
HAL Id: hal-04116476
https://hal.science/hal-04116476

Submitted on 4 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convolutional graph neural network training scalability
for molecular docking

Kevin Crampon, Alexis Giorkallos, Stephanie Baud, Luiz Angelo Steffenel

To cite this version:
Kevin Crampon, Alexis Giorkallos, Stephanie Baud, Luiz Angelo Steffenel. Convolutional graph neural
network training scalability for molecular docking. 2023 31st Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), Mar 2023, Naples, Italy. pp.219-226,
�10.1109/PDP59025.2023.00042�. �hal-04116476�

https://hal.science/hal-04116476
https://hal.archives-ouvertes.fr

Convolutional graph neural network training
scalability for molecular docking

Kevin Crampon∗†‡ Alexis Giorkallos∗ Stephanie Baud‡ Luiz Angelo Steffenel†

∗ Center for Excellence in Advanced Computing
Atos SE

Echirolles, France

‡ CNRS, MEDyC
Université de Reims Champagne-Ardenne

Reims, France

† LICIIS
Université de Reims Champagne-Ardenne

Reims, France

Abstract—Deep learning use is growing in many numerical
simulation fields, and drug discovery does not escape this
trend. Indeed, before proceeding with in vitro and then in vivo
experiments, drug discovery now relies on in silico techniques
such as molecular docking to narrow the number of experiments
and identify the best candidates. This method explores the
receptor surface and the ligand’s conformational space, providing
numerous ligand-receptor poses. All these poses are then scored
and ranked by a scoring function allowing to predict the best
poses among all, then compare different ligands regarding a given
receptor or different targets regarding a given ligand. Since the
2010s, numerous deep learning methods have been used to tackle
this problem. Nowadays, there are two significant trends in deep
learning for molecular docking: (i) the augmentation of available
structural data and (ii) the use of a new kind of neural network:
the graph convolutional neural networks (GCNs). In this paper,
we propose the study of training scalability of a GCN—a
molecular complex scoring function—on an increasing number of
GPUs and with a variety of batch sizes. After a hyperparameter
analysis, we achieve an 80% reduction in the training time,
but this improvement sometimes involves a performance metrics
degradation that the final users must ponder.

Index Terms—Scalability, Graph Convolutional Neural Net-
work, GPUs, PyTorch

I. INTRODUCTION

Discovering new treatments requires substantial financial
means and equipment, so to reduce them, numerous numer-
ical methods using sophisticated models and optimization
sets were proposed. One of them is the molecular docking
simulation, whose common use case is drug discovery. It
involves looking for active principles (hereafter called ligands)
that interact with a macromolecule of interest (the receptor),
such as a protein. Finding interacting molecules may have
several objectives including, for example, discovering a ligand
inhibiting the receptor effect on human health. A prerequisite
for that interaction is performing docking between the ligand
and the receptor, hence molecular docking is performed on the
3D structure of both molecules, to predict if the ligand will
bind to the receptor. In the remainder of this paper, we present
methods developed for proteins as receptors.

Molecular docking simulations are less expensive than in
vitro and in vivo experiments and are essentially based on

a receptor’s surface screening. In comparison to classical
docking methods, deep learning in this space provides more
accurate guidance in the search for the zone of binding [2].

For some years, a new kind of neural network has grown
in popularity: the graph convolutional network (GCN) [11],
which relies on graph input data. A graph G(V, E) is a set of
nodes V connected by edges E . Each node and edge can be
augmented by adding features to respectively −→vi and −−→ei→j .

GCNs are trendy because they use data in graph format. This
format is the one that best represents a molecular structure. In
particular, if we compare it to 1D representation (SMILES
or sequence) or to discretization on a 3D grid where the
information on the links between the atoms is lost.

Graph convolution may be either spectral [12] or spa-
tial. Spectral convolutions use the eigendecomposition of the
graph’s Laplacian matrix, as shown in Eq 3.

