⊤ = v · u. (3)

Finally, the HQC version considered for standardisation in the NIST PQC
process has been modified to use Reed-Muller codes concatenated with Reed-
Solomon codes, between the 2nd and 3rd rounds.

Definition 2. [Concatenated codes [1, Section 2.5.1]]
A concatenated code consists of an external code [ne, ke, de] over Fq and an in-

ternal code [ni, ki, di] over F2, with q = 2ki . We use a bijection between elements
of Fq and the words of the internal code, this way we obtain a transformation:

Fne
q → FN

2

where N = neni. The external code is thus transformed into a binary code of
parameters [N = neni,K = keki, D ⩾ dedi].

2.2 Background on HQC

We now recall the HQC scheme in Figure 1. In [3], the code C used for decoding
is a tensor product of BCH and repetition codes. But since this code is public,
its structure has no incidence on security, and one can choose any code family,
influencing only the DFR and the parameter sizes.

– Setup(1λ): generates and outputs the global parameters param =
(n, k, δ, w,wr, we).

– KeyGen(param): samples h
$← R, the generator matrix G ∈ Fk×n

2 of the
public code C, sk = (x,y)

$← R2 such that ω(x) = ω(y) = w, sets pk =
(h, s = x+ hy), and returns (pk, sk).

– Encrypt(pk,m): generates e
$← R, r = (r1, r2)

$← R2 such that ω(e) = we and
ω(r1) = ω(r2) = wr, sets u = r1 + h · r2 and v = mG + sr2 + e, returns
c = (u,v).

– Decrypt(sk, c): returns C.Decode(v − uy).

Fig. 1: Description of HQC.

Based on this observation, Aragon et al. suggest to use Reed-Muller concate-
nated with Reed-Solomon codes to reduce the size of the resulting parameters,
yielding HQC-RMRS.

For the external code, HQC-RMRS uses a Reed-Solomon code of dimension
32 over F256 and for the internal code, a Reed-Muller code [128, 8, 64] duplicated

4



3 or 5 times (i.e. duplicating each bit to obtain codes of parameters [384, 8, 192]
and [640, 8, 320]).

For decoding, a maximum likelihood decoding algorithm is first performed
onto the internal code, yielding a (noisy) vector in Fne

q , that is hence decoded
using an algebraic decoder for the external Reed-Solomon code.

All technical details regarding the encoding and decoding of Reed-Muller
and (shortened) Reed-Solomon are provided in the NIST submission package of
HQC [1, Sections 2.5.2 to 2.5.7].

3 HLS Design Implementation of the HQC

In this section, we detail the High-level synthesis (HLS) and the Software (SW)
implementations which we optimize. We describe these synthesis and optimiza-
tions for HQC with parameters which target NIST Level 1 security, that is 128
bits of security, i.e., HQC-128.

3.1 HLS implementation: Basics

Traditional RTL development, using a HDL-based language, most commonly
Verilog or VHDL dates back a few decades providing a robust and concrete
methodology in which almost all (if not all) digital designs are conceived, writ-
ten (in code) and implemented. Clearly, these languages have been resilient and
have resisted much change (compared to their more dynamic counterparts in the
corresponding software world) and are the de-facto jargon of all digital designers
and engineers alike. The final implementation of code developed using these lan-
guages finds implementations in devices like FPGAs and ASICs, for prototyping
or production. The design cycle from concept to the final bit-stream (in case
of the FPGA) or the GDSII (in case of ASIC) often involves considerable time
and design effort1 and hence, correspondingly a higher time-to-market. Addi-
tionally, if there are changes required to be made on the design, post-routing
and post-implementation, it involves considerable debugging in case of FPGAs,
to understand the nuances of the proprietary synthesizer engines, whereas in
the case of ASICs, if these are detected post-fabrication, in involves a complete
reversal to the RTL design phase.

Although digital designers have ways to circumvent and prevent such catas-
trophic failures, software engineers, or hardware-software co-designers/system
architects, cannot simply afford the time to port their software code to a RTL
design based flow and debug all the way back. High-level synthesis offers a cheap,
quick and versatile design flow methodology wherein the software designer can
predict what their code would perform like in a hardware setting, what will be
the resources and performance numbers, acknowledging nevertheless, that hand-
crafted RTL could outperform, but at the cost of increased time and effort. We
now briefly review some terminologies specific to the HLS design methodology.
1 we note here that compared to FPGAs, ASICs have a much higher and longer tun-

around time.

