
HAL Id: hal-04116457
https://hal.science/hal-04116457v1

Preprint submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AnoRand: A Semi Supervised Deep Learning Anomaly
Detection Method by Random Labeling

Mansour Zoubeirou a Mayaki, Michel Riveill

To cite this version:
Mansour Zoubeirou a Mayaki, Michel Riveill. AnoRand: A Semi Supervised Deep Learning Anomaly
Detection Method by Random Labeling. 2023. �hal-04116457�

https://hal.science/hal-04116457v1
https://hal.archives-ouvertes.fr

AnoRand: A Semi Supervised Deep Learning Anomaly
Detection Method by Random Labeling

Mansour Zoubeirou A Mayaki
Université Côte d’Azur

Inria, CNRS, Nice France
zammaya76@gmail.com

Michel Riveill
Université Côte d’Azur

CNRS, Inria, Nice France
michel.riveill@unice.fr

Abstract

Anomaly detection or more generally outliers detection is one of the most popular
and challenging subject in theoretical and applied machine learning. The main
challenge is that in general we have access to very few labeled data or no labels at
all. In this chapter, we present a new semi-supervised anomaly detection method
called AnoRand by combining a deep learning architecture with random synthetic
label generation. The proposed architecture has two building blocks: (1) a noise
detection (ND) block composed of Multi-layer Perceptrons and (2) an autoencoder
(AE) block. The main idea of this new architecture is to learn one class (e.g.
the majority class in case of anomaly detection) as well as possible by taking
advantage of the ability of auto encoders to represent data in a latent space and
the ability of Multi-layer Perceptrons (MLP) to learn one class when the data is
highly imbalanced. First, we create synthetic anomalies by randomly disturbing
(add noise) few samples (e.g. 2%) from the training set. Second, we use the normal
and the synthetic samples as input to our model. We compared the performance of
the proposed method to 18 state-of-the-art unsupervised anomaly detection method
on synthetic data sets and 57 real-world data sets. Our results show that this new
method generally outperforms most of the state-of-the-art methods and has the best
performance (AUC ROC and AUC PR) on the vast majority of reference datasets.
We also tested our method in a supervised way by using the actual labels to train
the model. The results show that it has very good performance compared to most
of state-of-the-art supervised algorithms.

1 Introduction

One of the main challenges in anomaly detection or more generally outlier detection is that you don’t
have enough samples labeled as anomalous. In this situation, most of the classical machine learning
methods fail to learn the minority (anomaly) class, which is most of the time the class of interest.
Another challenge is that the labels are often not accurate. Some samples labeled anomalous may
not be actual ones and vice versa. Unsupervised methods have also gained popularity due to the fact
that they don’t required labeled data. These methods model the distribution of normal samples and
then identify anomalous ones via finding outliers. However, they often struggle with high false alarm
rates and difficulty in identifying subtle anomalies, particularly in high-dimensional or imbalanced
datasets. Additionally, their effectiveness is heavily dependent on data quality and preprocessing, and
they lack a straightforward way to evaluate performance due to the absence of labeled data. Moreover,
studies have shown that reconstruction-based anomaly detection methods, such as autoencoders, tend
to produce a high number of false alarms [9, 48]

To detect anomalies and outliers in a semi-supervised way, we propose a method that combines a deep
auto encoder (AE) and feed forward perceptrons (FFP). This new method, that we call AnoRand,

Preprint. Under review.

jointly optimizes the deep AE and the FFP model in an end-to-end neural network fashion. The
inspiration for this method comes from the fact that when dealing with imbalance data, supervised
algorithms tend to learn only the majority class. The main idea is to learn one class (e.g. the majority
class in case of anomaly detection) as well as possible by taking advantage of the ability of auto
encoders to represent data in a latent space and the ability of Feed Forward Perceptron (FFP) to learn
one class when the data is highly imbalanced. In our method, the FFP block has a role in informing
and strengthening the capacity of the auto-encoder block to embed the normal samples. Our method
is performed in two steps: (1) we first create synthetic anomalies by randomly adding noise to few
samples from the training data; (2) secondly, we train our deep learning model in supervised mode
with the new labeled data. We compared the performance of the proposed method to 17 state-of-the-
art unsupervised anomaly detection method on synthetic data sets and 57 real-world data sets from
the ADBench benchmark paper [16]. Our results show that this new method generally outperforms
most of the state-of-the-art methods and has the best performance (AUC ROC and AUC PR) on the
vast majority of reference datasets. For example, on image (and computer vision) data sets such as
Mnist and CIFAR10, AnoRand outperforms all reference algorithms in six of the 13 benchmark data
sets and has the second-best performance in two other data sets. In particular, AnoRand outperforms
Deep auto encoder, Variational auto encoder and MLP even though they have the same kind of
building blocks. We also tested our method (AnoRand) in a supervised way by using the actual
labels to train the model instead of creating pseudo labels as we did in the semi-supervised case.
The results show that it has very good performance compared to most of state-of-the-art supervised
algorithms. Our results also show that classical methods such as SVM, CatBoost, LGB tend to have
better performance than most of deep learning based algorithms.

The main contributions of our paper are:

(i) Novel Anomaly Detection Method (AnoRand): In this work, we introduce a new anomaly
detection method called AnoRand. This new method does not require any assumptions
about the underlying shape of the decision boundary that separates normal data points from
anomalous ones. This flexibility makes it highly adaptable to various real-world datasets
and scenarios.

(ii) Learning from Limited Information: AnoRand learns a reliable decision boundary using
only normal samples and noisy version of few of them. This feature is particularly valuable
in situations where obtaining labeled anomalous data is challenging or costly. AnoRand’s
efficiency in utilizing limited information contributes to its practicality.

(iii) Extensive Benchmarking and Superior Performance: To assess the effectiveness of AnoRand,
we conducted comprehensive experiments on 57 diverse real-world anomaly detection
benchmark datasets. In these experiments, AnoRand was compared against 17 state-of-
the-art unsupervised anomaly detection algorithms. The results demonstrate that AnoRand
achieves state-of-the-art performance on the majority of these datasets. Its robustness and
versatility make it a promising choice for a wide range of applications.

(iv) Supervised Evaluation with Actual Labels: In addition to traditional unsupervised anomaly
detection, we evaluated AnoRand in a supervised manner, utilizing actual labels instead
of synthetic ones. This approach offers a more realistic evaluation of its performance.
Once again, AnoRand excelled, showcasing its adaptability and effectiveness in supervised
settings.

2 Related works

Anomaly detection. Anomaly detection, or outlier detection, is a critical technique in machine
learning and statistics for identifying data points that significantly deviate from the norm. Its primary
objective is to detect rare events that might indicate issues or unusual patterns in the data. Anomalies
can stem from various sources, including equipment malfunctions, data errors, fraud, or atypical
behavior. Anomaly detection algorithms are broadly categorized into classical and deep learning-
based methods. Classical methods, which typically assume a normal data distribution, are effective for
simple datasets (or problems), whereas deep learning-based methods excel in complex, non-Gaussian
datasets by learning intricate patterns. Furthermore, these algorithms can be classified into three
approaches: fully supervised, semi-supervised and unsupervised methods, each suited for different
data scenarios.

2

Fully supervised and Semi-supervised algorithms use labeled or partially labeled data to train
a classifier capable of distinguishing normal from anomalous samples. Classical algorithms such
as SVM and Random Forest have been widely used in anomaly detection due to their simplicity
and strong performance, as evidenced by various studies [51, 8, 19, 33]. These algorithms are
well-established and widely adopted for their ability to handle both structured and unstructured
data, making them suitable for various anomaly detection tasks. In addition to classical algorithms,
many popular deep supervised classification algorithms have been adapted and utilized for anomaly
detection purposes [1, 37, 29, 30, 55, 14, 31, 47]. The adaptation of deep learning models for anomaly
detection has gained popularity in recent years, showcasing their flexibility and capability to capture
intricate patterns in complex data. Yoon et al. [47] proposed SPADE a semi-supervised anomaly
detection framework which does not make the assumption that labeled and unlabeled data come from
the same distribution. Their framework uses an ensemble of one class classifiers as the pseudo-labeler
to improve the robustness of pseudo-labeling with distribution mismatch. Both supervised and
semi-supervised methods are constrained by the quality and representativeness of labeled data. They
may struggle when encountering novel anomalies not seen during training and can be challenged
by imbalanced class distributions, leading to a high rate of false negatives. Imbalanced classes can
introduce bias, causing algorithms to fail in learning the minority class effectively.
Unsupervised algorithms offer more flexibility, especially when labeled anomalies are scarce or
when novel anomalies need to be detected. The main limitations of unsupervised methods are that the
detection accuracy may be lower than that of supervised or semi-supervised methods, especially in
cases with high noise or complex data distributions. They also struggle with class imbalance, treating
all anomalies equally. Classical unsupervised algorithms play a crucial role in anomaly detection,
and some well-known examples include K-means and Isolation Forest [25, 24, 32, 16, 52]. Deep
unsupervised algorithms leverage deep learning representations to cluster data into homogeneous
classes. Examples include Deep Support Vector Data Description (DeepSVDD) [36], which employs
the idea of One-Class Support Vector Machines (OCSVM) by training a neural network to learn
a transformation minimizing the volume of a hypersphere in the output space that encloses the
samples of one class. Autoencoders have also been used for anomaly detection [2, 54, 49, 40],
where anomalies are detected by measuring reconstruction errors or deviations from learned data
distributions. Deep Autoencoding Gaussian Mixture Model (DAGMM) [56] optimizes jointly a deep
autoencoder and a Gaussian mixture model in the same learning loop. Reconstruction-based anomaly
detection methods, such as autoencoders, have been shown to lead to a high number of false alarms
[9, 48, 45], as autoencoders may produce blurry output, leading to a smoothing effect that blurs
anomalies, making them appear similar to normal samples. Generative Adversarial Networks (GANs)
have also been employed for anomaly detection [13, 1, 53, 23, 11, 50]. More recent works have
explored attention-based network architectures for anomaly detection, offering improved training
speeds compared to recurrent networks [2, 44, 28, 46]. Kim et al. [20] utilized a multi-level stacked
Transformer architecture coupled with 1D convolutions for time-series anomaly detection. This
approach leverages the strengths of both transformer and 1D convolutional networks to effectively
capture temporal patterns and anomalies in time-series data.
Pseudo Labels Generation. The use of pseudo labels in classification problems is a well-explored
and established practice in the field of machine learning. Numerous authors [42, 15, 27], have
demonstrated the effectiveness of this approach. Specifically, it has been shown that an anomaly
detection problem can be transformed into a supervised learning task. This is achieved by treating
normal samples as one class and artificially generated noise or outliers as another.