L = D −A (1)

L = V ΛV T (2)

H(l+1) = V (V TH(l) ⊙ V TW (l)) (3)

Where .T means transposition, A is the adjacency matrix,
D is the degree matrix, L is the Laplacian matrix (Eq. 1)
whose eigendecomposition in Equation 2 provides V the
eigenvectors matrix, and Λ the eigenvalues diagonal matrix.
Finally, the convolution is processed with the node features
matrix H at layer l and the associated weights matrix W as
inputs to produce the output H(l+1), ⊙ is the element-wise
multiplication operator.

Nowadays, the most prominent convolution type is spatial
convolution [4], it can be seen as a generalization of con-
volution over a regular cartesian grid, as in spatial convolu-
tion, each node aggregates information (balanced by learnable
weights) from its direct neighbors. If the graph’s edges have
features, they also influence the information, as presented in
Equation 4 and Figure 1.

h
(l+1)
i = Ul(h

(l)
i ,

∑
j∈N (i)

Ml(h
(l)
i , h

(l)
j , ej→i)) (4)

Fig. 1. In spatial convolution, the current node here identified by a star
aggregates information coming from its direct neighbors here represented in
green, purple, and blue. The current node feature vector is then updated as
shown in the graph on the right.

Fig. 2. A simplified scheme of the semi-rigid molecular docking process.
First, the ligand conformational space is sampled, allowing the exploration
of conformation and position, all conformations are then associated with the
protein to generate docked complexes. Finally, a scoring function assesses
complexes to rank them. Some sampling methods use the scoring output to
guide them and thus restrict conformational space or protein surface area.

Where h
(l)
i is the hidden features vector of node i at layer l,

h
(0)
i = −→vi , Ul and Ml are functions with learnable parameters

and N (i) is the neighborhood of node i.
The remainder of this article focuses on spatial

convolutions only, we also provide our code
and results on GitHub to allow reproducibility
github.com/KevinCrp/GCN Docking Scalability.

II. BIOLOGICAL PROBLEMATIC

The molecular docking is a 2-steps process: a sampling
phase and then a scoring phase, as presented in Figure 2.
Considering both molecules, the ligand and the receptor,
as flexible implies a huge number of degrees of freedom,
and hence a substantial computing time. To overcome that,
numerous docking processes make the simplifying hypothesis
that the protein is rigid on the first step, and make a flexibility
assumption on the second step, to generate several protein
conformations and use molecular docking for the same ligand
with those conformations, but this is outside the scope of our
study.

Thus, once the protein structure is fixed, the first step is to
explore the ligand’s conformation space. This space contains
all conformations generated by the ligand’s internal bond
rotations. This step allows further exploration of the protein’s
surface by translating and rotating the ligand in space.

Fig. 3. Trypanosoma cruzi dihydroorotate dehydrogenase (PDB: 3W3O) with
the ROE ligand in red and the associated binding site in blue.

All ligand conformations are then associated with the pro-
tein’s structure to create a set of docked poses, all of which
are scored with the scoring function which aims to faithfully
reflect the experimental affinity.

One common way to reduce the ligand’s conformational
space and the explored protein’s surface is to use the scoring
output to guide the sampling method in an iterative process.

Numerous classical AI-free scoring functions were proposed
and can be classified into three categories: a) the physics-based
methods use a weighted sum of energy terms, b) the empirical
methods use a weighted sum of simpler terms such as physico-
chemical descriptors, and c) the knowledge-based methods use
known complexes to determine the current complex affinity.
Finally, a consensus method allows to combining of the scores
from several of these approaches.

Since 2010, numerous machine learning or deep learning
methods were introduced to tackle this problem. Some reduce
the protein’s explored surface by predicting the binding site,
but the majority of methods just rely on improved scoring
functions, as presented in our previous paper [2]. Hereafter,
the presented methods belong to this category.