5



1. Initiation-Interval, II, is defined as the minimum number of clock cycles
between any two successive operations. In the case of HLS, the initiation
interval is defined w.r.t the loop iterations, i.e., the number of clock cycles
between any given two loop iterations. In an ideal pipelined based flow, the
expected value of the II=1 [11].

2. Loop iteration, n, is defined as the number of counts an operation is repeated;
in a design implementing pipelines, the loop iteration is simply number of
times a pipeline is full when performing operations.

3. Iteration latency, til, the number of (minimum) clock cycles required to com-
plete one loop iteration (i.e, for n = 1)

4. Latency-Area product (LAP), the classical LAP metric, in the context of
HLS methodology [11], can be defined as

LAP = (tii × (n− 1) + til)×Area (4)

where (tii × (n− 1)+ til) represents the total latency and Area, the number
of Slices (or LUTs).

3.2 Methodology and Implementation

The NIST submission package for the HQC, available from the HQC designers’
web-page2, contains the reference, optimized and the hardware implementations
available for download. The reference implementation is the NIST KEM submit-
ted version which contains the source C-files from the authors’ of the algorithm.
The README file details the conversion requirements as per NIST FAQ #13
and describes the different variants of the submission, which we omit here for
brevity. Additionally, the submission provides the reference implementations for
all the 3 proposed versions of the HQC-algorithm, namely, hqc-128, hqc-192, and
hqc-256. During the build, the corresponding binaries are generated in the build
folder.

The optimized implementation consists of the AVX2 implementation and is
constant time (as per the latest submission specification) and avoids any secret-
key dependent memory access [1].

The hardware implementation consists of a HLS-compatible C implementa-
tion (although the authors’ explicitly specify the C++ extension) which can be
compiled standalone as a C code (with the same functionality as the golden
reference implementation) or translated into a VHDL implementation using the
HLS design flow methodology.

Additionally, we provide an area-friendly compact and a performance-
oriented perf version to allow for trade-offs between an area-footprint and
throughput.

In addition to the above, the vanilla (or the pure) version also adds an opti-
mized version, wherein we manually refactor some of the HLS-synthesized VHDL-
generated code to remove possible duplications of the modules (as in the case of
keccak which we explore in the next section).
2 See https://pqc-hqc.org/implementation.html.

6

https://pqc-hqc.org/implementation.html


Fig. 2: A highly simplified overview of the HLS flow. Adapted from [17]

Design flow methodology The methodology consists of converting a design,
written in a high-level programming language such as C/C++, to a hardware de-
scription language (HDL), such as Verilog or VHDL. HLS consists of 3 main steps:
Resource allocation (or sharing), Scheduling (using a scheduler) and binding [8].
As the name implies, Resource allocator allocates or allows sharing of multiple
resources (such as functional blocks like Block-RAMs, DSP units, LUTs, Regis-
ters etc.) between different code blocks. Scheduler is responsible for the actual
implementation of the target operation, corresponding to the operation defined
in the C-code. For instance, a multiplier operation between, any two variables,
x and y, and the corresponding product, z would entail, retrieval of x and y,
from their corresponding stored locations (which could a ROM, RAM, or simply
registers holding on to those values), determining their bit widths, looking for
optimizations (if could be applied such as using a DSP unit), computing the
product z, and finally writing back to the specified target location (in RAM)
or holding onto the value for subsequent computations. For all of these enumer-
ated operations, the scheduler determines (or rather estimates) the number of
clock cycles required and schedules the operation either in a single clock cycle
or over a span of multiple clock cycles. This then allows the scheduler to de-
termine if parallelism can be exploited to reduce the number of clock cycles, by
also computing the number of available resources at hand and checking for any
instructions that could (potentially) have some data-dependencies [8]. Binding
allows for the variable to be linked to a functional unit (storage or otherwise) to
allow for better optimization.

7



HLS implementation of HQC The HQC algorithm submission package con-
sists of 3 main algorithms, as defined in the preceding section, namely the key-
pair generation, the encapsulation function and the decapsulation functions. These
can be categorized according to the top level functions, first introduced in [17],
namely, the crypto_kem_keygen, crypto_kem_enc and crypto_kem_dec func-
tions. Each of these functions could then be further divided into smaller functions
based on their respective modules; for instance, crypto_kem_enc would consist
of the crypto_kem_pke_ind_cpa. As mentioned above, the IND-CPA scheme is
transformed into a secure CCA-2 KEM, thanks to the FO transform.