This approach leverages the strengths of supervised learning techniques, such as their ability to model
complex relationships in data, while addressing the challenge of label scarcity often encountered
in anomaly detection. The objective of this paper is not an exhaustive analysis of pseudo-label
generation methods, but rather to show the effectiveness of our AnoRand architecture. Readers may
explore other advanced methods, such as those detailed in Cai et al.[6] and combine them with our
model architecture.

3 Problem statement

As seen in the literature, there are mainly three families of anomaly detection methods: supervised
methods, semi-supervised and unsupervised methods. These methods suffer from the hassle of
algorithm picking/parameter tuning, heavy reliance on labels and unsatisfying performance. Labeled
based methods depend on the quality and representativeness of labeled data. They struggle with

3

novel anomalies that were not seen during training, and may also suffer from imbalanced classes.
Unsupervised methods, on the other hand, do not require labeled data, making them more adaptable
to various scenarios. The main limitations of unsupervised methods is that, the detection accuracy
may be lower than supervised or semi-supervised methods, especially in cases with high noise or
complex data distributions. They also struggle with class imbalance, as it treats all anomalies equally.
Moreover, it has been shown [9, 48, 45] that the deep learning-based unsupervised anomaly detection
method, such as auto encoders, leads to a high number of false alarms. This is due to the fact that
autoencoders often result in the reconstructed output being "blurry" compared to the original input,
in particular in image data. This blurriness can make it challenging to distinguish anomalies from
normal data, especially if anomalies involve subtle deviations or fine details.

In this work, our objective is to overcome certain limitations observed in previous approaches,
such as label dependency and high false positives. We introduce a novel semi-supervised anomaly
detection method named Anorand to address these challenges. Our method operates by harmoniously
optimizing a deep autoencoder (AE) and a Multi-layer Perceptronss (MLP) within a single neural
network architecture. This method is closely related to the theoretical work of Steinwart et al. [42],
where they have shown that an anomaly detection problem can be cast as supervised learning between
normal samples and noise. Unlike their work, we have learned the discriminative function in a deep
learning framework.

4 Novelty and contribution

The proposed architecture has two building blocks: Multi-layer Perceptrons (MLP) block and an
autoencoder (AE) block. We call this new method AnoRand (see figure 1).

5 AnoRand method and implementation details

AnoRand jointly optimizes a deep autoencoder and a MLP model in an end-to-end neural network
fashion. The joint optimization in AnoRand empowers the autoencoder to escape from suboptimal
local optima, ultimately reducing reconstruction errors. Autoencoders excel in their ability to learn
compact data representations in a latent space. However, their effectiveness in anomaly detection can
be limited in cases of imbalanced data. Autoencoders, by design, aim to capture essential features of
the input data in the encoding while discarding some fine-grained details. This process often results
in the reconstructed output being "blurry" compared to the original input. The blurring effect is
particularly noticeable in image data, where autoencoders are widely applied. This blurriness can
make it challenging to distinguish anomalies from normal data, especially if anomalies involve subtle
deviations or fine details. Due to the blurring effect, anomalies may appear less distinct from normal
samples in the reconstructed data. This can lead to anomalies being incorrectly classified as normal
because their characteristics are smoothed out during reconstruction.

AnoRand addresses this limitation by concatenating the MLP’s last-layer output to the AE latent
vector. Indeed, the MLP model is particularly adapted for supervised balanced data, but in the
presence of skewed class distributions, MLP tend to learn the characteristics of the majority class.
AnoRand’s primary objective is to learn one class of data, typically the majority class in the context of
anomaly detection, as effectively as possible. It leverages the strengths of autoencoders to represent
data in a latent space and the capability of Multi-layer Perceptronss (MLP) to learn a single class
when the data is highly imbalanced.

First, let us define θ0 and θ1 as the weights of the MLP and the autoencoder blocks, respectively. The
FFT block: F : X −→ Y0 maps the input features x into latent representations z0 = F (x, θ0) and
outputs an anomaly score ŷmlp. This latent vector can be considered as the MLP’s task-specific or
high-level features. The encoding block E : X −→ Z1 of the autoencoder maps the input features x
into latent representations z1 = E(x, θ1). The vector z1 is the autoencoder’s data-specific features.
These two latent vectors are then concatenated into z and feed to the decoder.

z = (z0, z1) = (F (x, θ0), E(x, θ1)) (1)

This combined vector is particularly powerful when we want to perform tasks like generating data
samples that are consistent with both the learned data distribution and the task-specific features. The

4

MLP F (x) ŷmlp LCE(y, ŷmlp)

Encoder E(x)

z0

z1

Decoder D(Z)

X

X̂

Inputs

Reconstructed

Concat

MLP score

LAE = ∥x− x̂∥2

AE loss

Figure 1: Proposed architecture

final model has one input and two outputs. The model takes as input the features X and the pseudo
labels Y generated as described in subsection 5.1. ŷmlp is the probability of the sample being an
anomaly estimated by the noise detection block, and x̂ is the reconstructed signal of the autoencoder
block. The full network architecture is described in Figure 1.

The AnoRand method is implemented in two steps:

• Synthetic Anomaly Generation: In the first step, synthetic anomalies are created by
randomly introducing noise to a small percentage of samples from the training set (e.g., 2%).
This process involves disturbing the data to simulate anomalies artificially. This process
enriches the training dataset with anomalous instances, effectively allowing the model to
learn and adapt to a wider range of anomalies.

• Model Input and Training: In the second step, both the normal data samples and the
synthetic anomalies are used as input to the AnoRand model. The model is then trained on
this combined dataset, in order to distinguish between normal data and anomalies.

The MLP block, plays a pivotal role, serves as a critical component within the AnoRand architecture.
We refer to this block as the "noise detection block" because it exhibits a remarkable ability to identify
instances with anomalies, particularly when pseudo labels are generated with a high level of noise.

5.1 Synthetic label generation

In constructing our semi-supervised anomaly detection model, we addressed the challenge of limited
labeled anomaly data by generating synthetic anomalies. Initially, a subset of samples, denoted
X0, was randomly selected from the training dataset. The remainder of the dataset, not included in
X0, was labeled X1. The transformation of X0 into synthetic anomalies involved a strategic noise
injection process, resulting in a modified set X1

0 . This noise addition simulates the inherent variability
and unpredictability characteristic of real-world anomalies. The efficacy of synthetic anomalies
hinges on the chosen noise generation technique. In our approach, we employed a hybrid method
that integrates Gaussian noise with the Synthetic Minority Over-sampling Technique (SMOTE), as
introduced by Chawla et al.[7]. SMOTE, recognized for its effectiveness in balancing unbalanced
datasets by augmenting the minority class, forms the backbone of our synthetic sample generation.

The implementation of SMOTE involves selecting a sample from the minority class, identifying its
k nearest neighbors and generating synthetic samples. These samples are created by interpolating
between the feature vectors of the chosen sample and its neighbors, scaled by a random factor within

5

the range [0, 1]. This technique was specifically applied to X0, the subset initially designated as
anomalous, with the objective of expanding it to constitute 5% of the total training dataset. To
ensure that the synthetic anomalies align closely with the feature distribution of normal samples,
we integrated Gaussian noise with the SMOTE process. This hybrid approach mitigates the risk of
generating synthetic anomalies that are overly distinct from normal samples in feature space. Such
a nuanced approach is imperative, as anomalies in real-world scenarios often manifest as subtle
deviations from the norm, rather than outright aberrations.

The resultant training dataset, denoted Xtr, comprises three key components: X1, constituting
the majority of normal samples; and X1

0 , representing the artificially generated anomalies via the
SMOTE-Gaussian hybrid method. This structured composition of Xtr, with a 5% inclusion of
synthetic anomalies, is pivotal in equipping the model with a more representative and challenging
training environment, thereby enhancing its capability to accurately detect real-world anomalies. This
pseudo label genration is described in the Figure 2 below:

−6 −4 −2 0 2
Feature 1

−3

−2

−1

0

1

2

3

4

Fe
at
ur
e
2

(a) Unlabeled data

−6 −4 −2 0 2
Feature 1

−3

−2

−1

0

1

2

3

4
Fe
at
u
re
 2

Normal samples
Noisy samples

(b) After noise generation

−6 −4 −2 0 2
Feature 1

−3

−2

−1

0

1

2

3

4

5

Fe
at
u
re
 2

Majority Class
Minority Class

(c) After SMOTE

Figure 2: Synthetic label generation

5.2 Objective function

The final loss function L(θ) combines two individual loss components with a weight factor w.

