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Abstract
Speech representations learned with self-supervised learning
(SSL) have the potential to significantly improve the perfor-
mance of a number of audio applications, especially when avail-
ability of labeled data from the deployment domain is limited.
Despite their successes, SSL training methods are compute- and
memory-heavy, and require large investments in computing in-
frastructure, thus putting it out of the reach of most institu-
tions. Therefore, building efficient model architectures is es-
sential for the wide-scale adoption of SSL in speech technolo-
gies. CNN-based Acoustic Feature Extractors (AFE), which are
widely used as encoders of acoustic waveforms, remain one of
the main efficiency bottlenecks. This work proposes replacing
CNN-based AFEs with more efficient ones and demonstrates
that SSL pre-training time and memory consumption can be re-
duced by a factor of two to three over existing methods while
preserving performances in speech-, command-, and speaker-
recognition tasks.
Index Terms: Efficient speech representation learning, SSL.

1. Introduction
Self-Supervised Learning (SSL) of deep learning systems lever-
ages a vast amount of unlabeled data to deliver groundbreaking
performance across a wide range of domains, including com-
puter vision, robotics [1, 2], audio, speech, and language pro-
cessing [3, 4]. Especially most sub-fields of speech processing
increasingly use large pre-trained SSL models to reach previ-
ously unseen performance. For instance, SSL has led to state-
of-the-art (SOTA) performance for Automatic Speech Recog-
nition (ASR) [5, 6], automatic emotion recognition [7, 8], au-
tomatic speaker verification [9, 8], Automatic Speech Transla-
tion (AST) [10, 11], Spoken Language Understanding (SLU)
[8, 12], speech enhancement [13, 14], and speech separation
[13, 15]. Alongside remarkable performance in English, SSL-
trained models are reducing the gap between low- and high-
resource languages [11, 10], increasing the accessibility for
cutting-edge technologies across many languages.

However, SSL pre-training requires significant computing
infrastructure limiting participation to a handful of industrial
actors. For example, pre-training of a SOTA SSL architecture
requires extremely large datasets, e.g., tens or hundreds of thou-
sand hours of speech. It also requires architectures with billions
of neural network parameters to reach an optimal level of per-
formance, so that a single training can require 64 or 128 high-
end GPUs to complete a single pre-training process and take a
few weeks [7]. This leads to high environmental costs and can
easily run into hundreds of thousands of US dollars. The high
cost alone acts as a high barrier for accessibility in the develop-
ment of novel SSL techniques. Current SSL leaderboards, such

as the SUPERB Benchmark, are occupied by models originat-
ing from two companies only [15].

It is therefore vital to make SSL training more efficient.
Three culprits for the high cost can be identified [16]: (i) the
Acoustic Feature Extractor (AFE), which transforms the raw
waveform into a latent representation; (ii) the “context en-
coder”, which is often a large Transformer; and (iii) the SSL
training objective. The last aspect, the objective, has seen effi-
ciency improvements such as Data2Vec [17] and HuBERT [5].
Improvements to the first two parts, on the other hands, are
hardly explored. SOTA SSL-trained models rely on the same
CNN-based AFE combined with a large vanilla Transformer.
Careful engineering of these two parts could lead to significant
efficiency gains [18] and allow pre-training on mid-tier GPU
(e.g., Nvidia Ti 80/90 families) [16].

There exists some scattered work on improving the effi-
ciency of the AFE. One line of research, which this paper will
continue, is to exploit decades of research in the signal process-
ing domain aiming at extracting the best representation of the
speech signal. [19] proposed to train a small HuBERT model
with Mel filterbanks instead of the standard CNN-based AFE.
However, the paper focusses on downstream performance and
the streaming capabilities of the model, and without mention
of pre-training efficiency. [20], on the other hand, introduced a
new CNN-based AFE inspired by the wav2vec 2.0 AFE [21],
but optimized to increase throughput. This demonstrates that a
careful design combined with a time decimation of the input se-
quence could lead to improvements both in training time and in
downstream performance. However, there exists no systematic
study of the gains in efficiency and accessibility from choos-
ing different AFEs on speech SSL pre-training. This paper has
three main contributions:

1. Introduce new efficient AFEs for training with speech SSL.
2. A systematic evaluation of different efficiency metrics over

eight AFEs on a carefully crafted contrastive SSL pre-
training task with mid-tier GPUs (e.g. RTX 3090).

