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Equation Generator for Equation-of-Motion Coupled Cluster Assisted by
Computer Algebra System

Raúl Quintero-Monsebaiz1, a) and Pierre-François Loos1, b)

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

We present an equation generator algorithm that utilizes second-quantized operators in normal order with
respect to a correlated or non-correlated reference and the corresponding Wick theorem. The algorithm pro-
posed here, written with mathematica, enables the generation of non-redundant strings of second-quantized
operators that, after classification, are directly assigned to intermediate quantities used to construct the
coupled-cluster (CC) effective Hamiltonian. We demonstrate the capabilities of the algorithm by comput-
ing the CC amplitude equations and various blocks of the equation-of-motion CC effective Hamiltonian. A
comprehensive description of this four-step algorithm is provided alongside concrete examples.

I. INTRODUCTION

The increase in computational capabilities has led us to explore more complex wave function ansätze. As these
ansätze become more complicated, deriving the corresponding algebraic equations also becomes more tedious, time-
consuming, and, more importantly, subject to human errors. An important feature of many-body quantum chemistry
methods is that most of them can be written in the second quantization formalism based on established commu-
tation or anti-commutation relations between second-quantized operators.1 In the second quantization formalism,
first introduced in quantum field theory, the wave function and the operators are expressed as products of creation
and annihilation operators, also known as strings. These strings can be evaluated using either commutation rules,
diagrammatic techniques,2 or Wick’s theorem,3 the latter being more efficient. These rules can then be programmed
with the aid of symbolic algebra software, allowing us to write chains of products of these operators as tensors that
can be efficiently evaluated by modern tensor contraction tools.4–10

In the context of coupled-cluster (CC) methods,2,11–14 various equation generators have emerged to automate
the process of deriving and implementing the corresponding equations, replacing the manual derivation and error-
prone implementation in electronic structure software. In their pioneering work, Janssen and Schaefer generated and
automatically implemented the open-shell CC equations by utilizing second-quantized strings.15 In a similar vein,
Li and Paldus automated the implementation of spin-adapted open-shell CC equations, with the added benefit of
utilizing the unitary group formalism that allows for the efficient handling of low-spin states.16 In 2001, Kállay and
Surján proposed a general-order CC code by combining diagrammatic many-body perturbation theory and string-
based configuration interaction.17 In such a way, the CC equations were written in terms of diagrams and stored as
strings. This technique was then generalized to state-specific multireference CC,18 excited states computed within
the linear response formalism,19 and approximate treatment of higher excitations.20

Adopting the same design philosophy as Janssen and Schaefer, Hirata implemented the Tensor Contraction Engine
(tce)21–24 that performs the manipulation of second-quantized operators and the generation of the computer code.
The main distinction is that tce takes advantage of spin, spatial, and index permutation symmetries at every stage of
the calculations, reducing the computational cost and storage requirement. Later on, Hirata also developed an equation
generator for equation-of-motion (EOM) CC25–31 for neutral excitations (EE-EOM-CC),25–28 ionization potentials
(IP-EOM-CC),32–36 and electron affinities (EA-EOM-CC).11,37–39 Hanrath et al. proposed an improved version of
tce by implementing the matrix-matrix multiplication-based antisymmetric tensor contraction for general CC.40,41
Meanwhile, Kong et al. developed the EOM version of state-specific multireference CC together with the automated
implementation of such complicated equations.42 This was later generalized to arbitrary order.43–46 Likewise, Shiozaki
implemented explicitly-correlated versions of CC in a similar way.47,48

More recently appeared (i) the Symbolic Manipulation Interpreter for Theoretical cHemistry (smith3)49 for com-
plete active space methods that implies partial contractions of second-quantized operators, (ii) p†q developed by
Rubin and DePrince III50 that combines C++ and python for proof-of-concept implementation of many-body quan-
tum chemistry methods, and (iii) wick&d51 that presents a strategy to evaluate Mukherjee’s52 and Kutzelnigg’s53
version of Wick’s theorem in the case of an arbitrary number of orbital subspaces. Each of the above programs is a
clear example of the progress that has been achieved in the last three decades with respect to equation generators in
quantum chemistry.
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The aim of the present paper is to describe a four-step algorithm based on Wick’s theorem to obtain the working
equations of EE-EOM-CC, IP-EOM-CC, EA-EOM-CC, as well as other quantities of interest. In particular, the
direct way of obtaining intermediates facilitates the comparison between many-body perturbation theory and CC
methods.54–58 The present algorithm is implemented with the computer algebra system, mathematica,59 in order to
be able to generate and manipulate the equations in a user-friendly way.

This article is organized as follows. Section II gathers all theoretical details. In particular, Sec. II A describes
Wick’s theorem and the concept of normal ordering. Then, in Secs. II B and II C, we report the main theoretical
details behind the CC and EOM-CC equations, respectively. Finally, in Sec. III, we provide a detailed description of
our algorithm. Our conclusions are drawn in Sec. IV.

II. THEORY

A. Normal ordering and Wick’s theorem

Our goal is to derive automatically the EOM-CC working equations which take the form of a matrix eigenvalue
problem. Each element of the EOM-CC effective Hamiltonian is an expectation value formed by products of operators.
(We shall discuss this point in more detail later in this section). An efficient way to evaluate these products of operators
is via their second-quantized form.60–62

As a starting point, let us introduce the reference state which is represented as a single determinant

|0⟩ = |ijk · · ·⟩ = î†ĵ†k̂† · · · |⟩ . (1)

obtained by acting on the physical (or true) vacuum |⟩ with creation operators î†, ĵ†, k̂†, . . .. This reference state |0⟩,
typically taken as the Hartree-Fock (HF) ground-state determinant, can be used as an alternative vacuum, named
Fermi vacuum.2,14 One property of the Fermi vacuum is that one can redefine the creation operators relative to it as
particles (â†, b̂†, ĉ†, . . .) and holes (̂i, ĵ, k̂, . . .).63,64 The particle creation operators create particle states above the
Fermi level while the hole creation operators remove particle states below the Fermi level (particle-hole formalism).
Because one cannot annihilate a hole or remove a particle in the Fermi vacuum, we have î† |0⟩ = 0 and â |0⟩ = 0.

