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Abstract

We propose a solution method for online vehicle routing, which inte-
grates a machine learning routine to improve tours’ quality. Our opti-
mization model is based on the Bertsimas et al. (2019) re-optimization
approach. Two separate routines are developed. The first one uses
a neural network to produce realistic pick-up times for the customers
to serve. The second one relies on Q-learning in addition to random
walks for the construction of the backbone graph corresponding to
the instance problem of each time step. The second routine gives
improved results compared to the original approach. The considered
benchmark dataset is the same as that of Bertsimas et al. (2019).

Keywords: online vehicle routing, taxis, Q-learning, neural
networks, mixed-integer optimization, simulation.
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1 Questions

More optimization solvers opt for machine learning (ML) integration in order
to take advantage of pattern recognition in the search for solutions (Bengio et
al., 2021; Karimi-Mamaghan et al., 2022). Online optimization1 poses several
challenges for this integration to happen, such as the change of the problem
structure across the optimization periods, plus the duration of the period
or the time step, which could be very short to perform learning. In online
vehicle routing problems (Jaillet & Wagner, 2008), this issue can happen
for instance, in case the vehicles’ locations and the customers’ requests are
revealed over time. We study the online taxi problem as defined by Bertsimas
et al. (2019), where the transportation requests issued from customers are
revealed a number of minutes before their pick-up time and their assignment
to taxis has to be acknowledged within minutes before. This is a special
case of the online vehicle routing problem (see Appendix A for a formal
definition). Their approach manages to solve the online taxi problem for a
large demand: about 600-6500 customers for each re-optimization which lasts
30 seconds in the area of Manhattan. It offers then a good starting point to
test the optimization-ML integration in a dynamic context. Our basic idea
is to design ML routines within the re-optimization in order to improve the
quality of the constructed tours. We show that learning can happen even in
the case of tight time steps.

2 Methods

The re-optimization of Bertsimas et al. (2019) relies on a great simplification
of the working graph of the problem with the aim to make the resolution
more tractable for each time step. The formal problem definition and their
proposed approach are presented in Appendix A. The first ML routine that
we implemented is based on the neural network structure. Because of its
poor results, this method is only detailed in Appendix B.

Our second ML routine uses reinforcement learning on the working graph
to construct the paths of taxis, in addition to using random paths. This
routine replaces steps 2 through 7 of Algorithm 1 (see Appendix A), with
random paths and paths constructed with the Q-learning algorithm (Watkins

1Online optimization is a field of optimization theory for which the input data of the
problem are revealed over time and decisions have to be given in between.
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& Dayan, 1992) on the KG graph2. Both types of paths start from the
current positions of the taxis, as shown in the example of Figure 1. Once a
total of Emax arcs are chosen from KG, the MIPmaxflow is solved on this
constructed graph. This procedure is done iteratively. Learning for each
agent taxi is performed across the different iterations of MIPmaxflow within
one time step through Q-learning. The main parameter of the routine is
the percentage prl ∈ [0, 1] of taxis that construct their paths using learning.
These agents are chosen from all taxis in the first iteration in a random way,
as follows:

i/ perform random walks starting from all taxis,

ii/ solve MIPmaxflow for this selection, and

iii/ choose the prl × 100 taxis which have the largest rewards,

By this way, we can concentrate learning on the seemingly most favorable
taxis. Random walks are taken to be non-backtracking in this routine. The
description of the steps of the routine is shown in Algorithm 1. As you may
notice, no solving of maxFlow is performed.

Figure 1: An example of taxi path building on a 2G graph.

The state space of Q-learning represents the set of nodes of G: S = V .
The current state of each agent taxi is its current node. If a given agent
taxi is in a vertex with no outgoing neighbor, it stops exploring, otherwise,

2A pruned graph of the working graph of the problemG (see Appendix A for a definition
of KG, MIPmaxflow and maxFlow problems).
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it chooses a neighbor according to the Q-table. All the agents explore their
neighborhoods in a sequential way. The reward of each agent taxi is given
at the end of each iteration in step number 10, by the reward computed for
each taxi from the MIPmaxflow resolution. Thus, the reward of each agent
taxi depends on the choices of the remaining agents. Setting a state space
S = V T , where each agent accounts for all other agents’ current positions
is time-consuming. Thus, we did not account for it, given the limited time
allowed for optimization in a time step.

Algorithm 1 Q-learning routine

Input: The graph G, the parameter K, a starting solution s, and the prob-
ability of agent taxis prl.