3. An examination of the effects on downstream performance
for Automatic Speech Recognition (ASR), Keyword Spotting
(KS), and Automatic Speaker Verification (ASV).

The conducted experiments, implemented with methods
from the widely-adopted SpeechBrain toolkit [22] to facilitate
reproducibility, show that a few AFEs introduced in this arti-
cle make pre-training faster, e.g., reducing from 7 days for a
wav2vec 2.0 to 1.8 days (Section 3.1), as well as a more mem-
ory efficient, e.g., from 80 GB to 24 GB GPU (Section 3.2), with
no degradation in downstream performance. Hence, greater ac-
cessibility to speech SSL research can be reached without sacri-
ficing task-specific results or high implementation complexity.



2. Acoustic Feature Extractors
In this section, we consider AFEs that can replace the standard
and inefficient CNN AFE [21] in wav2vec 2.0 to improve the
efficiency of pre-training. In section 2.1, we introduce the AFE
in standard wav2vec 2.0 and a more efficient variance, SEW.
In section 2.2, we consider AFEs based on Mel filterbanks and
learnable filters, with fewer trainable parameters.

2.1. Existing AFEs used in self-supervised learning

The majority of large-scale speech SSL models rely on a
one-dimensional and end-to-end convolutional network first
introduced in wav2vec 2.0 [21].

Wav2vec 2.0. The original wav2vec 2.0 AFE, also used in
WavLM [6] and HuBERT [5], is composed of a number of
1D-convolutions operating directly on the raw audio waveform.
The direct connection to the high-dimensional waveform
has been identified as the main reason for the high VRAM
consumption of this AFE [23, 20]. We use the original
wav2vec 2.0 frontend [21], which has seven 1D-convolutional
layers with kernels and strides equal to [11, 3, 3, 3, 3, 3, 3] and
[5, 2, 2, 2, 2, 2, 2]. This is equivalent to a 25 ms window, with a
hop length of 20 ms, resulting in an output frequency of 49 Hz
(i.e. 49 vectors emitted per second of speech).

SEW. The “Squeezed and Efficient Wav2vec” (SEW) [20] AFE
shares a similar network architecture as the wav2vec 2.0 AFE,
with almost identical receptive field, e.g., window of 24.8 ms
and the hop length of 20 ms. Compared to the wav2vec 2.0
AFE, the SEW AFE reduces the computational complexity by
cutting the number of channels in the lower layers as well as the
kernel size. The AFE contains seven 1D-convolutional layers
with kernel sizes [7, 3, 3, 3, 3, 2, 2] and stride [5, 2, 2, 2, 2, 2, 2]
respectively. The AFE doubles the number of channels when-
ever the sequence length is reduced by a factor of four generat-
ing channels size of [64, 128, 128, 256, 256, 512, 512].

2.2. AFEs inspired by Speech Processing

Representing the speech signal in an efficient way has been
an active field of research well before the emergence of deep
learning, offering plenty of techniques [24, 25]. We would like
to exploit this knowledge to build a more efficient AFE for
training with SSL.

Mel Filterbanks. Mel filterbanks, whose outputs we will
call “FBanks”, are a well-known and extensively used trans-
formation of the waveform to the frequency domain inspired
by human hearing [26]. Even large pre-trained models, such
as Whisper [27], rely on FBank as an input representation.
FBank are extremely quick and cheap to compute enabling
a good compression of any speech waveform at a very low
cost. A standard and common parametrization of FBank
gives a window of size 25 ms and a hop length of 10 ms with
a per-frame size of 40 or 80 bins. Lin et al. [19] have first
proposed to pre-train a small HuBERT model using FBanks
only. However, the authors do not explore the efficiency and
downstream superiority of their approach. In this paper, 80
FBanks are extracted every 20 ms and with a window size of
25 ms to mimic the time resolution of the wav2vec 2.0 AFE,
resulting in an output frequency of 50 Hz.