It is also possible to define “neutral” excited determinants by operating the same number of particle and hole
operators onto the Fermi vacuum:

â†b̂†ĉ† · · · k̂ĵî |0⟩ = |Φabc···
ijk···⟩ . (2)

In such a way, one can also define “charged” excited determinants where the number of particles and holes are different.
For example, ionized and electron-attached determinants can be represented, respectively, as follows

â†ĵ î |0⟩ = |Φa
ij⟩ , â†b̂†î |0⟩ = |Φab

i ⟩ . (3)

To preserve the antisymmetry of the electronic wave function, the second-quantized fermionic operators fulfill
anti-commutation rules

p̂q̂ + q̂p̂ = 0, p̂†q̂† + q̂†p̂† = 0, p̂†q̂ + q̂†p̂ = δpq, (4)

where p̂, q̂, r̂, . . . are arbitrary operators that can be either hole or particle operators and δpq is a Kronecker delta.
Besides the anti-commutation rules defined in Eq. (4), there is another powerful “bookkeeping system” called normal

ordering,65 that consists of placing all the creation operators to the left and all annihilation operators to the right.
Therefore, applying the Fermi vacuum on a normal-ordered string yield zero. At this stage, it is convenient to introduce
a more compact notation to take full advantage of this bookkeeping system. To do so, we define the contraction of
arbitrary operators

p̂†q̂ = p̂†q̂ − {p̂†q̂} = p̂†q̂ + q̂p̂† = δpq, (5)

where {p̂†q̂} means that the product p̂†q̂ is normal ordered with respect to the Fermi vacuum. By definition, the only
non-zero contractions in Eq. (5) are

âb̂† = δab, î†ĵ = δij . (6)

When a product of second-quantized operators is normal-ordered, we name it a normal product.
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We are now in a position to introduce the generalized Wick theorem stating that a product of creation and annihi-
lation operators is equal to their normal product plus the sum of all possible contractions.2 For example, applying this
theorem to a given string of normal-ordered operators (which is typically what one has to do to derive the EOM-CC
equations), one gets

{Â}{B̂}{Ĉ} · · · = {ÂB̂Ĉ · · ·}+
∑

singles

{ÂB̂Ĉ · · · · · ·}+
∑

doubles

{ÂB̂Ĉ · · · · · ·}+ · · ·+
∑

fully contracted

{ÂB̂Ĉ · · · · · ·}, (7)

where the first term on the right-hand side is the normal product, the second term contains all the single contractions,
the third contains all double contractions, and the last sum gathers the so-called fully contracted terms. The key
feature of this theorem is that, if we evaluate the Fermi vacuum expectation value associated with Eq. (7), the only
non-zero terms correspond to the fully contracted ones, i.e.,

⟨0|{Â}{B̂}{Ĉ} · · ·|0⟩ =
∑

fully contracted

⟨0|{ÂB̂Ĉ · · · · · ·}|0⟩ (8)

To have a consistent nomenclature, the products of second-quantized operators {Â}{B̂}{Ĉ} are called strings, and
each operator {Â} is called a sub-string.

B. Coupled-cluster equations

To derive the CC equations, one first starts with the definition of the CC wave function which is an exponential
parametrization applied to a reference determinant66,67

|Ψ(0)⟩ = eT̂ |0⟩ , (9)

where Ψ(0) is the CC ground-state wave function and

T̂ =

N∑

n=1

T̂n (10)

is the cluster operator with

T̂n =
1

(n!)2

∑

ijk···

∑

abc···
tabc···ijk···{â†îb̂†ĵĉ†k̂ · · ·}, (11)

where tabc···ijk··· are the antisymmetric cluster amplitudes and the indices i, j, k, . . . indicate occupied spinorbitals in
the reference configuration, while a, b, c, . . . are unoccupied spinorbitals. In general, T̂n produces n-fold excited
N -electron determinants of the form |Φabc···

ijk···⟩ (with n ≤ N). It is worth mentioning here that the excitation operators
do commute with each other, i.e., [T̂n, T̂m] = 0.

The electronic Schrödinger equation associated with the CC wave function is

Ĥ |Ψ(0)⟩ = E(0) |Ψ(0)⟩ , (12)

where E(0) is the CC ground-state electronic energy, and Ĥ is the electronic Hamiltonian, which can be expressed in
second-quantized form as follows:

Ĥ =
∑

pq

hp
q p̂

†q̂ +
1

4

∑

pqrs

vpqrs p̂
†q̂†ŝr̂, (13)

where the indices p, q, r, and s indicate arbitrary (i.e., occupied or virtual) spinorbitals. The matrix element hp
q is

the sum of the kinetic and nuclear attraction components. The electronic repulsion is accounted for by the (antisym-
metrized) two-electron integrals vpqrs . Because one is usually interested in the correlated part of the Hamiltonian, it is
common practice to divide it as

Ĥ = ĤN + ⟨0|Ĥ|0⟩ , (14)



4

where the first term

ĤN = F̂N + V̂N =
∑

pq

fp
q {p̂†q̂}+

1

4

∑

pqrs

vpqrs{p̂†q̂†ŝr̂} (15)

is the normal-ordered Hamiltonian (where fp
q is an element of the Fock matrix) that corresponds to fluctuations

(i.e., correlation) with respect to the second term that represents the reference energy E0 = ⟨0| Ĥ |0⟩. It is worth
emphasizing that ĤN do not commute with T̂n, i.e., [T̂n, ĤN] ̸= 0.

Thanks to the exponential ansatz of the CC wave function, Eq. (9), and the introduction of the following CC
effective Hamiltonian via a similarity transformation

H̄st = e−T̂ ĤNe
T̂ , (16)

where the superindex “st” stands for “similarity-transformed”. Then, one can recast the Schrödinger equation as

H̄st |0⟩ = ∆E(0) |0⟩ . (17)

where ∆E(0) = E(0) − E0 is the CC ground-state correlation energy obtained via projection

⟨0|H̄st|0⟩ = ∆E(0), (18)

while

⟨Φabc···
ijk··· |H̄|0⟩ = 0 (19)

are the so-called amplitude equations, a set of non-linear equations where the unknowns are the cluster amplitudes
tabc···ijk··· .

To evaluate efficiently Eq. (19), one usually relies on the Backer-Campbell-Hausdorff expansion68,69 of the similarity-
transformed Hamiltonian,

H̄st = ĤN +
[
ĤN, T̂

]
+

1

2!