L(θ1): This component represents the reconstruction error from the autoencoder (AE) block. In
essence, it quantifies how well the AE captures and recreates the essential features of the input data.
Mathematically, it is expressed for each data point xi and its reconstructed counterpart x̂i. This term
encourages the AE to learn a meaningful representation of the normal samples.

LAE =

N∑
i=1

(1− yi)Lmse(xi, x̂i) =

N∑
i=1

(1− yi) ∥xi − x̂i∥2 (2)

Here, the term 1 − yi acts as a filter, considering only the normal samples (yi = 0) in the loss
calculation.

L(θ0): This is the loss calculated using the predictions from the noise detection (ND) block. It
evaluates the model’s capacity to correctly classify data points as either normal or anomalous. It
measures how well the ND block distinguishes between regular data points and outliers or anomalies
in the dataset.

LCE =

N∑
i=1

Lce(yi, ŷ
i
mlp) =

N∑
i=1

yi log(ŷ
i
mlp) + (1− yi) log(1− ŷimlp) (3)

The overall loss function is constructed as a weighted sum of these two components, with the weight
w determining the relative importance assigned to each. The loss function is defined as follows:

6

L = w · LCE + (1− w) · LAE (4)

Where :

• θ = (θ0, θ1). θ0 and θ1 are respectively the parameters of the ND block and the AE block
and θ represents the overall model’s parameters. N is the total number of samples.

• x̂i is the input reconstruction by the AE block and ŷimlp is the estimated probability of
sample i being an anomaly computed by the ND block.

• 0 ≤ w ≤ 1 is crucial in modulating the loss function. It effectively balances the recon-
struction capabilities of the AE block against the anomaly detection efficiency of the ND
block. A higher value of w accentuates the ND block’s contribution, emphasizing anomaly
detection. This can be especially useful in situations where accurate anomaly identification
is of paramount importance. In contrast, when w is set lower, it places more emphasis on
the autoencoder’s ability to faithfully reconstruct the input data, which can be advantageous
when the quality of the normal data reconstruction is a primary concern. When w = 0, the
first loss component (L(θ0)) is entirely ignored and when w = 1, the second loss component
(L(θ1)) is ignored.

The final loss can be rewritten as follows:

L(θ) = w · L(θ0) + (1− w) · L(θ1)

= w

N∑
i=1

L(yi, ŷimlp) + (1− w)

N∑
i=1

L(xi, x̂i)

= −
N∑
i=1

[
(1− w) · (1− yi) ∥xi − x̂i∥2 + w

[
·yi log(ŷimlp) + (1− yi) log(1− ŷimlp)

]]
= −

N∑
i=1

[
w · yi log(ŷimlp) + (1− yi)

[
(1− w) · ∥xi − x̂i∥2 + w · log(1− ŷimlp)

]]
• w · yi log(ŷimlp): This term is associated with the noise detection (ND) block and focuses on

the classification of data points as either anomalous (yi = 1) or non-anomalous (yi = 0). It
calculates the logarithm of the predicted probability ŷimlp for the true class labels yi. When
yi = 1 (indicating an anomaly), this term encourages ŷimlp to be close to 1 indicating high
confidence in the anomaly prediction. It measures how well the model’s predictions ŷimlp

align with the true labels yi. When yi = 1, this term evaluates how well the model predicts
the probability of an anomaly (ŷimlp).

• (1 − yi)
[
(1− w) · ∥xi − x̂i∥2 + w · log(1− ŷimlp)

]
: This part combines contributions

from both the autoencoder (AE) block and the ND block. It quantifies how each block
contributes into the loss of a negative sample.

– (1−w) · ∥xi − x̂i∥2: this component reflects the reconstruction error from the AE
block. When yi = 0 (non-anomaly), it encourages the squared difference between
the input data xi and its reconstruction x̂i to be minimized. This term drives the
AE to capture meaningful data representations. When w is closer to 1, this term
contributes less to the loss, emphasizing data reconstruction.

– w · log(1− ŷimlp): This component is related to the anomaly detection objective.
It encourages the logarithm of (1 − ŷimlp) when yi = 0. In other words, it
encourages the model to assign lower probabilities to non-anomalous data points.
It assesses how well the model predicts the probability of a non-anomaly (1 minus
the probability of an anomaly, 1− ŷimlp) when yi = 0 (indicating a negative class
or non-anomaly).

• Reconstruction Quality: Encouraged by the (1−w) · ∥xi − x̂i∥2 term, this part of the loss
function motivates the AE block to learn meaningful data representations. It measures how

7

accurately the model can reconstruct input data when the data is non-anomalous (yi = 0). A
lower reconstruction error implies that the AE is successful in capturing essential features of
the data.

• Anomaly Detection: Guided by the w · yi log(ŷimlp) and w · log(1 − ŷimlp) terms, the
ND block focuses on accurately classifying data points as anomalies or non-anomalies. It
encourages the model to assign high probabilities (ŷimlp close to 1) to anomalies (yi = 1)
and low probabilities (ŷimlp close to 0) to non-anomalies (yi = 0).

The weight w allows you to adjust the balance between these two objectives. A higher w value
places more emphasis on anomaly detection, while a lower value prioritizes reconstruction quality.
The optimization process during training seeks to minimize this loss function, driving the model to
perform well on both tasks simultaneously.

The objective during model training is to find the optimal configuration of model parameters θ̂ that
minimizes the training loss L(θ). The optimization objective is defined as follows:

θ̂ = argmin
θ

L(θ) = argmin
θ

N∑
i=1

L(Φ(xi, θ), yi) (5)

5.3 Evaluation Metrics

We evaluate the algorithms by using two widely used metrics: AUC ROC (Area Under Receiver
Operating Characteristic Curve) and AUC PR (Area Under Precision-Recall Curve). The AUC
PR shows precision values for corresponding recall values. It provides a model-wide evaluation
like the AUC ROC plot. The AUC PR measures the entire two-dimensional area under the entire
precision-recall curve (by integral calculations) from (0,0) to (1, 1). In all incoming experiments, we
report these two metrics as performance metrics. The higher the values, the better is the algorithm.
To compare the algorithms, we will use AUC PR metric instead of the AUC ROC as Saito et al. [38]
show in their study, the AUC ROC may not be well suited in case of highly imbalanced classes.
In their article [38], these authors showed that AUC ROC could be misleading when applied in
imbalanced classification scenarios instead AUC PR should be used.

5.4 Anomaly score

In the AnoRand model, we leverage two distinct outputs: the prediction from the ND block denoted
as ŷmlp and the AE block’s reconstruction represented as x̂. Both of these outputs can be employed
to classify input samples as anomalies or normal data. To arrive at a robust and comprehensive
prediction of anomalies and outliers, we combine these outputs to calculate the final anomaly score
for each input sample.

This approach capitalizes on the model’s dual capabilities: identifying anomalies by focusing on the
inherent noise in the data via the ND block and its capacity to produce high-quality reconstructions
via the autoencoder. By combining these outputs, the model aims to provide a more comprehensive
and accurate prediction of anomalies and outliers. Let us define ŷAE as the predicted probability of
a sample being an anomaly, estimated using the AE block reconstruction x̂. We hypothesize that
as the AE block learns to represent the normal class, higher reconstruction errors indicate a higher
likelihood of the sample being an anomaly. This is expressed as:

ŷAE =
1

1 + e−∥x−x̂∥2

(6)

To balance the contributions of ŷmlp and ŷAE in the final prediction, we introduce a weight parameter
α. α controls the relative influence of the two blocks’ outputs. It allows for fine-tuning the model’s
behavior based on the specific dataset and the trade-off between noise detection and autoencoder
reconstruction. This adaptability makes the model more versatile and effective across different
scenarios. The calculation of α is based on the third quantile (Q3) of the output probabilities from
both blocks. Specifically, α is determined as follows:

α =
Q1

3

Q0
3 +Q1

3

(7)

8

Where:

• Q1
3 represents the third quantile of the autoencoder block’s predicted probabilities ŷAE .

• Q0
3 represents the third quantile of the noise detection block’s predicted probabilities ŷmlp.

Using quantiles, such as the third quantile, provides a robust measure for estimating the range of
predicted probabilities. This approach is less sensitive to extreme values and outliers, making it
suitable for ensuring that the weight α is derived from a reliable range of values. With the weight α
determined, the final anomaly score denoted as ŷscore is computed as a weighted sum of ŷmlp and
ŷAE :

ŷscore = (1− α) · ŷAE + α · ŷmlp (8)

This final prediction formula allows the model to adaptively combine the strengths of the ND block
and the AE block. When α is close to 1, the ND block’s output has more influence, prioritizing noise
detection. When α is close to 0, the AE block’s output plays a more significant role, emphasizing
autoencoder reconstruction. This dynamic adjustment ensures that the model can effectively handle
various anomaly detection challenges.