FastAudio. This AFE is a learnable FBank acoustic extractor.

Speech filters are trained alongside the rest of the neural net-
work to optimise the considered objective [28]. For instance,
in FastAudio, triangular FBanks are initialized following the
standard mel-scale, before adapting their central frequencies
and frequency bands during training. FastAudio is not faster
than a standard Fbank extraction at training time, and it
only becomes equivalent at inference. However, FastAudio
has never been trained with SSL and unlike the original
FastAudio implementation, we propose to only optimize the
central frequencies alongside the rest of the neural network.
Indeed, adding the bands as learnable parameters would make
FastAudio filters collapse to a single value while combined
with the quantization process of wav2vec 2.0 pre-training.
Fixing the bands forces FastAudio to keep filtering the signal
properly. The output frequency is equivalent to FBanks.

Mel Filterbanks and CNN. FBanks have been combined for
years with 1D or 2D CNNs to either enhance their feature
representation or reduce their time resolution. For instance,
most SOTA ASR systems using Transformers, Transducers,
or recurrent architectures, rely on this type of AFEs. To the
best of our knowledge, these AFEs have never been properly
investigated in the context of speech SSL, and this paper
proposes two different combinations of FBanks and CNN
following common approaches from the speech-processing
literature. First, “FBank-CNN1d” aggregates a standard mel-
filterbanks extraction from a 25 ms window and a hop length
of 10 ms with a two-layered one-dimensional CNN made of
512 filters with kernel sizes and strides of [3, 3], [2, 1] respec-
tively. Layer-normalization and GeLU activations are applied
between each layer. The resulting output frequency is 50 Hz.
Second, “FBank-CNN2d” is inspired by SOTA Transformer
architectures originating from well-known toolkits. Hence, it
combines the same standard mel-filterbanks parametrization
with a two-layered two-dimensional convolutional CNN made
of (128, 64) filters and kernel sizes and strides of [3, 3], [2, 2]
respectively. The output frequency is therefore halved to
25 Hz, while the feature dimension is increased from 512 for
“FBank-CNN1d” to 1280. Layer normalizations and Leaky
ReLU activations are applied between each layers.

SincNet and Leaf Following the success of mel-filterbanks
and CNN, Leaf [29], and SincNet [30] merge those two tech-
niques into a single paradigm. Here, the mel-filterbank com-
putation is replaced with a one-dimensional convolutional layer
parametrized with common signal processing filters, e.g., tri-
angular for SincNet and Gabor filters for Leaf. The parame-
ters of those filters are then optimized via backpropagation with
the task of interest. Other convolutional layers are then added
to the filtering layer to complete the AFE. It results in layers
with lower computational and memory costs than CNN lay-
ers as they require fewer parameters. SincNet and Leaf AFEs
have never been applied to speech SSL before. Based on previ-
ous experiments for end-to-end ASR [30], we parametrize the
SincNet layer with filters of size 129 with a stride of 5 sam-
ples. The number of filters is reduced from 512 in [30] to
128 to further reducing the complexity of the CNN. The con-
volutional front end is composed of five one-dimensional layers
of [128, 128, 256, 256, 512] filters with kernel sizes and strides
of [3, 3, 3, 3, 3], [2, 2, 2, 2, 2] respectively. The resulting out-
put frequency is equal to 50 Hz. Lastly, Leaf follows its origi-
nal implementation [29] adapted to the 20 ms hop-length of the
wav2vec 2.0 to get an output frequency of 50 Hz.



3. Experiments
In this section we present the performance of each AFE follow-
ing a two-step process. First, the efficiency is benchmarked to
offer empirical insights on potential training speed and memory
gains (see §3.1). Then, downstream performance is evaluated,
offering a complete view of the advantages of each solution,
and following three tasks from the SUPERB benchmark
[15]: automatic speech recognition (ASR), automatic speaker
verification (ASV), and keyword spotting (KS) (see §3.2).