[[
ĤN, T̂

]
, T̂
]
+

1

3!

[[[
ĤN, T̂

]
, T̂
]
, T̂
]
+

1

4!

[[[[
ĤN, T̂

]
, T̂
]
, T̂
]
, T̂
]
, (20)

a series of nested commutators between ĤN and T̂ that naturally terminates at the four-fold commutator thanks to
the two-body nature of the electronic Hamiltonian.

Then, using Wick’s theorem [see Eq. (7)], one can establish that the non-zero terms in Eq. (20) involve ĤN as the
left-most operator contracted with at most four T̂ operators, i.e.,

H̄st = ĤN + ĤNT̂ +
1

2
ĤNT̂ T̂ +

1

3!
ĤNT̂ T̂ T̂ +

1

4!
ĤNT̂ T̂ T̂ T̂ , (21)

where the multi-leg symbol indicates that ĤN must be contracted at least once with each T̂ . Hence, ĤN is said to be

connected as it does not include disconnected terms of the form ĤNT̂ T̂ T̂ .
If one introduces the right-hand side of Eq. (21) in Eqs. (18) and (19), one gets

〈
0
∣∣∣
(
ĤNe

T̂
)
C

∣∣∣0
〉
= ∆E(0), (22a)

〈
Φabc···

ijk···

∣∣∣
(
ĤNe

T̂
)
C

∣∣∣0
〉
= 0. (22b)

where the subindex C stands for connected. Since one only deals with the connected terms, the algebraic form of
Eqs. (22a) and (22b) is simpler than Eqs. (18) and (19).

C. Equation-of-motion coupled-cluster equations

Having explained how to derive the CC equations, next, we shift our attention to the EOM-CC equations.25,29–31
As a starting point, let us consider the Schrödinger equation for a target excited state Ψ(k), i.e.,

ĤN |Ψ(k)⟩ = ∆E(k) |Ψ(k)⟩ , (23)
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with ∆E(k) = E(k)−E0. One way to access this target state is by transforming the initial state described by Eq. (17)
via an excitation operator of the form

R̂(k) |Ψ(0)⟩ = |Ψ(k)⟩ (24)

If one wants to access neutral excited states, one must rely on the excitation energy (EE) operator

R̂(k) = 1̂ + R̂(k)
1 + R̂(k)

2 + · · · (25)

with

R̂(k)
1 =

∑

i

∑

a

rai {â†î}, (26a)

R̂(k)
2 =

1

4

∑

ij

∑

ab

rabij {â†îb̂†ĵ}, (26b)

...

where R̂(k)
n is an excitation operator of degree n for the state k associated with the EOM-CC amplitudes rab···ij··· . (Here,

for the sake of simplicity, we have omitted the k-dependence of the amplitudes.)
After several transformations, the Schrödinger equation for the target excited state [see Eq. (23)] can be recast as

[
H̄st, R̂(k)

]
|0⟩ = ΩkR̂(k) |0⟩ . (27)

where Ωk = E(k) − E(0) is the excitation energy associated with the kth excited state. Defining the normal-ordered
similarity-transformed Hamiltonian, H̄st

N = H̄ − E(0), the commutator in Eq. (27) can be further simplified as
(
H̄st

N R̂(k)
)
C
|0⟩ = ΩkR̂(k) |0⟩ . (28)

The excitation energies are then directly computed by projecting Eq. (28) in a determinant basis truncated at a given
excitation degree, which is equivalent to truncate R̂(k).

Introducing the simplified notation, |Φa
i ⟩ ≡ |S⟩,

∣∣Φab
ij

〉
≡ |D⟩, . . ., the EOM-CC linear eigenvalue problem has the

following form:

H̄rk = Ωkrk ⇒



⟨S| H̄st

N |S⟩ ⟨S| H̄st
N |D⟩ · · ·

⟨D| H̄st
N |S⟩ ⟨D| H̄st

N |D⟩ · · ·
...

...
. . .







rai
rabij
...


 = Ωk




rai
rabij
...


 . (29)

Due to the non-hermitian nature of this eigenvalue problem, each block of the matrix has to be computed.
Following the same procedure, one can also obtain the EOM-CC equations for the ionized and electron-attached

states, just by changing the definition of the operator R̂(k) in Eq. (26). For example, removing one or two particles,
one gets IP-EOM-CC and DIP-EOM-CC,70–74 respectively, while removing one or two holes yields EA-EOM-CC and
DEA-EOM-CC,73,74 respectively.

D. Many-body Hamiltonian

When one computes the expectation value associated with a given block of the EOM-CC matrix H̄ [see Eq. (29)],
redundant terms are generated. One way to avoid redundancies is to rely on the many-body representation of the
EOM-CC effective Hamiltonian75–78

H̄mb
N =

∑

pq

χp
q{p̂†q̂}+

∑

pqrs

χpq
rs{p̂†q̂†ŝr̂}+ χpqr

stu{p̂†q̂†r̂†ût̂ŝ}+ · · · , (30)

where χp
q , χpq

rs , χ
pqr
stu are one-, two-, and three-body terms respectively. The superindex “mb” stands for “many-body”.

Note that H̄mb
N and H̄st

N are exactly the same quantity; the labels “mb” and “st” are here to indicate the type of
expansion.
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The many-body terms {χpqr···
stu···} are usually represented through diagrammatic techniques.2 In the present work

though, we are interested in describing them within the second quantization formalism. To achieve this, we take as
an example the block ⟨D| H̄mb

N |S⟩ and the many-body Hamiltonian defined in Eq. (30) to obtain

〈
Φab

ij

∣∣ H̄mb
N |Φc

k⟩ =
∑

pq

χp
q ⟨0| {̂i†ĵ†b̂â}{p̂†q̂}{ĉ†k̂} |0⟩+

∑

pqrs

χpq
rs ⟨0| {̂i†ĵ†b̂â}{p̂†q̂†ŝr̂}{ĉ†k̂} |0⟩

+
∑

pqrstu

χpqr
stu ⟨0| {̂i†ĵ†b̂â}{p̂†q̂†r̂†ût̂ŝ}{ĉ†k̂} |0⟩ . (31)

Equation (31) effectively terminates at the three-body level since higher-order terms produce partial contractions
which are zero with respect to the Fermi vacuum.