1. crypto_kem_keygen outputs the public key, pk and the secret key sk

2. crypto_kem_enc outputs the shared key K and the ciphertext ck taking the
public key pk as input

3. crypto_kem_dec outputs the key K, taking in the secret key sk and the
ciphertext ck as inputs

While HLS allows for rapid prototyping and outputs an HDL netlist, it must
be highlighted that the tool in itself is restricted in terms of the functionalities it
can implement; for instance, converting recrusive functions, unspecified length
of execution loops are currently not supported by the HLS synthesis engines,
integration of open source libraries, which software implementations rely upon,
for instance, during random number generation, present a scope for further op-
timizations and enhancing the synthesis capabilities of such tools [11].

4 Results and Comparisons

In this section, we present and describe our synthesis, implementation and sim-
ulation results for the High-level synthesis of the HQC algorithm. Although the
results described here are for HQC-128, we hypothesize similar trends for the
other variants, i.e., HQC-192 and HQC-256 and leave these implementations for
future works.

4.1 Target settings

The HLS has been synthesized and implemented for a target frequency of ≥
125 MHz (i.e., a clock period of 8ns). In principle, achieving higher target clock
frequencies (especially for performance oriented applications) is desirable, nev-
ertheless, our goal is to demonstrate the versatility of HLS in general and a
first-pass at the design, so as to benchmark the overall performance/area of a
design over a broad range of applications quickly, rather than elaborate into tim-
ing closure and optimizations issues (which require finer tuning of the directives
settings and the code itself). The target FPGA for these settings is the Xilinx
artix7 xc7a100t-ftg256-1.

8



4.2 Synthesis Results

In this section, we present our HLS results for the given target FPGA for each
module (i.e., individual functions). This allows for a granular understanding
of how the HLS engine is able to resource allocate and share similar blocks
across different operations. Note, for brevity, we present only the values for the
optimized perf version of our implementation.

1) crypto_kem_keygen: Table 1 presents the synthesis and implementation
results for the modules (functions) comprising the keypair generation module.
For the sake of brevity, we report the minimum values of the latency (both in
terms of the number of clock cycles required and the absolute time) to demon-
strate the competitiveness of the HLS based designs. Additionally, we provide
the post-implementation results to highlight the optimizations the tool (in this
case Vivado, and not the Vitis or HLS tool) is able to implement the HLS synthe-
sized netlist. We also compare our design with the state-of-art for the available
modules, for instance, the polynomial multiplier and adder module from [9] is
compared with our vector multiplier and adder module. Although handcrafted
RTL is superior in terms of the number of clock cycles (required for the com-
putation), nevertheless it provides a close enough approximation for a software
designer to optimise the design. We also note that the RTL design (from [9])
uses four BRAM modules compared to zero from the HLS design.

Table 1: Post-synthesis latency and area results for the individual keygen func-
tions.

Module (function) Latency BRAM DSP FF LUTClocks Time
seedexpander_init 51 0.337 µs 0 0 3 384 9 552
seedexpander_mult_ty 3048 20.117 µs 0 0 3 723 9 240
shake_prng 4 26.40 ns 0 0 3 380 9 055
shake_prng_init 70 0.462 µs 1 0 3 572 10 311
vect_mul_add 21418 0.141 ms 0 0 3 701 6 175
poly_mult & add module3 [9] 18976 83 µs 4 - 906 2137
vect_set_random_fixe 2573 16.982 µs 0 0 4 354 9 942
vect_set_random_fixe_1 2478 16.335 µs 0 0 72 225
fixed weight generator module [9] 3649 16.39 µs 2 0 124 316

2) crypto_kem_enc: Table 2 presents the synthesis and implementation re-
sults for the modules (functions) comprising the encapsulation module. Again,
for the sake of brevity, we report the minimum values of the latency (both in
terms of the number of clock cycles required and the absolute time) to demon-
strate the competitiveness of the HLS based designs like above. Additionally, we
omit the modules which are shared across the different functions for instance,
the shake_prng_init, the vect_set_random_fixe functions described above.

9



Table 2: Post-synthesis latency and area results for the individual enc functions.