6 Experiment

For all upcoming experiments, we set the hyper-parameters of our model as follows: the MLP
block has 2 hidden layers with respectively 32,16 neurons, the Encoder has two hidden layers with
respectively 32,16 neurons and final latent layer has 16 neurons. We chose these values arbitrarily
and did not do any further hyper parameter optimization to seek for best parameters. We did not
spend time on hyperparameter optimization because our goal was to show that the proposed method
works well even with arbitrary hyperparameters. For the state-of-the-art algorithms we used their
implementation in the python Outlier Detection (PyOD) package [52]. We set the hyper-parameters to
there default values. Our models are trained for 200 epochs on 1 GPU (NVIDIA GetFore 8GB) with
batch size 128. The learning rate is 1× 10−4. We compared the performances of our method to those
of 18 baseline unsupervised clustering algorithms including: CBLOF [18],HBOS [12], KNN[34],
IForest [26], LOF [5], OCSVM [39], PCA[41], COF[43], SOD [22], COPOD [24], ECOD [25],
AutoEncoder [21], DeepSVDD [36], GMM [56] and LODA[32]. These unsupervised algorithms are
readily available in the Python Outlier Detection (PyOD) package [52]. We also added a simple MLP
classifier trained using the synthetic labels.

Data generation and splitting. In these experiments, we simulated a classification dataset using the
"make_classification" module from sklearn. The "make_classification" module creates clusters of
samples normally distributed about vertices of an hypercube and assigns an equal number of clusters
to each class. It then introduces interdependence between the created features and adds various types
of noise to the data. We generated a training set of 20000 samples with an imbalance rate of 5%. This
means that the minority class represents 5% of the training dataset. Note that for iteration in each
experiment, we generated new samples by varying the random state parameter.
Choice of the optimal value for w. Recall that w is the weight assigned to the cross entropy of
the noise detection block. We make the hypothesis that when w tends to 1, the influence of the
autoencoder block tends to 0 and the final model is equivalent to a simple Multi-layer Perceptrons
(MLP) model. So by varying the weights, we expect to see the impact of each part of our architecture
to the final model loss. For each value of w ∈ [0, 1], we trained our model 10 times on 10 different
samples and report its AUC PR in figure 3a and the AUC ROC in figure 3b. The figures show that
the model performance increases until 0.2 and decreases very fast when w is greater than 0.2. The
boxplot at 0.2 shows, the model’s AUC PR and AUC ROC are stable. Indeed, at this point, the
interquartile range of the boxplots are small and there are less outliers. These results suggest that in
the proposed architecture, the ND block positively contributes to the performance of the final model
up to a certain level. The optimal value of w lays around 0.2.

Noise level when generating synthetic labels. Recall that the first step of the proposed method
is to generate synthetic labels by introducing some noise inside a very small subset of the normal
samples as explained in subsection 5.1. These noisy sample will then be considered as the abnormal
sample during training. In this subsection we evaluate the impact of the noise level on the models

9

0.0
4

0.0
8

0.1
2

0.1
6 0.2 0.2

4
0.2
8

0.3
2

0.3
6 0.4 0.4

4
0.4
8

0.5
2

0.5
6 0.6 0.6

4
0.7
2

0.7
6 0.8 0.8

4
0.8
8

0.9
2

0.9
6

W

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec
isi
on

 re
ca
ll
AU

C

(a) AUC PR

0.0
4

0.0
8

0.1
2

0.1
6 0.2 0.2

4
0.2
8

0.3
2

0.3
6 0.4 0.4

4
0.4
8

0.5
2

0.5
6 0.6 0.6

4
0.7
2

0.7
6 0.8 0.8

4
0.8
8

0.9
2

0.9
6

W

0.6

0.7

0.8

0.9

RO
C
AU

C

(b) ROC AUC

Figure 3: Performance metrics by varying w

final performance. The final goal is to find out if the amount of noise has an impact on the model final
prediction. Lets denote the noise level as the standard deviation of the Gaussian distribution used
to create the noisy samples. Figure 4a and 4b show the model final performance according to the
noise level used to generate the synthetic labels. In these experiments we trained 10 models for each
noise level. These figures show that the model’s performance increases with the noise level. When
the noise level is less than 0.32, the AUC PR is stable and lies around 45%. Between 0.32 and 0.52,
the performance increases rapidly but very unstable. When the noise level is greater than 0.52, the
model performance becomes more stable and the box plots are more and more small in range. These
experiments suggest that the value of the standard deviation of the Gaussian noise should be greater
than 0.52 to have better performances.

0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48 0.52 0.56 0.6 0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 1.0
Noise level for label generation

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

 re
ca

ll
AU

C

(a) AUC PR

0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48 0.52 0.56 0.6 0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 1.0
Noise level for label generation

0.6

0.7

0.8

0.9

RO
C
AU

C

(b) AUC ROC

Figure 4: Performance metrics for varying noise level when generating labels

6.1 Anomaly detection on synthetic datasets

In this subsection, we compared the performance of our architecture to those of some state-of-the-art
algorithms on synthetic datasets generated using the "make_classification" module from python
sklearn package. For a rigorous assessment of algorithmic performance, we performed multiple
iterations of training and testing for each algorithm (10 times). During these iterations, pseudo
labels were consistently derived from 2% of the training data to ensure fairness and impartiality. We
evaluated the algorithms based on two key performance metrics: the Area Under the Precision-Recall
Curve (AUC PR) and the Area Under the Receiver Operating Characteristic Curve (AUC ROC).

We can see from these two figures that our model outperforms all other models in terms of PRC
AUC. Even when compared to deep learning-based unsupervised methods like Deep Autoencoder,
Variational Autoencoder and Multi-Layer Perceptron (MLP), our approach demonstrated superior
performance, despite sharing similar architectural foundations. Intriguingly, deep learning-based
unsupervised methods, such as DeepSVDD and Autoencoder, exhibited unexpectedly lower perfor-
mance compared to classical techniques. Figure 5b shows that our method takes more time to train
compared to the other algorithms.

6.2 Enhanced latent representations: AnoRand vs. traditional Autoencoder

In Figure 6, we explore the latent representations extracted from the MNIST handwriting dataset,
where we compare the outcomes achieved by a traditional deep autoencoder with those generated
by our innovative AnoRand model. In our experimental setup, we deliberately chose to work with
the handwritten digits 1 and 7 from the MNIST dataset. We chose these two digits because they are

10

Ou
rs ML

P
AB
OD CL

OF FB
HB
OS IF

KN
N LO

F

OC
SV
M PC

A
CO
F

SO
D

CO
PO
D
EC
OD

Au
toE
nco
de
r
VA
E

De
ep
SV
DD
LO
DA

Algorithms

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ec
isi
on

 re
ca

ll
AU

C

(a) AUC PR

Ou
rs ML

P
AB
OD CL

OF FB
HB
OS IF

KN
N LO

F

OC
SV
M PC

A
CO
F

SO
D

CO
PO
D

EC
OD

Au
toE
nco

de
r
VA
E

De
ep
SV
DD

LO
DA

Algorithms

0

20

40

60

80

Ti
m
e(
se
co
nd

s)

(b) Algorithm Training time in seconds

Figure 5: Performance metrics on synthetic data set for unsupervised algorithms

difficult to separate. Indeed, their handwritten representations bear striking similarities, making them
notoriously difficult to distinguish. For all practical purposes, we designated the digit 1 as "Normal,"
representing typical handwriting. In a departure from convention, we introduced an element of
anomaly by randomly selecting 5% of the data points from digit 7, designating them as anomalies.
Thus, our final dataset was composed of 5% anomalies, providing a controlled environment to
evaluate our anomaly detection models.

Within this experimental framework, we constructed three distinct models: an AE, a variational
AE and our novel AnoRand. Notably, all three models shared a similar architecture, featuring
a comparable number of layers, neurons and are implemented within an unsupervised learning
framework. Our results show that when it comes to image reconstruction, both AE and VAE showed
superior capabilities (see figure 6d). This phenomenon can be attributed to their inherent nature, which
drives them to learn representations of all classes present in the data. In contrast, AnoRand, by design,
primarily focuses on a single class during training, akin to a one-class model. Consequently, it excels
at reconstructing instances from the normal class (digit 1) but faces limitations when dealing with
digit 7, which it considers as an anomaly. However, the results in figure 7 demonstrate that AnoRand
surpasses AE and VAE in anomaly detection tasks. The primary reason behind this performance
differential lies in AnoRand’s exclusive focus on learning the normal class. This specialized training
equips AnoRand to effectively spot data points from the anomaly class, thereby minimizing false
negatives. In contrast, AE and VAE, due to their broader learning objectives, exhibit a higher
incidence of false positives, primarily because data from the anomaly class produces reconstructions
very similar to those of the normal class.

A visual inspection of the latent vectors, as depicted in Figure 6, further corroborates AnoRand’s
effectiveness. The latent vectors generated by AnoRand exhibit a clear demarcation between the
two classes, demonstrating its remarkable discriminative power. In stark contrast, the latent vectors
produced by AE and VAE fail to achieve such clear separability, revealing the inherent challenge
posed by these models in effectively distinguishing between the classes. These results underscore the
superior performance of AnoRand in crafting latent representations that transcend the capabilities of
conventional autoencoders.