III. DATA

We structure our study around the PDBBind database [7]. It
contains 19,443 ligand-protein complexes and their associated
experimental binding affinity, and for each complex, some
files are provided including a MOL2 file containing the ligand
structure and a PDB file for the protein. A second PDB file
defining the binding site (all protein’s residues closer than 10Å
of a ligand atom, as presented in Figure 3) is also provided,
which we use to reduce the graph sizes and thus the computing
time. Both file types provide the molecule’s atoms list with
their respective position and type.

We represent each complex by a graph whose nodes are the
complex’s atoms and edges connect each pair of nodes closer
than 4.0Å. We add a set of features on each node, presented
in Table I. We also add edge attributes on the molecular graph
by adding a vector of ones on each edge. The aim was to
increase the data size without impacting the score prediction.

https://github.com/KevinCrp/GCN_Docking_Scalability

TABLE I
PHYSICOCHEMICAL NODE FEATURES

Feature Size Description
Atom type 8 One-hot encoded

(B, C, N, O, F, P, S, Others)
Hybridization 1 0: Other, 1: sp, 2: sp2, 3: sp3,

4: sq. planar, 5: trig. bipy,
6: octahedral

Heavy Degree 1 0, 1, 2, 3, 4, 5, 6+
Hetero Degree 1 0, 1, 2, 3, 4, 5, 6+
Partial Charge 1 Float
Is Hydrophobic 1 Boolean
Is in a Aromatic cycle 1 Boolean
Is HBond Acceptor 1 Boolean
Is HBond Donor 1 Boolean
Is in a Ring 1 Boolean
Belong to Protein or Ligand 2 One-hot encoded

(Ligand or Protein)

Fig. 4. Distribution of the number of graphs as a function of the number of
nodes characterizing the training set.

Moreover, we do that in order to compare models using edge
attributes and those not using them.

We train our model on the whole PDBBind database (19,443
protein-ligand complexes) resulting in as many graphs. The
19,443 graphs correspond to 8,375,349 nodes each having 19
physicochemical features and connected by 88,734,678 edges
(cf Figures 4 and 5).

IV. EXPERIMENTS

A. Network’s architecture

We have used the AttentiveFP [10] network for our exper-
iments. That method uses a graph attention network (GAT)
[9] to produce a molecular fingerprint. Initially used to embed
a molecular graph into a fingerprint, we use it to produce
a protein-ligand fingerprint. AttentiveFP may be presented
in two parts, the first working on the atomic scale, which
is composed of 6 layers, and the second part allows the
creation of the fingerprint. That second part is composed of 4
layers, and the produced fingerprint is only a scalar, which is
used as an affinity score. That model is not the best, but its
performances are correct and allow us to analyze the evolution
of time and metrics through the prism of scalability.

Fig. 5. Distribution of the number of graphs as a function of the number of
edges characterizing the training set.

TABLE II
MODEL’S HYPERPARAMETERS

Parameter Value
Atomic GAT Layers [19, 32, 32, 32, 32, 32]
Molecular timestep 4
Learning rate 1e-3
Weight decay 1e-4
Loss function MSE

Implementation of our network is done with PyTorch
(v1.12.0) and PyTorch-Geometric [3] (v2.2.0) using the Pyg-
lib backend. PyTorch-Geometric is a framework that allows us
to deal with graph data structure and propose a comprehensive
set of GCN layers. In addition, PyTorch-Lightning (v1.7.7)
allows us to simplify PyTorch code by reducing the boilerplate
and providing ease of parallelization on a multi-GPUs machine
such as the DGX. PyTorch-Lightning allows us to easily scale
the training by only setting the available number of GPUs, it
should always be considered a good way to train a PyTorch
model on a High Performance Computing (HPC) environment.

B. Metrics

The study’s objective is to measure the GCN training
scalability on several GPUs. With PyTorch-Lightning, we can
easily distribute training over several GPUs and aggregate
results with a few changes to the code. We have trained our
network on 1, 2, 4, and 8 GPUs, measured the computing
time and compared the impact of the parallelization on a set
of use case adapted metrics: the Pearson correlation coefficient
(Rp, Eq 5), and the coefficient of determination (R2, Eq 6).
The former was indicated by Su et al. [8] and allows us to
check if the predicted affinity is linearly correlated with the
experimentally determined affinity. The latter measures the
prediction quality. Both have an optimal value of 1.0. Because
of sensitivity issues, we run each case 10 times and use the
average of the metrics to do our comparisons.