By applying Wick’s theorem to Eq. (31) and taking advantage of the antisymmetric permutation of the many-body
terms, one gets

〈
Φab

ij

∣∣H̄mb
N
∣∣Φc

k

〉
= δjkδbcχ

a
i − δikδbcχ

a
j − δjkδacχ

b
i + δjkδacχ

b
j − δbcχ

ak
ij − δjkχ

ab
ci + δikχ

ab
cj + δacχ

bk
ij + χabk

ijc . (32)

Since H̄mb
N = H̄st

N , the block ⟨D| H̄mb
N |S⟩ can be naturally written in terms of T̂ , F̂N, and V̂N. To illustrate this, we

consider the general many-body term

χab···kl···
ij···cd··· =

〈
Φab···

ij···
∣∣ H̄st

N
∣∣Φcd···

kl···
〉
iC

, (33)

where the subscript iC represents “internal contractions”, i.e., contractions occurring exclusively between
〈
Φab···

ij···
∣∣ and

H̄N, as well as H̄N and
∣∣Φcd···

kl···
〉
. Notably, contractions between

〈
Φab···

ij···
∣∣ and

∣∣Φcd···
kl···
〉

are not allowed.
Taking into account Eq. (33) and the non-zero matrix elements of χak

ij , one gets

χak
ij =

〈
Φa

ij

∣∣∣∣
(
V̂N + T̂1V̂N + F̂NT̂2 + V̂NT̂2 +

1

2!
V̂NT̂

2
1 + V̂NT̂1T̂2 +

1

3!
V̂NT̂

3
1

)

C

∣∣∣∣Φk

〉

iC

. (34)

Applying the same procedure for χab
ci and χabk

ijc , we obtain

χab
ic =

〈
Φab

i

∣∣∣∣
(
V̂N + T̂1V̂N + F̂NT̂2 + V̂NT̂2 +

1

2!
V̂NT̂

2
1 + V̂NT̂1T̂2 +

1

3!
V̂NT̂

3
1

)

C

∣∣∣∣Φc

〉

iC

, (35)

χabk
ijc =

〈
Φab

ij

∣∣∣
(
V̂NT̂2

)
C

∣∣∣Φc
k

〉
iC

. (36)

The one-body terms in Eq. (32) are defined as follows

χa
i =

〈
Φa

i

∣∣∣∣∣

[
ĤN

(
1 + T̂1 + T̂2 +

T̂ 2
1

2
+ T̂1T̂2 +

T̂ 3
1

3!

)]

C

∣∣∣∣∣0
〉
, (37)

which is identical to the CCS amplitude equations. Consequently, all the one-body terms are zero in Eq. (32). This
is also true for the many-body terms χab

ij for CCSD, χabc
ijk for CCSDT, and so on.

Setting the one-body terms equal to zero in Eq. (37), we have

〈
Φab

ij

∣∣ H̄mb
N |Φc

k⟩ = −δbcχ
ak
ij − δjkχ

ab
ci + δikχ

ab
cj + δacχ

bk
ij + χabk

ijc . (38)

It is possible to obtain the rest of the many-body terms in Eq. (38) by substituting the indices of χab
ij , χab

ci , and χabk
ijc .

These replacements are restricted to indices of the same category: hole-creation (i, j), particle-annihilation (a, b),
hole-annihilation (k), and particle-creation (c).

To obtain the block
〈
Φab

ij

∣∣ H̄mb
N |Φc

k⟩ in a compact and non-redundant form, we rely on Eqs. (34), (35), and (36) to
define the many-body terms and Eq. (38) to define the blocks in terms of these many-body terms. Finally, to generate
the entire eigenvalue equations for EE-EOM-CCSD, one must repeat the same procedure for the blocks ⟨Φa

i | H̄st
N |Φc

k⟩,
⟨Φa

i | H̄st
N

∣∣Φcd
kl

〉
,
〈
Φab

ij

∣∣ H̄st
N

∣∣Φcd
kl

〉
, and then remove the redundant many-body terms.
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TABLE I. List of variables used in the EOM-CC equation generator program.

Description Mathematical symbol mathematica notation
Elements of the Fock matrix fp

q F[[p,q]]
Two-electron repulsion integrals vpqrs ERI[[p,q,r,s]]
Amplitudes of single excitations tai t1[[i,a]]
Amplitudes of double excitations tabij t2[[i,j,a,b]]
Amplitudes of triple excitations tabcijk t3[[i,j,k,a,b,c]]
Amplitudes of quadruple excitations tabcdijkl t4[[i,j,k,l,a,b,c,d]]
One-body terms χp

q χ1[[p,q]]
Two-body terms χpq

rs χ2[[p,q,r,s]]
Three-body terms χpqr

stu χ3[[p,q,r,s,t,u]]
Four-body terms χpqrs

tuvw χ4[[p,q,r,s,t,u,v,w]]

III. EOM-CC EQUATION GENERATOR

In this section, we describe the algorithm that we have written with mathematica to automatically derive the
working equations of EOM-CC. Although the program is not optimized for efficiency, our goal is to obtain the working
equations in terms of the many-body terms by using straightforward input quantities. First of all, we adapt the index
notations in order to have more suitable and general notations to obtain the EOM-CC equations up to fourth order.
For the operators belonging to the bra and the ket, instead of using â†, b̂†, . . ., î, ĵ, . . ., we use p̂†1, p̂

†
2, . . ., ĥ1, ĥ2, . . ..

For the particles/holes that play the role of dummy indices in the cluster operator T̂ , instead of using ê†, f̂†, . . ., m̂,
n̂, . . ., we use ô†1, ô

†
2, . . ., v̂1, v̂2, . . ., where the notation of o and v refers to occupied and virtual, respectively. Finally,

for the arbitrary indexes that can be either particle or hole [like the Hamiltonian in Eq. (14)], we switch from p̂†, q̂†,
r̂, ŝ to q̂†1, q̂

†
2, q̂3, q̂4.

Thanks to this change in notation, we can now describe the four-step algorithm that we use to derive the EOM-CC
equations. Each step of the algorithm is written as a mathematica module. These modules are gathered within a
main module called eomccgen. Variables tailored-made for mathematica are summarized in Table I alongside their
description and corresponding mathematical expression.