6.3 Unsupervised anomaly detection on real world datasets

We compared the performance of our method (AnoRand) to those of some state-of-the-art unsu-
pervised methods on the ADBench anomaly detection benchmark [16]. In there paper, Han et al.
[16] compared the performances of 14 algorithms on 57 benchmark datasets. The datasets cover
different fields including healthcare, security, and more. We grouped the datasets into four categories
to make the comparison easy: NLP datasets, Healthcare datasets, Science datasets and datasets from
other fields (documents, web etc.). In there paper, the authors compared supervised, semi-supervised
and unsupervised anomaly detection methods on these datasets. In our study, we only focus on
the unsupervised algorithms of the benchmark. In table 1 and figure 8, we report the algorithms
performance and their rankings on the the ADBench real-world datasets. In figure 8a, the boxplots
show that our model has best ranking among all its counterpart unsupervised algorithms. These

11

−4 −2 0 2 4
Dim 1

−4

−2

0

2

4

Di
m
 2

label
0.0
1.0

(a) AnoRand latent

0 2 4 6 8
Dim 1

0

5

10

15

20

25

Di
m
 2

label
0.0
1.0

(b) AE latent

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Dim 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Di
m
 2

label
0.0
1.0

(c) VAE latent

Original

AE

AnoRand

VAE

(d) Reconstruction

Figure 6: AnoRand latent representation compared to traditional autoencoders

An
oR
an
d AE VA

E

Algorithms

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec
isi
on

 re
ca
ll
AU

C

(a) Precision recall AUC
An
oR
an
d AE VA

E

Algorithms

0.975

0.980

0.985

0.990

0.995

1.000

RO
C
AU

C

(b) ROC AUC
An
oR
an
d AE VA

E

Algorithms

0.94

0.95

0.96

0.97

0.98

0.99

1.00

AC
C

(c) Accuracy

Figure 7: Performance of AnoRand compared to traditional autoencoders

results show that our model has best overall ranking among the tested algorithms. Indeed, figure
8a hows that AnoRand is ranked first (1st) on 22 datasets, second (2nd) on 5, third (3rd) on 6 and
fourth (4th) on 4. The results also show in situations where another algorithm outperforms ours, the
performance gap is very small in most cases.
Results on image classification datasets. This category includes a diverse range of datasets specif-
ically curated for tasks related to computer vision and image classification datasets such as Mnist,
CIFAR10 and MVTec. These datasets are essential for training and evaluating machine learning
and deep learning models, particularly for tasks such as image recognition, object detection, image
segmentation and more. MNIST is a dataset of handwritten digits, consisting of 28x28 pixel grayscale
images. MNIST is often used as a benchmark dataset for digit recognition tasks. The CIFAR datasets
consist of small 32x32 pixel color images. CIFAR-10 contains 60,000 images across ten different

12

classes, while CIFAR-100 expands to 100 classes. These datasets are popular for testing image
classification algorithms. The MVTec anomaly detection dataset takes a different angle, delving into
industrial inspection and anomaly detection. It includes images of industrial objects and textures,
encompassing both regular and anomalous instances. These data sets have been used to develop
algorithms capable of identifying defects or irregularities in manufacturing processes. Pre-trained
ResNet18 models [17] have been used to extract data embedding from the original images. In the
context of image classification, pre-trained deep learning models offer a shortcut to feature extraction.
Instead of training a neural network from scratch, we use a pre-trained model like ResNet18 to obtain
meaningful embeddings from images. These embeddings encapsulate high-level information about
the content of the images.

In Table 1, the performance of various algorithms on a set of image benchmark datasets is presented.
In particular, our AnoRand algorithm demonstrates impressive results, surpassing all reference
algorithms on 6 of 11 benchmark datasets. This remarkable feat signifies AnoRands’ robustness and
adaptability, as it excels in identifying anomalies across diverse image categories and characteristics.
Moreover, it achieves the second-best performance on an additional 2 datasets. This demonstrates
that, even in scenarios where it does not clinch the top spot, it remains a good contender, showcasing
its versatility and ability to adapt to varying anomaly patterns. These outcomes underscore the
effectiveness and competitiveness of the AnoRand algorithm in the realm of image analysis and
anomaly detection."

Results on NLP datasets. For the natural language processing (NLP) datasets, they used a BERT
(Bidirectional Encoder Representations from Transformers) [10] pre-trained on the BookCorpus and
English Wikipedia to extract the embedding of the token. BERT is a state-of-the-art language model
that belongs to the Transformer family of models. It’s designed to understand and represent the
contextual relationships between words (tokens) in a text corpus. BERT’s architecture incorporates a
deep bidirectional transformer encoder. NLP data sets consist of text data and are vital for training
and evaluating models that handle language-related tasks, including text classification, sentiment
analysis, named entity recognition, machine translation and more. These datasets often comprise a
collection of text documents, sentences or tokens, each associated with specific labels or annotations.

Recall that these datasets represent a diverse collection of textual data, ranging from sentiment analysis
tasks to speech recognition challenges, each posing unique linguistic and contextual intricacies. On
these datasets, AnoRand outperforms the other algorithms on the speech and Imdb dataset, showcasing
its remarkable ability to distinguish outliers in spoken and written language. Even in scenarios where
it does not clinch the top spot, it consistently holds its own, securing a respectable third place on
the Amazon, Agnews and Yelp datasets. This demonstrates AnoRand’s reliability and adaptability
across a spectrum of NLP tasks and challenges. The algorithm’s performance in the NLP benchmark
datasets underscores its versatility and effectiveness in grappling with the nuances of linguistic data.

Results on Healthcare datasets. These datasets encapsulate a diverse array of medical data, ranging
from Hepatitis detection to cancer diagnosis, each carrying profound implications for patient care and
health monitoring. Table 1 shows that AnoRand consistently outperforms its algorithmic counterparts
on a significant 40% of the benchmark datasets, securing the top spot on four out of the ten datasets.
Moreover, AnoRand has the best overall ranking across all ten healthcare datasets, demonstrating its
effectiveness in addressing the unique challenges posed by healthcare data. Whether it’s identifying
anomalies in medical images, patient records or clinical observations, AnoRand proves to be a
promising and robust solution.
Results on Other datasets. In this category, we include all other datasets from other fields such as
experiment science, Sociology, Botany, Finance etc. The inclusion of datasets from such disparate
fields underscores the universality of anomaly detection as a critical analytical tool. On these datasets,
AnoRand outperforms the other algorithms on 10 out of 19 datasets. Moreover, even in cases
where ’AnoRand’ doesn’t achieve the best performance, it maintains its competitive edge, securing
a position no lower than fourth on 8 additional datasets. This unwavering consistency reaffirms
the algorithm’s robustness and its suitability for a multitude of application domains. It underscores
the algorithm’s potential to address anomalies across a wide spectrum of scenarios, ranging from
scientific experiments to social phenomena and financial markets.

13

Table 1: AUC PR (in %) of 15 unsupervised algorithms on 42 real-world datasets. For our method
we computed the average AUC PR over 10 runs and added the standard deviation. The performance
rank is shown in parenthesis (the lower, the better), and mark the best performing method(s) in bold.

Category Dataset PCA OCSVM LOF CBLOF COF HBOS KNN SOD COPOD ECOD Deep SVDD DA GMM LODA Iforest Ours
Im

ag
e

an
d

C
V

mnist 39.93(2) 33.2(4) 20.9(12) 28.82(6) 25.51(9) 12.51(15) 35.53(3) 19.15(14) 21.35(11) 31.93(5) 19.72(13) 23.75(10) 25.86(8) 27.71(7) 50.17 ±1.25 (1)
optdigits 2.76(14) 2.92(13) 6.06(4) 10.08(2) 4.42(7) 10.03(3) 3.06(12) 4.39(8) 4.36(9) 3.43(11) 2.5(15) 5.59(5) 3.95(10) 5.09(6) 56.34 ±5.42(1)
skin 17.4(12) 19.03(7) 18.25(10) 29.82(2) 16.38(13) 23.7(6) 28.72(3) 24.61(5) 17.99(11) 15.96(14) 18.48(8) NA/NA 18.44(9) 26.08(4) 52.20 ±12.26(1)
FashionMNIST 31.42(7) 31.97(6) 16.85(14) 38.9(2) 20.73(12) 29.43(9) 33.87(3) 28.72(10) 30.32(8) 32.53(4) 17.43(13) 14.44(15) 27.32(11) 32.35(5) 43.16 ±2.48(1)
MNIST-C 16.88(8) 17.72(7) 13.84(13) 27.62(2) 14.53(12) 15.46(11) 22.98(3) 15.68(10) 15.9(9) 18.24(5) 8.34(15) 11.37(14) 18.63(4) 17.99(6) 35.21 ±1.26(1)
satimage-2 85.69(4) 82.71(5) 4.29(14) 97.09(1) 8.8(13) 78.04(7) 39.14(10) 26.11(11) 76.55(8) 63.25(9) 3.08(15) 22.07(12) 80.52(6) 93.45(3) 94.12 ±01.80(2)
MVTec-AD 54.06(9) 51.44(11) 54.9(7) 58.52(1) 46.59(13) 55.22(6) 55.55(4) 51.48(10) 54.64(8) 55.44(5) 36.5(15) 45.66(14) 49.73(12) 56.04(3) 57.65±0.12(2)
letter 6.86(13) 6.1(15) 34.02(1) 14.8(6) 21.43(5) 8.38(10) 30(2) 28.63(3) 6.77(14) 6.94(11) 9.29(8) 11.68(7) 6.87(12) 8.49(9) 28.47 ±1.84(4)
celeba 15.89(1) 10.73(6) 1.71(15) 11.33(5) 1.77(14) 13.82(2) 3.14(10) 2.66(11) 13.69(3) 12.37(4) 2.34(12) 1.95(13) 4.04(9) 8.96(7) 5.61 ±0.50(8)
CIFAR10 10.59(6) 10.19(7) 13.02(1) 10.61(5) 11.61(2) 8.38(13) 11.13(3) 11.06(4) 8.77(12) 9.29(10) 8.05(14) 7.73(15) 9.72(9) 8.97(11) 10.04 ±0.91 (8)