Rp =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(5)

Fig. 6. The Distributed Data Parallel process distributes the dataset across
all GPUs which all work on an independent model, the common step of
gradient synchronization and averaging allows sharing of the learning. A
detailed description is provided in paragraph IV-C

R2 = 1−
∑n

i=1(yi − xi)
2∑n

i=1(yi − y)2
(6)

Where xi is the predicted score for complex i, i ∈ [[1;n]], yi
the experimental affinity, x = 1

n

∑n
i=1 xi and y = 1

n

∑n
i=1 yi.

C. Distribution method

We use the PyTorch-Lightning default distribution method:
Distributed Data Parallel (DDP) [6] (Figure 6). Each GPU
has an independent process and works only on a subset of the
training dataset. That subset is randomly generated from the
whole dataset and remains the same during the whole training
process. Each process initializes a model from the same seed,
making sure all weights are the same. Each process does a
forward prediction pass and a backward gradient-computation
pass. Finally, gradients from all processes are collected and
averaged to update optimizers and models over each acceler-
ator individually, making sure weights are synchronized and
identical at each step. With that method each sub-dataset is
split into several device batches, thus the main steps (between
the red lines in Figure 6) are computed as many times as
necessary to process the whole sub-datasets.

D. Hardware

All experiments were performed on the Nvidia DGX-1
version 5.1.0 hosted by the Regional Super Computer Center
ROMEO of the University of Reims Champagne-Ardenne.
That blade has 8 Nvidia Tesla V100 GPUs with each 16GB
of VRAM and two sockets of 20 cores each, with 2 threads
per core, and 512GB of RAM.

Fig. 7. The DGX-1 Tesla V100 architecture [1], composed of two NUMA
(Non-Uniform Memory Access) nodes of 20 cores and 4 GPUs each. GPUs
are linked together by the NVLink interconnect (green rows) which ensures
an important bandwidth

TABLE III
GLOBAL AND DEVICE BATCH SIZES TESTED

GPUs 1 2 4 8 Figure
Constant global batch size Device batch size

64 64 32 16 8 8
128 128 64 32 16 9
256 256 128 64 32 10

Constant device batch size Global batch size
64 64 128 256 512 8

128 128 256 512 1024 9
256 256 512 1024 2048 10

Figure 7 shows that the device placement is essential.
Indeed, the DDP algorithm requires sharing information during
the common gradient synchronization step. Choosing close
GPUs interconnect-wise is key. To summarize, we train our
method on the following GPU sets: {0}, {0, 1}, {0, 1, 2, 3},
and {0, 1, 2, 3, 4, 5, 6, 7}. In addition, we leverage the NVIDIA
Collective Communication Library (NCCL) as the communi-
cation backend.

V. RESULTS

This study’s objective is to compare two batch size strate-
gies. The first one uses a fixed batch size on each GPU—the
device batch size or DBS—regardless of the number of GPUs.
It involves a growing global batch size (GBS) proportional
to the number of GPUs (GBS = #GPU × DBS). The
second strategy is to use a constant GBS and thus a decreasing
DBS in proportion to the number of GPUs. We have tested
both strategies with batch sizes of 64, 128, and 256 involving
the global and device batch sizes presented in Table III. We
train our model on 50 epochs to insure convergence and
compare times and metrics for each batch size used with the
two presented strategies: constant DBS or constant GBS. Our
charts (Figures 8, 9, and 10) present the time improvement and
the metric degradation, for the different strategies and batch
sizes.