Module (function) Latency BRAM DSP FF LUTClocks Time
reed_solomon_encode 803 5.3 µs 0 0 423 1 523
reed_muller_encode 6 441 42.511 µs 0 0 180 496
vect_add 2 211 14.593 µs 0 0 54 112
shake256_512_ds 238 1.57 µs 0 0 3 721 10 343
shake256 [7] 270 1.80 µs 0 0 270 2017
hqc_ciphertext_to_st 4 489 29.627 µs 0 0 177 483
hqc_public_key_from_s 559 3.689 µs 0 0 118 164

From Table 2, specifically for the SHAKE256 module, HLS outperforms the
handcrafted RTL design in terms of latency. Although, the reader may be
tempted to point to the larger usage area using HLS, which indeed can be further
optimized, the design from [7] uses a parallel slice based design, and the total
area is computed using the LUTs as both logic and memory, which amortizes the
total overall area cost.

3) crypto_kem_dec: Table 3 presents the synthesis and implementation re-
sults for the modules (functions) comprising the encapsulation module. Again,
for the sake of brevity, we report the minimum values of the latency (both in
terms of the number of clock cycles required and the absolute time) to demon-
strate the competitiveness of the HLS based designs like above. Additionally, we
omit the modules which are shared across the different functions for instance,
the shake_prng_init, the vect_set_random_fixe functions described above.

Table 3: Post-synthesis latency and area results for the individual dec functions.

Module (function) Latency BRAM DSP FF LUTClocks Time
reed_solomon_decode 12 774 0.11 ms 3 0 1 910 7 894
reed_muller_decode 55 845 0.482 ms 0 0 659 2260
vect_compare_64 18 0.115 µs 0 0 13 100
vect_compare 2 210 19.070 µs 0 0 19 143
hqc_ciphertext_from_s 4 465 38.528 µs 0 0 152 413
hqc_public_key_from_s 559 4.824 µs 0 0 118 164

4.3 Modular comparisons among different versions

To the best of our knowledge, this is the first work which targets a high-level
synthesis hardware implementation of the HQC algorithm, although a very recent
work which targets a complete handcrafted Hardware implementation of HQC
is available from [9].

10



In this subsection, we provide a detailed breakdown of the hardware compo-
nents utilized for all the 3 functions, for the sake of completeness of our results,
in Table 4.

Table 4: Implementation comparisons of HQC-128 across the different imple-
mentation variants with state-of-the-art.

Target Alg. Design Freq Slices LUT FF BRAM Latency
(MHz) Clocks ms

keygen
pure Perf 153 8 359 24 746 21 746 7 40 427 0.27

Comp 132 2 470 7 907 9 544 7 626 589 5.01

optimized Perf 150 3 921 11 484 8 798 6 40 427 0.27
Comp 130 1 541 4 676 9 544 6 626 589 5.01

encaps
pure Perf 148 9 955 29 496 26 333 11 89 131 0.59

HLS Comp 131 3 075 9 544 9 544 11 1 482 332 11.85
(this work) optimized Perf 152 5 575 16 487 13 390 10 89 110 0.59

Comp 129 2 122 9 544 9 544 1 482 332 11.85

decaps
pure Perf 150 8 434 24 898 21 680 18 193 004 1.27

Comp 129 3 168 9 544 9 544 21 2 152 313 17.21

optimized Perf 152 6 223 18 739 15 243 18 193 082 1.27
Comp 130 2 678 9 544 9 544 21 2 152 313 17.21

keygen single clock - 164 - 2 350 1 106 9.5 23 480 0.14
dual clock - 242 - 3 094 879 14.5 27 013 0.12

RTL encaps single clock - 164 - 2 725 2 060 15.5 52 757 0.32
[9] dual clock - 218 - 2 609 2 070 15.5 45 739 0.30

decaps single clock - 164 - 8 426 6 642 36 78 233 0.48
dual clock - 204 - 8 434 6 652 36 71 199 0.43

Figure 3 provides a comparison of the area (measured in the number of LUTs)
between the different variants the HLS HQC-128 design offers. Clearly,

– The area utilization of the perf version is ×2 - ×3 the comp version, which
is expected. This is further elaborated in the difference (both in terms of
absolute latency (measured in ms and the number of clock cycles) and the
frequency of operation, as detailed in Table 4.

– The optimized version clearly outperforms the pure or the baseline version,
for both the perf and comp variants, across all the functional modules, i.e.,
keygen, encapsulation and decapsulation.

– Interestingly, the gain (in terms of area, higher is better) is better for the op-
timized version across the perf and comp variants compared to the baseline
implementation. This demonstrates that irrespective of the architecture de-
ployed, (i.e., round based or performance oriented), HLS is able to optimize
the overall design in a better fashion.