N
L

P

speech 1.97(11) 1.96(12) 2.52(3) 1.99(10) 2.25(5) 2.09(7) 2.02(9) 2.13(6) 1.94(13) 1.77(15) 5.12(2) 2.03(8) 1.79(14) 2.31(4) 7.65 ±0.11 (1)
Imdb 4.55(13) 4.44(15) 4.83(6) 4.75(7) 5.16(2) 4.74(8) 4.49(14) 4.7(10) 4.9(4) 4.9(4) 5.06(3) 4.65(11) 4.59(12) 4.74(8) 7.65±0.25 (1)
Agnews 5.74(9) 5.69(10) 14.35(1) 7.02(6) 12.21(2) 5.58(11) 8.61(4) 8.4(5) 5.43(12) 5.43(12) 4.45(15) 5.41(14) 5.93(8) 6.04(7) 9.04 ±1.58 (3)
Amazon 5.85(10) 5.64(14) 5.72(12) 6.07(5) 5.74(11) 5.98(7) 6.23(2) 6.4(1) 6.08(4) 6.06(6) 3.84(15) 5.65(13) 5.92(9) 5.95(8) 6.20 ±0.23 (3)
Yelp 7.62(13) 7.75(10) 8.52(5) 7.68(11) 8.68(4) 7.81(9) 9.85(1) 9.2(2) 8.01(6) 7.98(7) 6.39(15) 6.72(14) 7.65(12) 7.88(8) 8.80 ±1.32 (3)

H
ea

lth
ca

re

WBC 82.29(7) 89.87(4) 5.57(14) 92.27(2) 9.73(12) 73.56(9) 66.55(10) 54(11) 86.19(5) 86.19(5) 6.38(13) NA/NA 78.67(8) 90.49(3) 94.55 ±4.66(1)
Cardiotocography 47.95(4) 52.61(2) 30.66(12) 45.44(5) 28.21(14) 38.28(9) 34.79(10) 27.99(15) 40.46(8) 43.57(6) 34.03(11) 30.61(13) 48(3) 41.47(7) 61.39 ±5.74(1)
Lymphography 97.02(4) 93.59(5) 23.08(12) 97.62(2) 36.68(11) 91.83(6) 38.69(10) 22.65(13) 88.68(8) 90.87(7) 4.58(15) 19.52(14) 44.54(9) 97.31(3) 99.68 ±0.01(1)
breastw 95.11(7) 82.7(11) 28.55(13) 91.54(9) 27.6(14) 97.71(4) 92.19(8) 84.88(10) 99.4(1) 98.54(2) 50.92(12) NA/NA 97.04(5) 96.04(6) 98.17 ±0.40(3)
WPBC 23.01(6) 22.93(7) 20.29(15) 21.32(13) 21.3(14) 23.04(5) 21.49(11) 25.37(3) 22.81(8) 21.38(12) 26.24(1) 22.49(9) 25.58(2) 22.42(10) 23.06 ±0.44(4)
Hepatitis 36.65(4) 29.44(8) 13.69(15) 31.54(6) 14.39(14) 37.73(3) 21.95(13) 24.89(10) 41.5(1) 37.82(2) 22.17(12) 22.96(11) 30.9(7) 26.25(9) 35.20 ±7.17(5)
thyroid 44.34(5) 21.23(10) 20.81(11) 29.95(7) 28.5(8) 50.98(3) 34.98(6) 23.56(9) 19.64(12) 54.05(2) 2.5(15) 16.06(13) 14.68(14) 63.11(1) 47.79 ±2.77(4)
annthyroid 16.12(9) 10.37(13) 15.71(10) 13.69(12) 14.39(11) 16.99(6) 16.74(7) 18.84(4) 16.58(8) 24.65(2) 21.95(3) 9.64(14) 7.06(15) 30.47(1) 17.02 ±0.80 (5)
Pima 54.03(5) 50(8) 47.18(10) 53.19(6) 44.7(11) 56.61(1) 55.14(4) 48.24(9) 55.19(3) 37.3(14) 35.87(15) 41.55(13) 44.09(12) 55.82(2) 50.09±0.89(7)
cardio 66.06(2) 62.89(3) 23.79(14) 61.95(4) 28.67(12) 52.1(9) 40.72(10) 28.54(13) 60.42(5) 68.59(1) 22.5(15) 28.92(11) 53.41(7) 59.95(6) 52.53 ±4.68 (8)

O
th

er
s

musk 99.89(4) 10.61(10) 2.82(14) 100(1) 2.61(15) 100(1) 9.65(11) 7.59(12) 34.79(8) 34.95(7) 5.39(13) 32.75(9) 47.6(6) 99.61(5) 100 ±0(1)
Waveform 5.79(11) 4.37(14) 11.33(5) 18.98(2) 14.11(3) 5.86(10) 13.04(4) 9.66(6) 6.9(7) 6.86(8) 4.83(12) 3.11(15) 4.71(13) 6.24(9) 33.26 ±0.79(1)
cover 9.8(7) 11.41(5) 8.12(9) 5.83(13) 4(14) 6.83(11) 6.16(12) 3.88(15) 11.37(6) 15.63(3) 8.12(9) 27.59(2) 13.06(4) 8.85(8) 34.19 ±0.54(1)
fault 32.76(12) 38.44(8) 38.38(9) 43.98(4) 41.56(5) 36.47(10) 54.45(2) 48.01(3) 30.54(15) 30.82(14) 39.15(7) 33.48(11) 31.03(13) 41.09(6) 63.20 ±1.51 (1)
donors 17.9(4) 9.86(9) 7.88(12) 6.89(13) 8.8(11) 23.36(2) 14.75(5) 9.69(10) 21.58(3) 14.17(6) 6.38(14) 10.53(8) 3.78(15) 12.74(7) 90.85 ±6.83(1)
PageBlocks 51.71(3) 49.14(7) 39.64(11) 49.65(5) 41.02(10) 33.32(14) 45.39(9) 37.83(12) 37.65(13) 49.3(6) 31.45(15) 53.25(2) 51.29(4) 46.04(8) 65.26 ±11.50(1)
magic.gamma 59.27(7) 51.43(13) 54.76(10) 68.85(3) 54.12(12) 62.41(6) 75.63(2) 67.89(4) 59.18(8) 54.38(11) 49.17(14) 46.92(15) 58.49(9) 64.72(5) 77.93 ±1.29(1)
fraud 22.91(11) 47.58(2) 47.4(3) 47.52(2) 22.86(12) 25.89(10) 47.3(4) 31.37(8) 42.82(7) 42.99(6) 8.97(15) 21.32(14) 46.37(5) 21.67(13) 60.08 ±0.15 (1)
vertebral 10.49(10) 10.94(8) 14.24(3) 11.58(6) 13.85(4) 9.23(14) 10.57(9) 11.79(5) 8.89(15) 11.24(7) 10.49(10) 15.24(2) 9.68(13) 10.46(12) 20.47 ±0.11(1)
SpamBase 41.57(7) 40.12(10) 35.16(13) 41.18(9) 34.73(14) 50.03(5) 41.42(8) 40.03(11) 56.68(1) 53.95(3) 42.23(6) NA/NA 35.88(12) 51.75(4) 55.17 ±0.50(2)
landsat 16.18(15) 16.21(14) 24.69(7) 30.97(3) 24.95(6) 22.03(10) 24.65(8) 26.38(4) 17.48(13) 25.17(5) 38.83(1) 24.48(9) 18.86(12) 19.81(11) 38.54 ±4.54 (2)
shuttle 92.35(7) 85.29(8) 13.76(14) 60.98(9) 12.17(15) 96.4(4) 20.38(11) 20.27(12) 96.56(2) 95.76(5) 15.86(13) 93.2(6) 48.75(10) 97.62(1) 96.52 ±0.05(3)
Stamps 41.09(4) 31.39(9) 21.29(12) 23.66(10) 16.5(14) 35.24(7) 23.53(11) 20.28(13) 43.1(2) 38.17(6) 11.4(15) 43.72(1) 34.6(8) 39.49(5) 41.66 ±0.39(3)
satellite 59.64(7) 57.61(9) 37.68(15) 61.48(6) 39.7(14) 67.25(2) 50.01(11) 47.23(12) 56.58(10) 65.94(3) 40.11(13) 58.33(8) 61.94(5) 65.92(4) 73.24 ±0.49(1)
wine 30.87(5) 21.56(7) 7.77(14) 5.83(15) 8.45(11) 43.08(3) 8.43(12) 7.95(13) 45.71(2) 18.37(9) 21.14(8) 17.51(10) 48.82(1) 25.96(6) 41.59 ±1.76(4)
campaign 27.9(6) 29.22(5) 14.51(12) 23.99(9) 13.01(14) 37.99(2) 27.18(7) 18.88(10) 38.58(1) 37.4(3) 11.6(15) 14.62(11) 13.47(13) 32.26(4) 23.99 ±1.76 (8)
http 56.43(3) 46.86(5) 3.82(12) 47.53(4) 9.57(10) 44.79(6) 0.7(13) 8.32(11) 35.19(7) 16.61(9) 29.3(8) NA/NA 0.67(14) 90.83(1) 60.24 ±0.07(2)
InternetAds 32.55(11) 54.68(2) 40.49(9) 58.13(1) 38.67(10) 53.97(3) 43.23(7) 27.69(13) 50.97(5) 51.07(4) 27.91(12) NA/NA 23.89(14) 48.6(6) 42.79 ±1.43 (8)
census 10.02(1) 6.76(12) 5.45(13) 7.44(9) 4.88(15) 8.69(6) 9(4) 8.52(7) 9.92(2) 9.72(3) 6.87(11) 8.71(5) 5.01(14) 7.78(8) 7.31 ±0.10 (10)

6.4 Supervised anomaly detection on real world datasets

In this section, we applied our model, AnoRand, as a fully supervised method to 29 real-world
anomaly detection benchmark datasets. This approach represents a paradigm shift where we leverage
the true labels available within these datasets to train our models. Our objective is to evaluate the
performance of our methodology against 16 state-of-the-art supervised anomaly detection algorithms.
This rigorous examination allows us to assess the effectiveness and competitiveness of our model
within the context of supervised anomaly detection techniques.