The input quantities for eomccgen are the list of (neutral) excitation operators, named ClusterOperator (that
determine the similarity-transform Hamiltonian) and the list of EOM operators, named EOMOperator. For example,
the input to obtain the EE-EOM-CCSDT equations is

ClusterOperator = {{"1h1p"},{"2h2p"},{"3h3p"}}
EOMOperator = {{"1h1p"},{"2h2p"},{"3h3p"}}

If one wants to get IP-EOM-CCSD, the input is

ClusterOperator = {{"1h1p"},{"2h2p"}}
EOMOperator = {{"1h0p"},{"2h1p"}}}

To obtain DEA-EOM-CCSD, the second line has to be changed as

EOMOperator = {{"0h2p"},{"1h3p"}}}

It is also possible to have different numbers of operators in EOMOperator and ClusterOperator. For example, the
EA-EOM-CCSD(3h2p) equations can be produced as

EOMOperator = {{"0h1p"},{"1h2p"},{"3h2p"}}

In practice, it is possible to carry out all possible combinations of excitation operators up to 4h4p, and it is also
possible to calculate the CC amplitude equations. For example, to generate the CCSD amplitude equations, the
following input must be entered

ClusterOperator = {{"1h1p"},{"2h2p"}}
EOMOperator = {{"0h0p"}}

We shall now discuss in detail the algorithm summarized in Fig. 1.
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Input: ClusterOperator = {T̂1, T̂2, · · · }
EOMOperator = {R̂1, R̂2, · · · }

Module AmplStr

Input:
ClusterOperator

EOMOperator

Output:
Amplitudes = {tab···ij··· }
Strings = H̄

[
{â†, b̂†, · · · , î, ĵ, · · · }

]

eomccgen

• Build Amplitudes

• Construct EOM-CC matrix in
second-quantized form, i.e., Strings

Module ManyBodyHamiltonian

Input:
Strings

Output:

ManyBodyBlocks = H̄
[
{χab···kl···

ij···cd···}
]

ManyBodyStrings = χab···kl···
ij···cd···

[
{â†, b̂†, · · · , î, ĵ, · · · }

]

• Build
〈
Φab···

ij···
∣∣ H̄mb

N

∣∣Φcd···
kl···
〉

• Set to zero the many-body terms that
correspond to CC amplitude equations

• ContractManyBody[
〈
Φab···

ij···
∣∣ H̄mb

N

∣∣Φcd···
kl···
〉

] to
obtain ManyBodyBlocks

• Remove the repeated many-body terms and
construct a list of unique terms, i.e.,
ManyBodyStrings

Module WicksContract

Input:
ManyBodyStrings

Output:
DeltaKronecker = {{δpq}, {sgn}}

• Determine if a given string results in a
non-zero matrix element

• If non-zero, apply Wick’s theorem to obtain
DeltaKronecker

Module AntiSymPermut

Input:
Amplitudes

DeltaKronecker

Output:
ManyBodyTerms = χab···kl···

ij···cd···
[
{fpq }, {vpqrs}, {tab···ij··· }

]

• Use antisymmetric permutations of fpq , vpqrs ,

and tab···ij··· to obtain more compact expressions

Output: ManyBodyTerms = χab···kl···
ij···cd···

[
{fp

q }, {vpqrs}, {tab···ij··· }
]

ManyBodyBlocks = H̄[{χab···kl···
ij···cd···}

]

FIG. 1. Flowchart of the entire set of modules constituting the EOM-CC equation generator.

A. Step 1

The first step is carried out through the module AmplStr. The inputs of this module are the ClusterOperator and
EOMOperator:

{Amplitudes, Strings} = AmplStr[ClusterOperator, EOMOperator]

It returns the list of CC amplitudes (stemming from the truncated Taylor expansion of eT̂ ) in Amplitudes. For
example, in the case of EE-EOM-CCSD, we have

Amplitudes = {1, tv1o1 , tv1o1tv2o2 , tv1o1tv2o2tv3o3 , tv1v2o1o2 , t
v1v2
o1o2 t

v3
o3}
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while, in mathematica, it takes the following form:
1 Amplitudes ={{1} ,{t1[[o1 ,v1]]},{t1[[o1 ,v1]]t1[[o2 ,v2]]},{t1[[o1 ,v1]]t1[[o2,v2]]t1[[o3,v3]]},{t2[[o1,o2,v1,v2]]},{t1[[o1

,v1]]t2[[o2,o3,v2,v3]]}}

The set of excitation operators gathered in EOMOperator determines the basis in which H̄ [see Eq. (29)] is diagonalized.
With this basis together with the similarity-transformed Hamiltonian, the EOM-CC matrix is written in second-
quantized form, H̄

[
{p̂†1, p̂†2, · · · , ĥ1, ĥ2, · · · }

]
, and stored in the variable Strings, which is made of two substrings,

i.e., Strings = {StringF, StringV} (F and V stand for F̂N and V̂N). For example, the element StringV[[2,1,6]]
corresponds to

⟨D| V̂NT̂1T̂2 |S⟩ = {{h1†,h2†,p2,p1},{q1†,q2†,q4,q3},{{v1†,o1},{v2†,o2,v3†,o3}},{p3†,h3}}

The values 2 and 1 in StringV[[2,1,6]] correspond to the indices of the row and column of the EOM-CC matrix,
respectively, while 6 represents the sixth amplitude, i.e., Amplitudes[[6]]. For the sake of simplicity, the summation
and the Fermi vacuum of StringF and StringV are implicit.

B. Step 2

In Fig. 1, the module that corresponds to the second step is named ManyBodyHamiltonian and requires the input
quantity Strings generated in AmplStr (see Subsec. III A):

{ManyBodyBlocks, ManyBodyStrings} = ManyBodyHamiltonian[Strings]

where ManyBodyBlocks corresponds to the EOM-CC matrix defined in Eq. (29) written in terms of the many-body
terms, i.e., H̄

[
{χp1p2···h3h4···

h1h2···p3p4···}
]
, and ManyBodyStrings is a list that consists of all unique many-body terms in second-

quantized form, i.e., χp1p2···h3h4···
h1h2···p3p4···

[
{p̂†1, p̂†2, · · · , ĥ1, ĥ2, · · · }

]
.