Output: A solution for the current time step
1: while time is available do
2: First iteration: Fix the agent taxis T using prl;
3: Initialize the backbone graph BG by removing all arcs KG;
4: Add solution s to BG;
5: while BG has less than Emax × (1− prl) arcs do
6: For each taxi t not in T , generate a random walk on KG from t;
7: Add those arcs to BG;
8: end while
9: All agents choose their actions (paths) using Q-learning to complete

Emax arcs in BG;
10: Solve MIPmaxflow on BG;
11: Update the solution s;
12: end while

Concerning the implementation of the Q-learning policy, we use Monte
Carlo methods to estimate the state-action value. For the exploration strat-
egy, we use the epsilon-greedy method with a parameter ϵ = 0.1.

For comparison matters, we consider the case with only random walks
prl = 0, denoted RW-based routine.
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3 Findings

Results of Table 1 rely on the Bertsimas et al. (2019) dataset, which is based
on the demand for taxis on the Manhattan network3. More details on the
construction of the dataset and the implementation are provided in Appendix
C. We set the simulation time to 20 minutes, and Emax = 2000. The max-
imum request times T request

max , the number of taxis #taxis, and the time step
T reop are varied as in the table below. For each customer c, the request time
trequestc is uniformly picked within the interval [tmin

c −T request
max , tmin

c ]. The time
allowed for re-optimization in each time step is equal to the half of T reop,
meaning that if T reop = 5min, only 2.5min is allowed to construct the solu-
tion, the remaining time is reserved to transfer the new actions to the taxis.
We fix prl = 10%. In the table, #nser designates the number of not served
customers in each simulation.

Input parameters Backbone-based Q-learning RW-based RNN-based
Gain Gain Gain

#taxis T request
max T reop #nser Profits #nser profit #nser profit #nser profit

($) (%) (%) (%)

5000
5min

1min 19 48104.9 14 +0.14 14 +0.14 1071 -23.93
5min 402 43879.3 196 +5.03 201 +4.90 4256 -102.84

10min
1min 250 46375.4 291 -0.84 357 -2.03 893 -16.26
5min 621 42853.6 451 +3.31 513 +1.86 4256 -102.92

3000
5min

1min 857 41698.4 866 -0.94 891 -1.68 1744 -28.0
5min 1147 38326.5 1105 +0.79 1138 -0.27 4256 -101.95

10min
1min 845 41738.7 851 -0.77 861 -1.14 1742 -28.11
5min 1173 38092.2 1131 +1.11 1135 +0.29 4256 -101.97

2000
5min

1min 83 48164.9 81 +0.08 91 +0.07 1979 -44.17
5min 645 41721.4 585 +1.58 581 +1.61 4256 -101.2

10min
1min 366 46280.3 381 -0.57 443 -1.76 1681 -34.59
5min 738 42316.7 728 -0.4 726 -0.31 4256 -101.18

Table 1: Results of simulation by varying #taxis, T request
max , and T reop.

These results show that Q-learning subroutine approach offers higher gaps
of profits than the RNN routine, surpassing (Bertsimas et al., 2019) approach
in the following cases: i/ when the re-optimization time step is larger than
1min, but can be still considered small (5min), and ii/ when the supply of
transport is large compared to the demand (5000 taxis). The explanation
behind the changes of #nser in function of #taxi, T request

max and T reop is given

3The Julia libraries Flux.jl (Innes, 2018) and ReinforcementLearning.jl (Tian & other
contributors, 2020) are used for the implementation.
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in Appendix D. The data of Manhattan taxi requests are characterized by a
large traffic demand and a large supply of taxis. Any improvement of only
1% of the profit gains can be translated into thousands of US dollars over the
day. Compared to the random walks subroutine, the Q-learning subroutine
produces higher profit gaps, suggesting that the effect of reinforcement learn-
ing is mostly positive. Figure 2 displays the average number of optimizations
in a time step for the four approaches.

Figure 2: Average number of optimizations in one time step (#opt).
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A. Supplementary materials: Model

The taxi problem is a special case of the dial-a-ride problems, where vehicles
are allowed to serve only one customer at a time. In the online context, each
customer c ∈ C has a request time trequestc , a confirmation time tconfc > trequestc ,
when the optimizer confirms to c whether his request is accepted or not, and
a pick-up time window Ic = [tmin

c , tmax
c ].