For this analysis, we utilized the same datasets as in the semi-supervised case. However, in this
instance, we employed the true labels to train our models. These labels act as definitive guides,
directing our models towards the most accurate anomaly detection outcomes. The state-of-the-art
supervised methods include: Support Vector Machine (SVM), GANomaly [1], DeepSAD [37],
REPEN [29], DevNet[31], PReNet[30], FEAWAD[55], XGBOD[51],LightGBM[19], CatBoost[33],
Naive Bayes (NB) [3], Multi-layer Perceptron (MLP) [35], Random Forest (RF) [4], XGBoost [8],
Residual Nets (ResNet)[14], FTTransformer [14] etc.

The results of the supervised algorithms are presented in Table 2, and the overall ranking is depicted
in Figure 8b. These results demonstrate that in the supervised scenario, both our method (AnoRand)
and CatBoost exhibit the best overall performance in terms of AUC-PR and ranking. A detailed
analysis of Table 2 reveals that AnoRand consistently ranks in the top four when it is not the top
performer, highlighting its reliability and effectiveness across diverse real-world datasets.

Furthermore, the results indicate that AnoRand often outperforms its deep learning-based counterparts
on most of the benchmark datasets. Table 2 also highlights our method’s superior performance on
larger datasets such as CelebA, Fraud, CIFAR-10, Census and Cover datasets.

Additionally, these findings underscore the enduring strength of classical methods like SVM ,
CatBoost and LGB (Light Gradient Boosting). These traditional approaches continue to show
formidable performance, often surpassing their deep learning-based counterparts.

14

Ours PCA
OCSVM LO

F
CBLO

F
COF

HBOS
KNN

SOD
COPOD

ECOD

Deep SVDD

DA GMM
LO

DA
Ifo

rest

Algorithms

2

4

6

8

10

12

14

Ra
nk

(a) Unsupervised rankings (lower the better)

Ours

GANomllly

DeepSAD
REPEN

DevNet

PReNel

FE
AWAD

XGBOD
 NB

SVM MLP
ResN

et

FTTra
ns fo

rm
er RF

LG
B

XGB
CatB

Algorithms

2

4

6

8

10

12

14

16

Ra
nk

(b) Supervised rankings (lower the better)

Figure 8: Algorithms rankings on real-world data sets

Table 2: AUC PR (in %) of 17 Supervised algorithms. For our method we computed the average
AUC PR over 10 runs. The performance rank in parenthesis and best performing method(s) in bold.

Datasets GANomllly DeepSAD REPEN DevNet PReNel FEAWAD XGBOD NB SVM MLP ResNet FTTrans former RF LGB XGB CatB Ours
campaign 20.82(16) 46.45(13) 15.39(17) 49.78(12) 50.98(10) 37.76(15) 61.45(2) 38.67(14) 51.95(8) 51.6(9) 50.33(11) 54.05(7) 60.31(4) 59.83(5) 58.63(6) 60.96(3) 62.92 ±1.11(1)
celeba 6.93(16) 37.04(3) 3.31(17) 35.5(5) 34.49(7) 26.01(13) 37.1(2) 11.6(15) 32.2(10) 31.1(12) 24.68(14) 33.37(8) 32.08(11) 34.64(6) 33.02(9) 36.36(4) 43.43 ±1.09(1)
cover 0.92(17) 98.18(7) 96.54(14) 97.44(10) 97.25(13) 94.1(15) 97.63(9) 92.12(16) 98.27(6) 97.36(12) 98.7(3) 98.95(2) 98.1(8) 98.37(5) 97.41(11) 98.45(4) 99.55 ±0.08(1)
fraud 42.84(14) 51.77(9) 38.4(15) 59.09(3) 58.72(4) 57.48(6) 45.83(13) 21.73(16) 51.19(10) 54.51(8) 48.8(11) 54.99(7) 62.77(2) 15.52(17) 47.34(12) 58.67(5) 73.71±4.36(1)
CIFAR10 9.58(17) 38.61(10) 44.06(2) 39.52(8) 39.39(9) 31.04(13) 40.6(7) 10.77(16) 42.5(3) 38(12) 38.22(11) 28.13(14) 23.98(15) 42.03(5) 41.3(6) 42.28(4) 47.67±11.42(1)
census 8.46(17) 48.55(10) 10.35(16) 48.11(11) 49.12(9) 33.77(14) 60.7(5) 10.97(15) 53.14(7) 49.39(8) 42.95(13) 45.35(12) 57.07(6) 61.81(3) 60.95(4) 63.13(1) 62.04 ±0.35(2)
Waveform 4.55(17) 52.55(9) 22.34(14) 21.5(15) 24.61(13) 32.51(12) 54.97(7) 20.4(16) 69.28(1) 61.47(3) 50.48(11) 56.22(6) 51(10) 56.86(5) 53.89(8) 58.13(4) 67.20 ±0.17(2)
lmdb 5.05(17) 35.68(5) 29.74(10) 26.93(13) 27.52(12) 31.85(8) 28.69(11) 9.34(16) 48.29(1) 46.38(3) 40.71(4) 23.94(14) 11.26(15) 32.3(7) 30.83(9) 32.89(6) 47.35 ±2.28(2)
magic.gamma 52.2(17) 88.07(10) 77.59(13) 74.86(15) 75.47(14) 80.79(12) 88.68(8) 68.16(16) 87.81(11) 88.1(9) 88.77(7) 89.02(6) 89.37(5) 90.06(2) 89.68(4) 90.68(1) 89.98 ±0.47(3)
wilt 4.93(17) 85.13(10) 6.7(16) 8.18(15) 8.36(14) 37.94(12) 93.01(5) 40.92(11) 88.15(9) 34.94(13) 94.38(2) 94.53(1) 90.59(8) 91.83(6) 90.86(7) 93.39(4) 93.66 ±2.09(3)
Amazon 6.08(16) 35.31(5) 34.1(6) 32.76(7) 32.65(9) 31.13(12) 30.1(13) 5.21(17) 48.05(1) 45.78(2) 38.71(4) 23.17(14) 9.82(15) 32.54(10) 32(11) 32.71(8) 42.54 ±1.90(3)
FashionMNlST 23.88(17) 86.78(3) 86.09(7) 84.07(10) 83.08(11) 76.64(15) 85.42(8) 29.05(16) 81.81(12) 85.08(9) 86.29(5) 81.79(13) 76.87(14) 87.11(1) 86.9(2) 86.19(6) 86.38 ±9.72(4)
Agnews 6.34(17) 75.56(3) 65.97(7) 56.15(14) 57.3(13) 62.46(11) 61.84(12) 8.82(16) 72.66(5) 78.37(1) 76.51(2) 63.03(10) 29.8(15) 64.65(9) 64.83(8) 66.27(6) 74.16 ±10.68(4)
annthyroid 45.77(14) 78.04(11) 45.07(16) 45.35(15) 44.64(17) 53.95(13) 93.23(2) 60.64(12) 80.97(9) 79.61(10) 85.09(8) 86.5(7) 93.25(1) 92.97(3) 92.44(4) 92.36(5) 87.04 ±1.68(6)
cardio 53.07(16) 95.14(11) 96.27(9) 92.91(14) 93.03(13) 94.6(12) 98.46(2) 81(15) 97.85(3) 96(10) #N/A 98.65(1) 97.79(4) 97.4(5) 96.96(8) 97(7) 97.14 ±0.93(6)
SVHN 8.06(16) 31.84(12) 35.7(4) 36.07(2) 37.1(1) 24.98(13) 32.39(11) 5.6(17) 35.97(3) 34.03(10) 35.12(5) 24.87(14) 17.52(15) 34.16(8) 34.14(9) 34.45(7) 34.45 ±12.39(6)
letter 16.59(17) 43.58(12) 54.56(11) 32.8(14) 35.94(13) 30.17(15) 71.78(4) 19.5(16) 61.32(9) 56.3(10) 74.77(2) 70.47(6) 69.76(7) 73.44(3) 71.06(5) 79.14(1) 64.04 ±1.74(8)
fault 55.63(17) 73.77(11) 69.59(12) 64.79(14) 68.92(13) 64.77(15) 77.52(6) 57.44(16) 74.86(9) 75.47(8) 76.6(7) 79.65(5) 82.69(3) 83.41(2) 81.6(4) 83.7(1) 74.5 ±1.95(10)
MVTee-AD 57.05(16) 96.41(7) 56.48(17) 88.8(12) 87.18(14) 90.87(11) 97.92(5) 66.75(15) 88.38(13) 95.26(8) 97.89(6) 95.13(9) 98.55(3) 98.67(1) 98.33(4) 98.62(2) 94.11 ±2.38(10)

7 Conclusion

In this paper, we proposed a new semi supervised anomaly detection method based on deep au-
toencoder architecture. This new method, that we called AnoRand, jointly optimizes the deep
autoencoder and the FFP model in an end-to-end neural network fashion. Our method is performed
in two steps: we first create synthetic anomalies by randomly adding noise to few samples from the
training data; secondly, we train our deep learning model in a supervised way with the new labeled
data. The main idea of this new method is to learn the majority class as well as possible by taking
advantage of the ability of auto encoders to represent data in a latent space and the ability of Feed
Forward Perceptron (FFP) to learn one class when the data is highly imbalanced. Our method takes
advantage of these limitations of FFP models in case of imbalance classes and use them to reinforce
the autoencoder capabilities. Our experimental results show that our method achieves state-of-the-art
performance on synthetic datasets and 57 real-world datasets, significantly outperforming existing
unsupervised alternatives. Moreover, on most of the benchmark datasets whatever the category,
AnoRand outperforms all its counterpart deep learning based methods. We also tested our method
(AnoRand) in a supervised way by using the actual labels to train the model instead of creating syn-
thetic label as we did in the semi supervised case. The results show that it has very good performance
compared to most of state-of-the-art supervised algorithms.