More precisely, the algorithm inside ManyBodyHamiltonian that generates ManyBodyBlocks and ManyBodyStrings
performs the following steps:

1. Extract the EOM basis from Strings and evaluate the many-body Hamiltonian represented in Eq. (30) to form
matrix elements, such as

〈
Φp1p2···

h1h2···
∣∣ H̄mb

N

∣∣Φp3p4···
h3h4···

〉
.

2. Set to zero the many-body terms that correspond to the CC amplitude equations, such as the ones defined in
Eq. (37).

3. Contract blocks made of second-quantized strings of the form
〈
Φp1p2···

h1h2···
∣∣ H̄mb

N

∣∣Φp3p4···
h3h4···

〉
with the help of the

ContractManyBody function. For example, the contraction of the block
〈
Φp1

h1

∣∣ H̄mb
N

∣∣Φp3

h3

〉
generates

{−δp1p3
χh3

h1
, δh1h3

χp1
p3
,−χp1h3

h1p3
} = ContractManyBody[

〈
Φp1

h1

∣∣ H̄mb
N
∣∣Φp3

h3

〉
]

Applying ContractManyBody to each block of H̄ allows us to obtain the EOM-CC matrix in terms of many-body
terms, i.e., H̄

[
{χp1p2···h3h4···

h1h2···p3p4···}
]
. These are stored in ManyBodyBlocks. In mathematica, it takes the following

form:
1 ManyBodyBlocks ={-δp1,p3χ1[[h3,h1]]+δh1,h3χ1[[p1,p3]]-χ2[[h3,p1,h1,p3]]}

4. For each block of ManyBodyBlocks, we remove any redundant many-body term to create a list of unique terms,
χp1p2···h3h4···
h1h2···p3p4···

[
{p̂†1, p̂†2, · · · , ĥ1, ĥ2, · · · }

]
, stored in ManyBodyStrings. This is done by counting the number of hole-

annihilation, hole-creation, particle-annihilation, and particle-creation operators in each term. For example, in
the case of IP-EOM-CCSD, we have

ManyBodyStrings = {χh3

h1
, χh4

p3
, χp1

p3
, χh3p1

h1h2
, χh4p1

h2p3
, χh3h4p1

h1h2p3
}

Next, we express each many-body term as in Eq. (33) to obtain their second-quantized form. For example,

χh3h4p1

h1h2p3
=
〈
Φp1

h1h2

∣∣ H̄st
N
∣∣Φp3

h3h4

〉
iC

(39)

while, in mathematica, this three-body term corresponds to the sixth position of ManyBodyStrings:
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Input: ManyBodyStrings

χh1
p1

=

〈
0

∣∣∣∣∣

[
ĤN

(
1 + T̂1 + T̂2 +

T̂ 2
1

2
+ T̂1T̂2 +

T̂ 3
1

3!
+
T̂ 2
1 T̂2
2

+
T̂ 2
2

2
+
T̂ 4
1

4!

)]

C

∣∣∣∣∣Φ
p1

h1

〉

iC

Determine which terms result in non-zero matrix ele-
ments:

χh1
p1

=
〈

0
∣∣∣
[
ĤN

(
1 + T̂1

)]
C

∣∣∣Φp1

h1

〉
iC

WicksContract

Apply Wick’s theorem to
〈

0
∣∣∣
[
ĤN

(
1 + T̂1

)]
C

∣∣∣Φp1

h1

〉
iC

Output: DeltaKronecker

DeltaKronecker[[1]] = {δq1h1δq4p1δq2v1δq3o1 , δq1h1δq3p1δq2v1δq4o1 ,

δq2h1δq4p1δq1v1δq3o1 , δq2h1δq3p1δq1v1δq4o1 , δq1h1δq2p1}
DeltaKronecker[[2]] = {−1,+1,+1,−1,+1}

FIG. 2. Flowchart of the module WicksContract. The module takes as input χh1
p1 =

〈
0
∣∣H̄N

∣∣Φp1
h1

〉
iC

stored in the variable
ManyBodyStrings produced from the module ManyBodyHamiltonian (see Fig. 1).

1 ManyBodyBlocks [[6]]={{{ SuperDagger[h1],SuperDagger[h2],p1},{ SuperDagger[q1],SuperDagger[q2],q4 ,
q3},{},{ SuperDagger[p3],h4 ,h3}},{{ SuperDagger[h1],SuperDagger[h2],p1},{ SuperDagger[q1],
SuperDagger[q2],q4,q3},{{ SuperDagger[v1],o1}},{ SuperDagger[p3],h4,h3}},{{ SuperDagger[h1],
SuperDagger[h2],p1},{ SuperDagger[q1],SuperDagger[q2],q4,q3},{{ SuperDagger[v1],o1},{
SuperDagger[v2],o2}},{ SuperDagger[p3],h4 ,h3}},{{ SuperDagger[h1],SuperDagger[h2],p1},{
SuperDagger[q1],SuperDagger[q2],q4,q3},{{ SuperDagger[v1],o1},{ SuperDagger[v2],o2},{
SuperDagger[v3],o3}},{ SuperDagger[p3],h4 ,h3}},{{ SuperDagger[h1],SuperDagger[h2],p1},{
SuperDagger[q1],SuperDagger[q2],q4,q3},{{ SuperDagger[v1],o1,SuperDagger[v2],o2}},{
SuperDagger[p3],h4,h3}},{{ SuperDagger[h1],SuperDagger[h2],p1},{ SuperDagger[q1],SuperDagger[
q2],q4 ,q3},{{ SuperDagger[v1],o1},{ SuperDagger[v2],o2,SuperDagger[v3],o3}},{ SuperDagger[p3],
h4 ,h3}}}

C. Step 3

The third step is carried out by the module named WicksContract, which performs Wick’s contractions [see Eq. (8)]
of the second-quantized strings in ManyBodyStrings obtained in the module ManyBodyHamiltonian, as follows:

DeltaKronecker = WicksContract[ManyBodyStrings]

The output DeltaKronecker contains two quantities, the Kronecker deltas and the signs of each contraction.
Figure 2 illustrates the structure of the module WicksContract. Its input is the one-body term χh1

p1
which is stored in

the variable ManyBodyStrings[[3]] produced by the module ManyBodyHamiltonian discussed in Subsec. III B. The first
step consists of replacing the similarity-transformed Hamiltonian with the terms yielding non-zero matrix elements
and then applying Wick’s theorem to the remaining terms. Finally, the Kronecker deltas and signs obtained from
Wick’s theorem are stored in DeltaKronecker.