(a) (b)

Fig. 8. Comparison of distribution method with a batch size of 64: (a) Time improvement compared to using a single GPU, (b) Degradation of the metrics
compared to those obtained with 1 GPU. DBS=Device Batch Size and GBS=Global Batch Size

(a) (b)

Fig. 9. Comparison of distribution method with a batch size of 128: (a) Time improvement compared to using a single GPU, (b) Degradation of the metrics
compared to those obtained with 1 GPU. DBS=Device Batch Size and GBS=Global Batch Size

A. Strategies comparison

Whatever the batch size, the constant DBS strategy substan-
tially reduces training time. That gain increases with the num-
ber of GPUs, reaching an 80% of time reduction for the best-
case scenario. The constant GBS strategy usually increases the
training time. Concerning the metrics degradation, both Rp

and R2 are degraded as the number of accelerators increases
if the constant DBS strategy is used. For the constant GBS
strategy, the two metrics are quite stable.

B. Batch size impact

With the constant GBS strategy, the induced DBSs are all
smaller as the number of GPUs gets bigger. Thus, the use

of several GPUs with a small batch brings a huge amount
of communication (data copy from CPU to GPU, gradients
exchange, prediction copy from GPU to CPU). All these
communications need time to be treated; thus, this is the
bottleneck for the training time. That is why using several
GPUs is interesting only if the DBS is large enough. It is for
this reason that the constant GBS strategy used with a small
base batch size (64 and 128), has training times longer on
several GPUs. Whereas with the constant DBS strategy time
reduction is very important.

In Figures 11, 12, and 13, which present training times
and metrics value after training, we can see that metrics
degradation is more important with a bigger batch size for the

(a) (b)

Fig. 10. Comparison of distribution method with a batch size of 256: (a) Time improvement compared to using a single GPU, (b) Degradation of the metrics
compared to those obtained with 1 GPU. DBS=Device Batch Size and GBS=Global Batch Size

Fig. 11. Average training time for all strategies with different batch sizes.
DBS=Device Batch Size and GBS=Global Batch Size

constant DBS strategy. Concerning the constant GBS strategy,
the metrics seem to not be impacted by the batch size increase.

C. Analysis

Training time

For some experiments, the use of several GPUs may cause a
loss in time performance. That gap is explained by a communi-
cation (CPU-GPU and GPU-GPU) bottleneck. The number of
communications increases with the number of GPUs and with
the decrease of the DBS. Thus, using 8 GPUs with a small
DBS (example in Figure 8a with 8 GPUs and a constant GBS
of 64 inducing a DBS of 8) does not allow compensating
for communication time by the computing acceleration. All
GPUs are not interconnected (Figure 7), and that bottleneck is

Fig. 12. Average R2 for all strategies with different batch sizes. DBS=Device
Batch Size and GBS=Global Batch Size

increased. That is why multi-GPU training must be launched
on closer GPUs if possible. Another cause of time loss may
be the use of unbalanced sub-datasets (some having bigger
graphs) involving an unbalanced computing time between the
GPUs. Thus, the other processes must wait until the end of
the longer one.

Memory transfer

Training time may be roughly decomposed into computing
time and data transfer time. In that part, we will analyze the
impact of batch size strategy on the transfer time. That time
is composed of a 3-step; memory copy of the graphs from the
CPU to the GPU accelerators (H to D) through PCIe transfer
buses. The device-to-device copies (D to D) cover the data

Fig. 13. Average Rp for all strategies with different batch sizes. DBS=Device
Batch Size and GBS=Global Batch Size

transfers for inter-GPUs synchronization (model gradients and
weights update) which NVlink insures. And the GPU to CPU
offloads (D to H) the results. We present the average data
transfer time per epoch at a constant DBS (Figure 14) and a
constant GBS (Figure 15). Data transfer metrics were obtained
thanks to NVProf.

Regarding the constant DBS strategy, we can see that at
iso-GPU, an increase in the DBS does not result in better
overall training time. Indeed, the small reduction which may
be observed on D to D and D to H parts is compensated by
the augmentation of data transfer from the host to the devices.
Whatever the size of the batch and for both strategies, the
use of a larger number of GPUs reduces the time allocated to
data transfer, both in absolute value and relative to the training
time.