Bertsimas et al. (2019) model the problem as a directed graph G(V,E)
where the nodes represent the customers c ∈ C and the current positions of
the taxis k ∈ K. Each arc (c′, c) has an associated profit Rc′,c, which is equal
to the fare paid by the customer c to satisfy minus the cost of driving from the
drop-off point of c′, or from the position of the taxi in case of arc (k, c) and c is
the first customer visited by the taxi k. The main assumption of the model is
that the working graph G has no cycle. This is made possible by deleting arcs
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that do not satisfy the time windows of the customers in addition to other
tighter time constraints. It is important to notice that the shorter the time
windows are, the fewer cycles exist in G. The objective of the optimization is
to maximize the total profit of the solution. Without sub-tours elimination,
the routing problem becomes a network max-flow problem, with integer and
real-valued variables. The mixed integer programming formulation of the
offline problem, i.e. trequestc = 0,∀c ∈ C, is as follows.

max
x,y,pc,tc

∑
k∈K,c∈C

Rk,cyk,c +
∑
c,c′∈C

Rc′,cxc′,c (1)

s.t. pc =
∑
k∈K

yk,c ∀c ∈ C (2)∑
c∈C

xc′,c ≤ pc′ ∀c′ ∈ C (3)∑
c∈C

yk,c ≤ 1 ∀k ∈ K (4)

xc′,c ∈ {0, 1} ∀c′, c ∈ C (5)

yk,c ∈ {0, 1} ∀k ∈ K,∀c ∈ C (6)

pc ∈ {0, 1} ∀c ∈ C (7)

tmin
c ≤ tc ≤ tmax

c ∀c ∈ C (8)

tc ≥ t′c + (tmin
c − tmax

c′ ) + (Tc′,c − (tmin
c − tmax

c′ ))xc′,c ∀c′, c ∈ C (9)

tc ≥ tmin
c + (tinitk + Tk,c − tmin

c )yk,c ∀k ∈ K,∀c ∈ C (10)

Tc′,c designates the travel time to serve c′ and to drive to the pick-up location
of c. The decision variables yk,c and xc,c′ specify the order of visit of the
customers for each taxi, while pc tells if customer c is served or not, and
tc provides the pick-up time of c. This problem is denoted MIPmaxFlow.
When the customers’ pick-up times are fixed, the max-flow problem, i.e.
(1)-(7), becomes efficiently solvable through the simplex algorithm, thanks
to some integrality results (see Theorem 1. of Bertsimas et al. (2019)). We
denote this subproblem maxFlow.

The approach of Bertsimas et al. (2019) to solve the online version consists
of solving MIPmaxFlow in each time step for customers with known request
times, or in other terms with trequestc ≤ kT reopt, such that T reopt is the time
step duration, and kT reopt corresponds to the starting time of the current
re-optimization. To scale the optimization to the real-world high demands
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scenario, the authors adopt the routine described in Algorithm 2. At first,
the graph G containing the current customers and the current taxi positions
is pruned into a graph KG, by selecting the K best incoming and outgoing
arcs of each node of G in terms of lost times, which are defined as waiting
times plus times of a taxi driving empty. Then, a backbone graph BG is
constructed iteratively by solving maxFlow problem on uniformly generated
pick-up times, before solving MIPmaxflow on the constructed graph. This
step is done repeatedly. The parameters Emax and K are chosen such that
MIPmaxflow and maxFlow are solvable in reasonable times. More complete
details of the model and the algorithm choices are found in Bertsimas et al.
(2019).

Algorithm 2 backbone-based routine

Input: The graph G, the parameter K, the limit number Emax, and a start-
ing solution s (could be empty)

Output: A solution for the current time step
1: Compute KG;
2: while time is available do
3: Initialize the backbone graph BG by removing all arcs of KG;
4: while BG has less than Emax arcs do
5: For each customer c, generate uniformly a pick-up time tc from Ic

or from Isc (is the time window where the solution s is propagated in Ic);
6: Solve maxFlow on KG with the tc pick-up times of the customers;
7: Add the optimal arcs of the solution to the graph BG;
8: end while
9: Solve MIPmaxflow on BG;

10: Update the solution s;
11: end while

B. Supplementary materials: RNN routine

This ML routine has the goal to learn the most adequate pick-up times of
the customers, and then solve maxFlow problem for these times. We choose
the Recurrent Neural Network (RNN) for the architecture, which is a neural
network well suited to manage vector sequences over time (Alom et al., 2019).

The routine replaces steps 3 to 10 of Algorithm 2. Instead of randomly
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generating pick-up times (step 5) and solving the maxFlow problem for these
times (step 6) for the construction of the support backbone graph (stage 7),
we learn the pick-up times of the customers and solve maxFlow problem for
these optimal times. No solving of MIPmaxflow is involved. The description
of the steps is shown in Algorithm 3. The obtained solution updates the
current solution similarly to Algorithm 2.