D. Step 4

The module AntiSymPermut requires three inputs: DeltaKronecker, ManyBodyStrings, and Amplitudes.

ManyBodyTerms = AntiSymPermut[DeltaKronecker, ManyBodyStrings, Amplitudes]



11

This module applies the Kronecker deltas obtained in WicksContract (see Subsec. III C) to the Amplitudes (generated
in AmplStr and discussed in Subsec. III A), the Fock matrix elements, {fp

q }, and the two-electron repulsion integrals,
{vpqrs}. Next, it takes advantage of the antisymmetric permutations of the amplitudes and integrals to obtain more
compact expressions.

Finally, as output, ManyBodyBlocks obtained in the module ManyBodyHamiltonian (see Subsec. III B) and
ManyBodyTerms, χp1p2···h3h4···

h1h2···p3p4···
[
{fp

q }, {vpqrs}, {tp1p2···
h1h2···}

]
, from AntiSymPermut are printed. From these, one can eas-

ily generate the EOM-CC equations.

E. Examples

The software has also the advantage of being able to generate various outputs, including CC energy and amplitude
equations, second-quantized strings in normal order, many-body terms of the similarity-transformed Hamiltonian,
and blocks of the EOM-CC Hamiltonian matrix in terms of many-body terms.

For example, the input code to obtain IP-EOM-CCSD is

1 (* Input for IP-EOM -CCSD *)
2

3 ClusterOperator ={{"1h1p"},{"2h2p"}};
4 EOMOperator ={{"1h0p"},{"2h1p"}};
5 eomccgen[ClusterOperator ,EOMOperator]
6

while the output consists of a list of many-body terms and the EOM-CC matrix in terms of these quantities:

1 (* Many -body terms *)
2

3 χ1[[h3 ,h1]]==-F[[h3,h1]]-F[[h3 ,v1]]t1[[h1 ,v1]]+t1[[o1,v1]]ERI[[h3 ,o1,v1,h1]]+
4 t1[[h1 ,v2]]t1[[o1,v1]]ERI[[h3 ,o1,v1,v2]]+1/2t2[[o1,h1,v1,v2]]ERI[[h3,o1,v1,v2]]
5 χ1[[h4 ,p3]]==F[[h4,p3]]-t1[[o1 ,v1]]ERI[[h4,o1,v1,p3]]
6 χ2[[h4 ,h3,h1,p3]]==ERI[[h4,h3,h1,p3]]+t1[[h1,v1]]ERI[[h4,h3,v1,p3]]
7 χ2[[h3 ,p1,h1,h2]]==t1[[o1 ,p1]]ERI[[h3,o1,h1,h2]]-t1[[h2,v1]]t1[[o1,p1]]ERI[[h3 ,o1,v1,h1]]+
8 t1[[h1 ,v1]]t1[[o1,p1]]ERI[[h3 ,o1,v1,h2]]+t1[[h1 ,v1]]t1[[h2 ,v2]]t1[[o1,p1]]ERI[[h3 ,o1,v1,v2]]-
9 ERI[[h3,p1,h1,h2]]+t1[[h2,v1]] ERI[[h3 ,p1,v1,h1]]-t1[[h1 ,v1]] ERI[[h3 ,p1,v1,h2]]-

10 t1[[h1 ,v1]]t1[[h2,v2]]ERI[[h3 ,p1,v1,v2]]-F[[h3,v1]]t2[[h1 ,h2,v1,p1]]+
11 1/2t1[[o1 ,p1]]t2[[h1 ,h2,v1,v2]]ERI[[h3 ,o1,v1,v2]]-1/2ERI[[h3 ,p1,v1,v2]]t2[[h1 ,h2,v1,v2]]+
12 t1[[o1 ,v1]]t2[[h1,h2,v2,p1]]ERI[[h3,o1,v1,v2]]-t2[[o1,h1,v1,p1]]ERI[[h3,o1,v1,h2]]
13 +t1[[h2,v1]]t2[[o1,h1,v2,p1]]ERI[[h3,o1,v1,v2]]+t2[[o1,h2,v1,p1]]ERI[[h3,o1,v1,h1]]
14 -t1[[h1,v1]]t2[[o1,h2,v2,p1]] ERI[[h3 ,o1,v1,v2]]
15 χ1[[p1 ,p3]]==F[[p1,p3]]-F[[o1,p3]] t1[[o1 ,p1]]-t1[[o1,v1]] t1[[o2 ,p1]] ERI[[o1,o2,v1,p3]]+t1[[o1,v1]] ERI[[o1,p1,v1,p3]]

-1/2ERI[[o1 ,o2,v1,p3]]t2[[o1 ,o2,v1,p1]]
16 χ2[[h4 ,h3,h1,h2]]==-ERI[[h4,h3,h1,h2]]+t1[[h2,v1]] ERI[[h4,h3,v1,h1]]-t1[[h1 ,v1]] ERI[[h4 ,h3,v1,h2]]-t1[[h1 ,v1]]

t1[[h2 ,v2]] ERI[[h4,h3,v1,v2]]-1/2 ERI[[h4 ,h3,v1,v2]] t2[[h1,h2,v1,v2]]
17 χ2[[h4 ,p1,h2,p3]]==t1[[o1 ,p1]] ERI[[h4 ,o1,h2,p3]]+t1[[h2,v1]]t1[[o1 ,p1]]ERI[[h4,o1,v1,p3]]-ERI[[h4,p1,h2,p3]]
18 -t1[[h2,v1]] ERI[[h4 ,p1,v1,p3]]-ERI[[h4,o1,v1,p3]] t2[[o1,h2,v1,p1]]
19 χ3[[h4 ,h3,p1,h1 ,h2 ,p3]]==ERI[[h4,h3,v1,p3]] t2[[h1,h2,v1,p1]]
20