The main limitation of our method lies in its sensitivity to the choice of aggregation weight w, which
influences the contributions of the two building blocks. The optimal w can be determined via grid
search. Another challenge is the requirement for a substantial amount of data to train the model,
potentially leading to longer training times compared to counterpart algorithms. Finally, the method
necessitates the creation of pseudo labels when labeled data is unavailable. However, our experiments
showed that the method’s performance is not heavily dependent on the label generation process.
One can employ any other label generation process, provided the generated labels are "close" in
distribution to the normal ones.

15

References
[1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Ganomaly: Semi-supervised

anomaly detection via adversarial training. In Computer Vision–ACCV 2018: 14th Asian
Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected
Papers, Part III 14, pages 622–637. Springer, 2019.

[2] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga.
Usad: Unsupervised anomaly detection on multivariate time series. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining, pages
3395–3404, 2020.

[3] Thomas Bayes. Lii. an essay towards solving a problem in the doctrine of chances. by the late
rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfr s. Philosophical
transactions of the Royal Society of London, (53):370–418, 1763.

[4] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
[5] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying

density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 93–104, 2000.

[6] Jinyu Cai and Jicong Fan. Perturbation learning based anomaly detection. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[7] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–
357, 2002.

[8] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[9] Anne-Sophie Collin and Christophe De Vleeschouwer. Improved anomaly detection by training
an autoencoder with skip connections on images corrupted with stain-shaped noise. In 2020
25th International Conference on Pattern Recognition (ICPR), pages 7915–7922. IEEE, 2021.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

[11] Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan
Veeramachaneni. Tadgan: Time series anomaly detection using generative adversarial networks.
In 2020 IEEE International Conference on Big Data (Big Data), pages 33–43. IEEE, 2020.

[12] Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast unsuper-
vised anomaly detection algorithm. KI-2012: poster and demo track, 1:59–63, 2012.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[14] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in Neural Information Processing Systems, 34:18932–
18943, 2021.

[15] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 297–304. JMLR Workshop and Conference
Proceedings, 2010.

[16] Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly
detection benchmark. Advances in Neural Information Processing Systems, 35:32142–32159,
2022.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[18] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers.
Pattern recognition letters, 24(9-10):1641–1650, 2003.

16

[19] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

[20] Jina Kim, Hyeongwon Kang, and Pilsung Kang. Time-series anomaly detection with stacked
transformer representations and 1d convolutional network. Engineering Applications of Artificial
Intelligence, 120:105964, 2023.

[21] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[22] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier detection in
axis-parallel subspaces of high dimensional data. In Advances in Knowledge Discovery and
Data Mining: 13th Pacific-Asia Conference, PAKDD 2009 Bangkok, Thailand, April 27-30,
2009 Proceedings 13, pages 831–838. Springer, 2009.

[23] D Li, D Chen, B Jin, L Shi, J Goh, and SK Ng. Madgan: Multivariate anomaly detection for
time series data with generative adversarial networks: 703–716, 2019.

[24] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier
detection. In 2020 IEEE international conference on data mining (ICDM), pages 1118–1123.
IEEE, 2020.

[25] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen. Ecod: Unsu-
pervised outlier detection using empirical cumulative distribution functions. IEEE Transactions
on Knowledge and Data Engineering, 2022.

[26] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE
International Conference on Data Mining, pages 413–422, 2008.

[27] Zhikang Liu, Yiming Zhou, Yuansheng Xu, and Zilei Wang. Simplenet: A simple network for
image anomaly detection and localization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 20402–20411, 2023.

[28] Pankaj Mishra, Riccardo Verk, Daniele Fornasier, Claudio Piciarelli, and Gian Luca Foresti.
Vt-adl: A vision transformer network for image anomaly detection and localization. In 2021
IEEE 30th International Symposium on Industrial Electronics (ISIE), pages 01–06, 2021.

[29] Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. Learning representations of ultrahigh-
dimensional data for random distance-based outlier detection. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 2041–2050,
2018.

[30] Guansong Pang, Chunhua Shen, Huidong Jin, and Anton van den Hengel. Deep weakly-
supervised anomaly detection. arXiv preprint arXiv:1910.13601, 2019.

[31] Guansong Pang, Chunhua Shen, and Anton van den Hengel. Deep anomaly detection with
deviation networks. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 353–362, 2019.

[32] Tomáš Pevnỳ. Loda: Lightweight on-line detector of anomalies. Machine Learning, 102:275–
304, 2016.

[33] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. Catboost: unbiased boosting with categorical features. Advances in neural
information processing systems, 31, 2018.

[34] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining
outliers from large data sets. In Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 427–438, 2000.

[35] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organiza-
tion in the brain. Psychological review, 65(6):386, 1958.

[36] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui,
Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In
International conference on machine learning, pages 4393–4402. PMLR, 2018.

[37] Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller,
Klaus-Robert Müller, and Marius Kloft. Deep semi-supervised anomaly detection. In Interna-
tional Conference on Learning Representations, 2020.

17

[38] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the
roc plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432,
2015.

[39] Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt.
Support vector method for novelty detection. Advances in neural information processing
systems, 12, 1999.

[40] Yong Shi, Jie Yang, and Zhiquan Qi. Unsupervised anomaly segmentation via deep feature
reconstruction. Neurocomputing, 424:9–22, 2021.

[41] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang. A novel anomaly
detection scheme based on principal component classifier. Technical report, Miami Univ Coral
Gables Fl Dept of Electrical and Computer Engineering, 2003.

[42] Ingo Steinwart, Don Hush, and Clint Scovel. A classification framework for anomaly detection.
Journal of Machine Learning Research, 6(2), 2005.

[43] Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. Enhancing effectiveness
of outlier detections for low density patterns. In Advances in Knowledge Discovery and Data
Mining: 6th Pacific-Asia Conference, PAKDD 2002 Taipei, Taiwan, May 6–8, 2002 Proceedings
6, pages 535–548. Springer, 2002.

[44] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks
for anomaly detection in multivariate time series data. arXiv preprint arXiv:2201.07284, 2022.

[45] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian
Zhao, Dan Pei, Yang Feng, et al. Unsupervised anomaly detection via variational auto-encoder
for seasonal kpis in web applications. In Proceedings of the 2018 world wide web conference,
pages 187–196, 2018.

[46] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. In International Conference on Learning
Representations, 2022.

[47] Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan O Arik, and Tomas Pfister. SPADE:
Semi-supervised anomaly detection under distribution mismatch. Transactions on Machine
Learning Research, 2023. Featured Certification.

[48] Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu, Yu Zheng, and Xinyi Le. A unified
model for multi-class anomaly detection. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[49] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Draem-a discriminatively trained re-
construction embedding for surface anomaly detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8330–8339, 2021.

[50] Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay Chandrasekhar.
Adversarially learned anomaly detection. In 2018 IEEE International conference on data mining
(ICDM), pages 727–736. IEEE, 2018.

[51] Yue Zhao and Maciej K Hryniewicki. Xgbod: improving supervised outlier detection with
unsupervised representation learning. In 2018 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2018.

[52] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.
Journal of Machine Learning Research, 20(96):1–7, 2019.

[53] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and Aidong Lu. One-class adversarial nets for
fraud detection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1286–1293, 2019.

[54] Kang Zhou, Yuting Xiao, Jianlong Yang, Jun Cheng, Wen Liu, Weixin Luo, Zaiwang Gu, Jiang
Liu, and Shenghua Gao. Encoding structure-texture relation with p-net for anomaly detection in
retinal images. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XX 16, pages 360–377. Springer, 2020.

[55] Yingjie Zhou, Xucheng Song, Yanru Zhang, Fanxing Liu, Ce Zhu, and Lingqiao Liu. Feature
encoding with autoencoders for weakly supervised anomaly detection. IEEE Transactions on
Neural Networks and Learning Systems, 33(6):2454–2465, 2021.

18

[56] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and
Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection.
In International conference on learning representations, 2018.

19

	Introduction
	Related works
	Problem statement
	Novelty and contribution
	AnoRand method and implementation details
	Synthetic label generation
	Objective function
	Evaluation Metrics
	Anomaly score

	Experiment
	Anomaly detection on synthetic datasets
	Enhanced latent representations: AnoRand vs. traditional Autoencoder
	Unsupervised anomaly detection on real world datasets
	Supervised anomaly detection on real world datasets

	Conclusion