Datasets. The Librispeech dataset is used to evaluate both
efficiency and downstream performance. During the former,
two different sets are created by randomly selecting 1,000
sentences from the 100 hours clean set and then reducing them
to either 5 s or 15s. For full SSL pre-training, however, the full
Librispeech dataset of 960 hours is considered, with an up-
per duration limit of 30 s to maximise downstream performance.

Practical considerations. Due to the high pre-training cost as-
sociated with contrastive learning, no architecture search has
been conducted. We finalized learnable AFE architectures by
running a few pre-training epochs with a small set of architec-
tural hyperparameters taken from the literature. In all experi-
ments, AFEs are the only difference between all models and the
rest of the architecture strictly follows the original wav2vec 2.0
BASE model [21], as described in the SpeechBrain Librispeech
recipe (commit 71c1490). Efficiency experiments are powered
with an isolated RTX 3090 for precise measurements compared
to four shared Tesla A100 for pre-training.

3.1. (In)Efficiency Analysis

The overall pre-training efficiency of the eight AFEs is
evaluated for the first time on a carefully crafted benchmark to
enable an extensive comparison of training costs.

Metrics and evaluation. Each AFE follows a pre-training
for a single epoch over the two above-described datasets.
A warm-up of 5 backward steps is used to avoid the cudnn
optimization overhead. The mini-batch size is fixed to fit the
memory budget. AFEs are compared over standard efficiency
metrics including the averaged training time necessary to
process the 1,000 sentences, the average forward and backward
propagation times, the peak VRAM consumption, and the time
necessary to process one second of speech including forward
and backward computations. The latter metric expresses the
throughput of the neural network. Measurements are obtained
with full-precision operations on a single RTX 3090 24GB.
Note however that our SSL AFEs can exhibit even smaller GPU
requirements via low precision arithmetics, e.g., half-precision,
or lower precision optimizers e.g. 8-bit [31] among others.

(In)Efficiency Results. The height of the bars in the upper parts
of Figure 1 depicts the training time required with every AFE.
Compared to wav2vec 2.0, all AFEs except Leaf offer signifi-
cant speed-up in training time. In particular, discarding neural
networks in the AFE part results in drastic forward speed im-
provements, as demonstrated by the 1 ms forward speed of the
FBank AFE against 8 ms for wav2vec 2.0. As expected, only
the AFE and backward pass are speeding up in most cases as
the Transformer block remains unaltered. The FBank-CNN2d
AFE, also changes this behavior as its output frequency is
halved, resulting in a 2× speed-up for the Transformer forward
pass as well. Leaf, unfortunately, suffers exhibits an increase in
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Figure 1: Efficiency analysis of the eight AFEs. Time mea-
surements are averages for processing 1,000 sentences. The
stacked bar charts report forward and backward timings while
the scatter plot offers a view of the throughput (i.e. averaged
processing time in ms to train on one second of speech) against
peak VRAM. Aside from Leaf, all proposed AFEs offer a train-
ing speed-up and a better throughput/VRAM ratio.

processing time for all its components compared to the baseline.
This is due to the lack of cudnn support in its implementation.
Hence may expect a roughly halved training time in real pre-
training conditions for the candidate AFE, excluding Leaf, com-
pared to the baseline. Memory- and throughput-wise, FBank-
CNN2d clearly outperforms the other AFEs by only consum-
ing 7 GB of memory against 18 GB and 13 GB for wav2vec 2.0
and Fbank-CNN1d respectively on 15 seconds long utterances.
The latter behavior is expected due to the lower time resolu-
tion of the model. This lowered time resolution also enables the
Fbank-CNN2d to exhibit the highest gain in throughput when
dealing with longer sentences as the processing time per sec-
ond of speech decreases from 2.2 ms to 1.4 ms for 5 s and 15 s
sentences respectively. Again, all AFE models except Leaf of-
fer significant gains both in terms of VRAM consumption and
throughput compared to the base wav2vec 2.0. Mini-batch size
variations have also been investigated, yet not reported for the
sake of readability. In fact, the less memory-demanding AFEs,
e.g. FBank-CNN2d, enable much larger mini-batch sizes than
the standard wav2vec 2.0 (e.g. 64 against 16 with 15 s long sen-
tences). This results in better utilization of the GPU, smaller
training times, and critically, enabling the training of speech
SSL models on cheap GPU such as the Ti 80 and 90 families.