Algorithm 3 RNN-based routine

Input: The graph G, the parameter K, and a starting solution s (could be
empty)

Output: A solution for the current time step
1: Compute KG;
2: while time is available do
3: while exploration time is available do
4: For each customer c, generate uniformly a pick-up time tc ∈ Ic or

tc ∈ Isc ;
5: Solve maxFlow on KG with tc pick-up times of customer;
6: Add the arc profits of the solution to features X and (tc) to y;
7: end while
8: Train the RNN model m using X and y;
9: Generate times by t = m([Re1 , ..., R|E|)]

′);
10: Solve maxFlow with times t;
11: Update the solution s;
12: end while

For the training of the RNN, we solve maxFlow with pick-up times uni-
formly chosen at random within customers’ time windows. We also include
in the training the times corresponding to the upper bounds of the time win-
dows. The RNN outputs the customers’ pick-up times and takes for inputs
the solution of the corresponding maxFlow problem, which is in our case a
vector over the graph arcs such that if an arc belongs to the solution, its profit
value (Rc′,c or Rk,c) is taken, otherwise zero. A scheme of RNN is shown in
Figure 3. We obtain the learned pick-up times of the current re-optimization
by taking as input the profits of all the arcs of the graph KG. Regarding the
RNN architecture, we use the sigmoid activation function, plus the cross en-
tropy loss function and the Adam optimizer. According to our tests, tuning
across other RNN hyperparameters does not improve the result of the RNN
routine. We set the exploration time here (the step 3 of Algorithm 3) to two
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third of the time allowed for optimization in each time step.

Figure 3: Architecture of the RNN.

C. Supplementary materials: Data

The data consists of several elements. The first element is the demands of
the customers, which come from the taxi-trip dataset of the New York City
Taxi and Limousine Commission on the area of the Manhattan network. It
is constructed by filtering requests with pick-up and drop-off points located
in Manhattan. For each customer, tmin

c is set to the real pick-up time, tmax
c =

tmin
c + 5min, and tconfc = tmin

c − 4min. The request time trequestc is a variable
of the simulation. Bertsimas et al. (2019) use the demands of Yellow Cabs
alone on a specific day, which is 04/15/2016. We use the same inputs.

The second element is the travel times in the Manhattan network. Bertsi-
mas et al. (2019) use the Yellow Cabs data to estimate those times. Having no
access to this data, we set travel times according to OpenStreetMap (OSM)
in the following way. For each road segment, we set the speed to the maxi-
mum speed given by OSM. In the following step for the simplification of the
network, if two or more segments are merged, we set the speed to the mini-
mum of the merged segments’ speeds. This allows us to considerably reduce
the speed in the network since taking the maximum speed is not a reason-
able assumption. The shortest path computation uses travel times computed
using those speeds. For the profit computation, we use the customer’s real
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fare set with costs taken proportional to the trip travel times: a cost of 5$
per hour of driving and a cost of 1$ per hour of waiting, same as Bertsimas
et al. (2019).

The approaches that are compared in Table 1 share the same input data
for each simulation run : the same travel times and request times trequestc . In
order to run Bertsimas et al. (2019)’s program, we convert their Julia source
code from version 0.5 to a stable version ≥ 1.0.

D. Supplementary materials: Demand/supply

balance

The quality of the solutions, thus the profits and the number of not served
customers, changes according to the number of taxis. With 2000 taxis (and
(T request

max , T reop) = (5, 1)), the solution covers 18% more transportation re-
quests than that of 3000 taxis (and (T request

max , T reop) = (5, 1)), due to a better-
performing arc selection procedure for the backbone graph (steps 4-8 in Al-
gorithm 2; steps 5-9 in Algorithm 1). This is because all problems share the
same value of the maximum number of arcs Emax = 2000. This latter value
is taken to make the MIPmaxFlow optimization possible in a short duration.
If the number of taxis increases, the selection of arcs is altered. With 5000
taxis, the excess of vehicles makes it possible to correct the lack of coverage
with 4000 and 3000 taxis. There is almost always a free taxi able to serve a
new customer request. Thus, the solutions’ profits become in the same range
of the case of 2000 taxis. Notice that the number of not served customers
increases as the time step T reop and/or the maximum request times T request

max

increase, since more customers are present in MIPmaxFlow optimizations
compared to the base case of (T request

max , T reop) = (5, 1).
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