21 (* EOM -CC blocks *)
22

23 {{-χ1[[h3,h1]]},
24 {χ2[[h4 ,h3, h1, p3]]+δh1,h3χ1[[h4 ,p3]]-δh1,h4χ1[[h3,p3]]},
25 {-χ2[[h3,p1,h2,h1]]},
26 {-χ1[[h4,h2]]δh1,h3δp1,p3+χ1[[h3,h2]]δh1,h4δp1,p3+χ1[[h4 ,h1]]δh2,h3δp1,p3-χ1[[h3,h1]]δh2,h4δp1,p3-χ1[[p1 ,p3]]δh1,h4δh2,h3
27 +χ1[[p1 ,p3]]δh1,h3δh2,h4-χ2[[h4,p1,h2,p3]]δh1,h3+χ2[[h3 ,p1,h2,p3]]δh1,h4+χ2[[h4 ,p1, h1,p3]]δh2,h3- χ2[[h3 ,p1,h1,p3]]

δh2,h4+
28 χ2[[h4 ,h3,h2,h1]]δp1,p3+χ3[[h4 ,h3,p1,h2 ,h1 ,p3]]}}

The input code to generate the CCD equations is

1 (* Input for CCD *)
2

3 ClusterOperator ={{"2h2p"}};
4 EOMOperator ={{"0h0p"}};
5 eomccgen[ClusterOperator ,EOMOperator]
6

and it produces the following output:

1 (* CCD energy *)
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2

3 {1/4 ERI[[o1,o2,v1,v2]] t2[[o1,o2,v1,v2]]}
4

5 (* T2 equations *)
6

7 {-ERI[[p2 ,p1,h1,h2]]
8 -F[[p2 ,v1]]t2[[h1,h2,v1,p1]]+F[[p1 ,v1]]t2[[h1,h2,v1,p2]]
9 -F[[o1 ,h2]]t2[[o1,h1,p2,p1]]+F[[o1 ,h1]]t2[[o1,h2,p2,p1]]

10 -1/2 ERI[[p2,p1,v1,v2]]t2[[h1,h2,v1,v2]] +ERI[[o1 ,p2,v1,h2]]t2[[o1,h1,v1,p1]]
11 -ERI[[o1,p1,v1,h2]]t2[[o1,h1,v1,p2]]-ERI[[o1,p2,v1,h1]]t2[[o1,h2,v1,p1]]
12 +ERI[[o1,p1,v1,h1]]t2[[o1,h2,v1,p2]]-1/2ERI[[o1,o2,h1,h2]]t2[[o1 ,o2,p2,p1]]
13 -1/4ERI[[o1,o2,v1,v2]]t2[[h1 ,h2,v1,v2]]t2[[o1 ,o2,p2,p1]]
14 -1/2ERI[[[[o1 ,o2,v1,v2]]t2[[h1 ,h2,v2,p2]]t2[[o1,o2,v1,p1]]
15 +1/2 ERI[[o1,o2,v1,v2]]t2[[h1 ,h2,v2,p1]]t2[[o1 ,o2,v1,p2]]
16 -1/2ERI[[o1,o2,v1,v2]]t2[[o1 ,h2,v1,v2]]t2[[o2 ,h1,p2,p1]]
17 +1/2 ERI[[o1,o2,v1,v2]]t2[[o1 ,h1,v1,v2]]t2[[o2 ,h2,p2,p1]]
18 +ERI[[o1,o2,v1,v2]]t2[[o1,h2,v1,p2]]t2[[o2 ,h1,v2,p1]]
19 -ERI[[o1,o2,v1,v2]]t2[[o1,h1,v1,p2]]t2[[o2 ,h2,v2,p1]]}

In the following example, we compute the block {2,1} of the IP-EOM-CCSD matrix. The corresponding input is
1 (* Input for IP-EOM -CCSD *)
2

3 ClusterOperator ={{"1h0p"},{"2h1p"}};
4 EOMOperator ={{"1h1p"},{"2h2p"}};
5 EOMBlock ={2 ,1};
6 eomccgen[ClusterOperator ,EOMOperator ,EOMBlock]
7

and the output is
1 (* Many body terms *)
2

3 χ1[[h4 ,p3]]==F[[h4,p3]]-ERI[[h4 ,o1,v1,p3]]t1[[o1,v1]]
4 χ2[[h4 ,h3,h1,p3]]==ERI[[h4,h3,h1,p3]]-ERI[[h4,h3,v1,p3]]t1[[h1 ,v1]]
5

6 (* EOM -CC blocks *)
7

8 {χ1[[h4 ,p3]]δh1,h3-χ1[[h3 ,p3]]δh1,h4+χ2[[h4,h3,v1,p3]]}

The mathematica code described in this paper is publicly available in a dedicated repository on github with the
name eomccgen.79 In particular, the repository contains examples of scripts and data files that can be easily adapted
for particular research projects. Additionally, the repository includes another notebook, called eomccnum, where the
equations obtained in eomccgen can be implemented and numerically tested for small atoms and molecules. eomccnum
comes with predefined examples that can serve as a guide for implementing the equations obtained in eomccgen. An
example of the water molecule in the STO-3G basis can be found in the repository.

IV. CONCLUSION

The present paper discusses the development of a code generator for equation-of-motion coupled-cluster (EOM-CC)
methods, a class of many-body quantum chemistry methods known for their accuracy in predicting excitation energies,
ionization potentials, and electron affinities in molecular systems. Because their implementation can be complex and
time-consuming, we develop an easy-to-use code generator that automates the process of deriving and implementing
the EOM-CC equations, reducing the potential for human error.

We begin by discussing the second-quantization formalism, a practical and modern mathematical language used
to describe many-body quantum systems in terms of creation and annihilation operators. We then discuss the
development of our code generator for EOM-CC methods. Our approach builds on previous work by using second-
quantized strings to automate the derivation and implementation of EOM-CC equations. However, we introduce
several new features that make the code generator more efficient and flexible. For example, we rely on a symbolic
algebra software package, mathematica, to generate these equations that can be easily read by humans and machines.
The paper provides a detailed description of each step of the algorithm used in the code generator. We also describe
how the code generator can be used to calculate excitation energies, ionization potentials, and electron affinities, by
providing several concrete examples.

Although many improvements are still needed to generate a production-level code, especially in the definition of
adequate intermediates to ensure the right computational scaling of the methods, we hope that the present work
illustrates nicely the capabilities of mathematica-based code generator in the context of CC theory.
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