3.2. Downstream Evaluation

The downstream performances of seven AFEs are evaluated
on three downstream tasks originating from the SUPERB
benchmark. We decided to discard Leaf due to poor processing
speed performance resulting in untractable training times.



Table 1: Downstream results wav2vec 2.0 pre-training with seven AFEs (Leaf is discarded due to poor efficiency measurements). For
speech recognition, word error rates (WER) after fine-tuning are on the subsets of Librispeech (dev-clean and test-clean). For keyword
spotting, accuracies are on Google Speech Commands. For speaker verification, the equal error rate (EER) is after fine-tuning on
VoxCeleb1. GPU requirements are for 200k steps with 4 GPUs in less than 7 days of pre-training, within GPU memory.

AFE Speech recognition with LM Keyword Speaker Requirements for pre-training
output Fine-tuning dev-clean test-clean spotting verification Minimum GPU

Model frequency Time WER ↓ WER ↓ Accuracy ↑ EER ↓ GPU-hours ↓ Speed-up ↑ number/type

wav2vec 2.0 49 Hz 6 h 6.0 6.5 98.2 4.1 670 h 1.0× 4 A100 80GB
SincNet 50 Hz 5 h 6.1 6.5 98.3 4.2 468 h 1.4× 4 V100 32GB
SEW 49 Hz 4 h 6.5 7.1 97.9 4.1 448 h 1.5× 4 V100 32GB
FastAudio 50 Hz 3 h 7.0 7.9 97.9 4.4 313 h 2.1× 4 V100 32GB
FBank-CNN1d 50 Hz 3 h 6.2 6.6 98.2 4.2 264 h 2.5× 4 V100 32GB
FBank 50 Hz 3 h 7.1 7.9 98.1 4.5 250 h 2.7× 4 V100 32GB
FBank-CNN2d 25 Hz 2 h 7.0 7.8 98.3 4.1 180 h 3.7× 4 3090 24GB

SSL pre-training. All models are pre-trained for 200k steps
on the full Librispeech dataset (960 hours of speech). Indeed,
and according to previous work on SSL efficiency [18], a full
400k pre-training may not be necessary to appreciate the down-
stream performance of different wav2vec 2.0 models. A full
pre-training of the base wav2vec 2.0 requires four Nvidia Tesla
A100 80GB for more than two weeks. Cutting the pre-training
to 200k enables a fair comparison while limiting the maximal
training time to slightly over a week, and reducing overall
energy cost. The SSL pre-training follows the experimental
protocol first described in [21]. Hence, the number of negatives
(100), the length of the masks (10), their probability (0.65), and
the 1.6 hours mini-batch length are identical.

Downstream evaluation. ASR training is performed with the
100 hours clean subset of Librispeech. Word error rates are
reported on the dev and test clean sets with 4-gram rescoring.
Two dense layers alongside layer normalization are added on
top of the pre-trained model following the official SpeechBrain
recipe. The entire architecture including wav2vec 2.0 is fine-
tuned with the CTC loss. KS is done with the Google Speech
Command dataset with the 12 actions set. Average pooling
is applied to the output of the wav2vec 2.0 with a final dense
layer for classification. Again, and in contrast to SUPERB,
the whole architecture is fine-tuned from end-to-end. Finally,
ASV is conducted with the VoxCeleb1 dataset. In this case, the
wav2vec 2.0 is frozen to add some diversity to our evaluation.
Hence, we follow the SUPERB approach and instead extract a
learned weighted sum from all the layers of the wav2vec 2.0.
Nevertheless, this evaluation uses the SOTA ECAPA-TDNN
architecture [32] to consume those features instead of the mere
x-vector [33] model from SUPERB. Hyper-parameters are
identical to existing SpeechBrain recipes for each dataset.