Figures 8a, 9a, 10a, 14, and 15 would highlight the cor-
relation between data transfer time and overall training time.
At constant DBS, the training time decreases sharply with the
increase in the number of GPUs, as does the transfer time.
This can be explained by the fact that the larger the DBS, the
more data is loaded on the GPUs, and thus the GPUs can be
better exploited, so the reduction in time occurs at both levels.

At constant GBS, even though transfer time decreases with
the number of GPUs, the total training time does not follow
the same trend. Because computation time is greater, the DBS
decreases with the number of GPUs, which run on only a small
fraction of the data, which is not ideal.

Metrics degradation

Figures 8b, 9b, and 10b show a metric degradation both
for R2 and Rp when scaling over several GPUs and using
the constant DBS strategy. At constant DBS, that degradation
may be caused by the induced GBS increase: at each step (ie
a global batch processed), the network is updated from the
error averaged over the whole mini-batch set. Each data point
will orient learning in its direction. Because of the high degree

Fig. 14. Average data transfer time for 1 epoch, according to the number
of GPUs and the batch size used with a constant Device Batch Size.
H to D=Host to Device, D to D=Device to Device, and D to H=Device to
Host.

Fig. 15. Average data transfer time for 1 epoch, according to the number
of GPUs and the batch size used with a constant Global Batch Size.
H to D=Host to Device, D to D=Device to Device, and D to H=Device to
Host.

of freedom of the system, this results in inefficient guidance
(many pushes will, on average cancel out) and thus learning.
For either strategy, the metrics degradation may be explained
by the different means done during the training, reducing the
error impact and thus slowing down the network convergence.
This also explains why for a constant GBS, the metrics remain
stable whatever the number of GPUs used.

VI. MODEL COMPARISON

We have tested another model in the same experiments to
know the impact of the model architecture on our results.
However, contrary to the previous model, this one does not use
any edge attribute. All our experiments’ results are available on
our GitHub. Here, we have used a classic graph convolutional
network (GCN) [5] which is composed of a series of 6 GCN
layers that apply a classic graph convolution as presented in
Figure 1, the first layer increases the node’s feature dimension
from 19 to 32, the four hidden layers realize a convolution but
do not change the node’s features dimension, and the output
layer increases the dimension from 32 to 64. Then a multilayer
perceptron (MLP) is used to reduce all the node features to
only one value. Finally, a global average pooling means all
the graph’s node output values to a score.

With that model, the evolution of the training time is the
same as for the previous model, and thus the best strategy to
reduce the training is also to use the constant DBS strategy
with a big batch size. Concerning the metrics degradation,
the constant DBS strategy is also the strategy bringing the
more important loss of performances, however, contrary to
the previous model, here the constant GBS strategy brings a
metrics degradation too.

Thus, that second set of experiments shows that the time
reduction is not impacted by the model choice. However, this
is not the case for the metrics, especially for the constant
GBS strategy, which degrades them here. Nevertheless, this
degradation is still much less important than with the other
strategy.

VII. CONCLUSION

The objective of this study was to find the best strategy
for training distribution. Regarding our result, the strategy
choice depends on whether the priority is given to reducing
training time or preserving model performance. If the main
goal is to reduce the training time, thus it will be used the
biggest number of GPUs, and the biggest batch size with the
constant DBS strategy. That way may be used to identify an
architecture and then train it with a better metrics preservation
strategy. However, it is interesting to directly use a method
that conserves the metrics performance (ie the constant GBS
strategy), in that case, a large global batch size must be
used to bring a time reduction with the use of several GPUs.
Nevertheless, the choice of a large global batch size induces
a loss regarding the metrics. That is why, either we choose a
great number of GPUs with the constant DBS strategy, and
thus the metrics collapse, or we choose the constant GBS
strategy which allows us to lightly reduce the training time
while degrading the metrics less.