11



0 0.2 0.4 0.6 0.8 1

·104

Keygen-Pure

Keygen-Opt

Encaps-Pure

Encaps-Opt

Decaps-Pure

Decaps-Opt

Area Consumption (LUTs)

performance
compact

Fig. 3: Area (measured in LUTs) optimizations between perf and compact for the
pure (baseline) and optimized versions.

4.4 Comparisons with Software Implementations

In Table 5 we provide results for our proposed HLS designs of HQC-128 com-
pared to those in software, taken from SUPERCOP [18]. For variety, the table
shows results from a variety of different CPU targets, and thus provide an overall
indicator of how performant the proposed implementations are in comparison.
Our performance enhanced design makes significant savings in clock cycles com-
pared to high-end CPUs, with savings between 4-7x on average. Our compact
enhanced design has at least a 2x saving in clock cycles compared to the low-end
CPU results. Overall we see that HLS designs are a viable option for implement-
ing HQC, for both high-end and low-end devices and applications.

Table 5: Benchmarking results of HQC-128, comparing those in software, taken
from SUPERCOP-20220506 (using 50% median values), to our results for HLS.

Platform Clock Cycles
Keygen Encaps Decaps

Intel Xeon Skylake (2015) 202 120 351 273 645 728
AMD Ryzen 7 (2017) 307 486 661 913 1 259 627
ARM Cortex A53 (2018) 1 509 404 3 029 021 5 179 020
Artix 7 FPGA (perf) 40 427 89 110 193 082
Artix 7 FPGA (comp) 626 589 1 482 332 2 152 313

12



4.5 Comparison with state-of-art Hardware Implementations

We now compare our HLS HQC implementations with the available state-of-
the-art handcrafted RTL implementations in Table 6 targeting code-based post-
quantum implementations, to allow for a fairer and sensible comparison. Clearly,
we note

1. HLS-HQC-128 version outperforms all of the handcrafted RTL implementa-
tions, most notably in terms of the area optimizations (i.e., LUTs). Notably,
HLS has a lower BRAM footprint compared to most handcrafted RTL im-
plementations.

2. In terms of the frequency of operation, HLS (both comp and perf) variants
offer a comparable frequency of operation. We note that this is limited to the
loop unrolling, which is typically preferred in HLS design, and can impact
frequency. Additionally, given the overall optimizations the tool performs,
trying to limit the overall area, could also result in degradation of the fre-
quency.

3. The overall latency (in terms of the absolute value in ms, for the perf ver-
sion is comparable to the handcrafted RTL [9] (we do not claim that HLS
outperforms them) but rather point out that such values, if obtained very
earlier in the design cycle, allow for a better optimization of the existing
code. A similar argument can be made for the clock cycles required for each
operation. Nevertheless, we clearly see our HLS based design outperforms
the existing BIKE (level 1) and classic McEliece and the SIKE RTL-based
implementations.

Table 6: FPGA design comparisons of post-quantum code-based KEMs at NIST
L1 security level across implementation variants lightweight (LW) and high-
speed (HS), for our works this corresponds to comp and perf, respectively. For
HQC-128-RTL we provide single- (SC) and dual-clock (DC).

PQC Scheme Imp. LUT FF BRAM DSP Freq Latency (cc/106, ms)
(MHz) keygen encaps decaps

HLS-HQC-128 LW 8 876 6 405 28 0 132 0.62 5.01 1.48 11.85 2.15 17.21
(this work) HS 20 169 16 374 25 0 148 0.04 0.27 0.09 0.59 0.19 1.27
Classic LW 23 890 45 658 139 5 112 8.88 79.20 0.13 1.10 0.17 1.50
McEliece [7] HS 40 018 61 881 178 4 113 0.97 8.60 0.03 0.30 0.10 0.90

BIKE-L1 [16] LW 12 868 5 354 17 7 121 2.67 21.90 0.20 1.20 1.62 13.30
HS 52 967 7 035 49 13 96 0.26 2.60 0.01 0.10 0.19 1.90

HQC-128-RTL [9] SC 16 320 10 044 61 0 164 0.02 0.14 0.05 0.32 0.08 0.48
DC 16 956 9 837 66 0 204 0.03 0.12 0.06 0.30 0.08 0.43

SIKE [14] LW 11 943 7 202 21 57 145 - 25.60 - 27.20 - 15.10
HS 22 673 11 661 37 162 109 - 15.30 - 16.30 - 9.10

13



5 Conclusions

Given the interesting results HLS has generated, the importance of HLS in rapid
prototyping and in HW-SW co-designs cannot be understated, although the au-
thors note that HLS cannot be a (complete) alternative to RTL developed using
handwritten code. Rather, we emphasize that for certain designs where a quick
understanding of the bottleneck parts of a larger algorithm need to be identified
and quickly reworked upon, then HLS is the perfect candidate for such. We would
also like to extend our work to the hqc-192 and hqc-256 versions, in addition to
HLS implementations of other code-based cryptographic schemes as open future
works. Additionally, this paves the way for further design automation in hard-
ware based designs and allows for designing better and efficient implementations
with the minimal effort and time [11].