Downstream results. First, the reported results in Table 1
are in-line with previous works evaluating partially pre-trained
wav2vec 2.0 [18]. Speaker verification EER, for instance, are
even better than those reported within the official SUPERB
leaderboard with 6.0% against 4.1% in our experiments for the
base wav2vec 2.0. The latter difference is due to the use of the
ECAPA-TDNN architecture as a downstream decoder. Then,
pre-training and Librispeech fine-tuning times also align with
findings from the efficiency analysis with every AFE offering
speed-ups ranging from 1.4× for SincNet to 3.7× for FBANK-
CNN2d compared to wav2vec 2.0. Hence, the total pre-training

time is lowered to 180 against 670 GPU hours for FBANK-
CNN2d and wav2vec 2.0 respectively. Most newly introduced
AFEs also lower the bar in terms of GPU requirements as they
enable a 7 days or less pre-training on four Tesla V100 32GB
or RTX 3090 24GB for the FBANK-CNN2d compared to four
Tesla A100 80GB for the wav2vec 2.0. The latter change in-
duces a decrease in the unitary GPU price of a factor of roughly
10×. Wav2vec 2.0, however, offers the most consistent down-
stream performance across the three tasks. We hypothesize that
such behavior is the result of the extensive hyperparameter tun-
ing at the origin of the wav2vec 2.0 architecture. Nevertheless,
the drop in accuracies and word error rates observed with more
efficient AFEs are far from dramatic. Indeed, FBANK-CNN1d
obtains similar performance to the baseline with a 0.1 % rela-
tive increase in WER and EER and an equivalent accuracy on
KS, while the pre-training time is reduced by 2.5×. The fastest
and cheapest alternative, FBANK-CNN2d, suffers from higher
WER with a relative increase of 1.3 %, but also similar or identi-
cal ASV and KS performance compared to wav2vec 2.0. SEW,
the standard FBANK, and FastAudio also offer important speed
and memory improvements, but also show important increases
in WER. ASV and KS accuracies also illustrate that the latter
AFEs are totally suitable for these tasks. SincNet sits in the mid-
dle, as it offers the smallest speed improvement (i.e. 1.4×) but
also exhibits comparable WER, EER and KS accuracy against
wav2vec 2.0. Overall, Table 1 shows that certain AFE, such
as FBANK-CNN1d or SincNet can significantly lower the pre-
training cost of wav2vec 2.0-based SSL models while ensur-
ing a similar level of downstream performance. There exist use
cases where a relative gain of 0.1 % in raw performance with
a 3× increase in computing cost might not be justified. Hence,
such results should encourage the community to integrate better
descriptors of the model efficiency in standardized benchmarks.

4. Conclusion

Acoustic features extractors play an important role in the large
compute and memory costs of speech SSL pre-training. This
paper bridges the gap between the existing abundant speech
processing literature and SSL pre-training and compares ex-
tensively three novel and five existing AFE, both at the ef-
ficiency and downstream performance levels. The observed
results suggest that significant compute and memory savings
can be achieved without disproportionated downstream perfor-
mance impact. The latter finding is a major step forward to
lowering the entry bar to speech SSL pre-training.
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Y. Estève, B. Lecouteux, F. Portet, S. Rossato, F. Ringeval,
D. Schwab, and laurent besacier, “Task agnostic and task specific
self-supervised learning from speech with lebenchmark,” in
Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021. [Online].
Available: https://openreview.net/forum?id=TSvj5dmuSd

[8] S. wen Yang, P.-H. Chi, Y.-S. Chuang, C.-I. J. Lai, K. Lakhotia,
Y. Y. Lin, A. T. Liu, J. Shi, X. Chang, G.-T. Lin, T.-H. Huang,
W.-C. Tseng, K. tik Lee, D.-R. Liu, Z. Huang, S. Dong, S.-W.
Li, S. Watanabe, A. Mohamed, and H. yi Lee, “SUPERB: Speech
Processing Universal PERformance Benchmark,” in Proc. Inter-
speech 2021, 2021, pp. 1194–1198.

[9] Z. Chen, S. Chen, Y. Wu, Y. Qian, C. Wang, S. Liu, Y. Qian,
and M. Zeng, “Large-scale self-supervised speech representation
learning for automatic speaker verification,” in ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2022, pp. 6147–6151.

[10] H. Nguyen, F. Bougares, N. Tomashenko, Y. Estève, and L. Be-
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