However, that choice is highly conditioned by the network
and its hyperparameters. Indeed, a bigger network requiring
more computing time, for example, may have a more inter-
esting trade-off with more GPUs or with bigger batch size.
Another possibility is to study the use of a lower learning
rate; indeed, a lower learning rate involves a more stable
convergence but is slower. Moreover, the use of several GPUs

involves a slower convergence, a possibility to bypass that
issue is to train the model on more epochs. To conclude,
we must find the best trade-off between time reduction in
training and metrics degradation. Finally, the use of multi-
GPU distribution training is a good way to speed up the
search for better hyperparameters, thus we can find quickly
the best model architecture, and then we can train our model
with the best hyperparameter sets on only 1 GPU to get the
best performances. To go further, we think that analyzing the
impact of the GPU generation on the time and the metric
degradation will be interesting. Moreover, it will be interesting
to study the influence of the hardware as well as the GPU,
the CPU, and the interconnect used. Although we tested both
strategies on two quite different models, regarding the huge
amount of available GCN models for the studied use case, it
should be considered to perform this study on other models
to see if the impact of the choice of strategy and batch size is
the same.

REFERENCES

[1] M. Bernaschi, E. Agostini, and D. Rossetti, “Benchmarking multi-gpu
applications on modern multi-gpu integrated systems,” Concurrency
and Computation: Practice and Experience, vol. 33, no. 14, p. e5470,
2021, e5470 cpe.5470. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.5470

[2] K. Crampon, A. Giorkallos, M. Deldossi, S. Baud, and L. A.
Steffenel, “Machine-learning methods for ligand–protein molecular
docking,” Drug Discovery Today, vol. 27, no. 1, pp. 151–164, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1359644621003974

[3] M. Fey and J. E. Lenssen, “Fast graph representation learning
with pytorch geometric,” CoRR, vol. abs/1903.02428, 2019. [Online].
Available: http://arxiv.org/abs/1903.02428

[4] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263–1272.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[6] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch distributed:
experiences on accelerating data parallel training,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, p. 3005–3018, Aug 2020.

[7] Z. Liu, M. Su, L. Han, J. Liu, Q. Yang, Y. Li, and R. Wang, “Forging
the basis for developing protein–ligand interaction scoring functions,”
Accounts of chemical research, vol. 50, no. 2, pp. 302–309, 2017.

[8] M. Su, Q. Yang, Y. Du, G. Feng, Z. Liu, Y. Li, and R. Wang,
“Comparative assessment of scoring functions: The casf-2016 update,”
Journal of Chemical Information and Modeling, vol. 59, no. 2, p.
895–913, Feb 2019.

[9] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[10] Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li,
X. Luo, K. Chen, H. Jiang, and M. Zheng, “Pushing the boundaries
of molecular representation for drug discovery with the graph
attention mechanism,” Journal of Medicinal Chemistry, vol. 63,
no. 16, pp. 8749–8760, 2020, pMID: 31408336. [Online]. Available:
https://doi.org/10.1021/acs.jmedchem.9b00959

[11] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph neural networks: A review of methods and
applications,” arXiv:1812.08434 [cs, stat], Jul 2019, arXiv: 1812.08434.
[Online]. Available: http://arxiv.org/abs/1812.08434

[12] H. Zhu and P. Koniusz, “Simple spectral graph convolution,” in Inter-
national Conference on Learning Representations, 2020.

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5470
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5470
https://www.sciencedirect.com/science/article/pii/S1359644621003974
https://www.sciencedirect.com/science/article/pii/S1359644621003974
http://arxiv.org/abs/1903.02428
https://doi.org/10.1021/acs.jmedchem.9b00959
http://arxiv.org/abs/1812.08434

	Introduction
	Biological problematic
	Data
	Experiments
	Network's architecture
	Metrics
	Distribution method
	Hardware

	Results
	Strategies comparison
	Batch size impact
	Analysis

	Model comparison
	Conclusion
	References