References

[1] Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Bos, J.,
Deneuville, J.C., Dion, A., Gaborit, P., Lacan, J., Persichetti, E., Robert,
J.M., Véron, P., Zémor, G.: HQC (October 2020, updated 06/06/2021)
NIST Round 3 submission for Post-Quantum Cryptography. 3, 4, 5, 6

[2] Aguilar Melchor, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Ef-
ficient encryption from random quasi-cyclic codes. CoRR abs/1612.05572
(2016) 2

[3] Aguilar Melchor, C., Blazy, O., Deneuville, J., Gaborit, P., Zémor, G.: Ef-
ficient encryption from random quasi-cyclic codes. IEEE Trans. Inform.
Theory 64(5) (2018) 3927–3943 2, 3, 4

[4] Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger,
J., Liu, Y.K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A.,
Smith-Tone, D.: NIST IR 8413: Status Report on the Third Round of the
NIST Post-Quantum Cryptography Standardization Process. (2022) 2

[5] Alekhnovich, M.: More on average case vs approximation complexity. In:
44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., IEEE (2003) 298–307 2

[6] Aragon, N., Gaborit, P., Zémor, G.: Hqc-rmrs, an instantiation of the hqc
encryption framework with a more efficient auxiliary error-correcting code
(2020) 3

[7] Chen, P., Chou, T., Deshpande, S., Lahr, N., Niederhagen, R., Szefer,
J., Wang, W.: Complete and improved FPGA implementation of classic
mceliece. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(3) (2022)
71–113 10, 13

[8] Coussy, P., Gajski, D.D., Meredith, M., Takach, A.: An introduction to
high-level synthesis. IEEE Design & Test of Computers 26(4) (2009) 8–17
7

[9] Deshpande, S., Nawan, M., Nawaz, K., Szefer, J., Xu, C.: Towards a fast and
efficient hardware implementation of hqc. Cryptology ePrint Archive, Paper
2022/1183 (2022) https://eprint.iacr.org/2022/1183. 9, 10, 11, 13

14

https://eprint.iacr.org/2022/1183


[10] Gaborit, P., Deneuville, J.C.: Code-based cryptography. In: Concise Ency-
clopedia of Coding Theory. Chapman and Hall/CRC (2021) 799–822 3

[11] Guerrieri, A., Marques, G.D.S., Regazzoni, F., Upegui, A.: Design Explo-
ration and Code Optimizations for FPGA-Based Post-Quantum Cryptog-
raphy using High-Level Synthesis. (3 2022) 2, 6, 8, 14

[12] Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Theory of Cryptography Conference, Springer
(2017) 341–371 3

[13] Huffman, W.C., Kim, J.L., Solé, P.: Basics of coding theory. In: Concise
Encyclopedia of Coding Theory. Chapman and Hall/CRC (2021) 3–44 3

[14] Massolino, P.M.C., Longa, P., Renes, J., Batina, L.: A compact and scal-
able hardware/software co-design of SIKE. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(2) (2020) 245–271 13

[15] NIST: Submission requirements and evaluation criteria for the
post-quantum cryptography standardization process (2016) https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf. 1

[16] Richter-Brockmann, J., Mono, J., Güneysu, T.: Folding BIKE: scalable
hardware implementation for reconfigurable devices. IEEE Trans. Comput-
ers 71(5) (2022) 1204–1215 13

[17] Soni, D., Basu, K., Nabeel, M., Karri, R.: A hardware evaluation study
of nist post-quantum cryptographic signature schemes. In: Second PQC
Standardization Conference, NIST (2019) 7, 8

[18] SUPERCOP: System for unified performance evaluation related to crypto-
graphic operations and primitives. https://bench.cr.yp.to/supercop.
html 12

15

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html

	Towards Automating Cryptographic Hardware Implementations: a Case Study of HQC

