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ABSTRACT
Autonomous vehicles are anticipated to revolutionize ride-sharing services and subsequently enhance the
public  transportation  systems through a  first-last  mile  transit  service.  Within  this  context,  a  fleet  of
autonomous vehicles can be modeled as a Dial-a-Ride-Problem with certain features. In this study,  we
propose  a  holistic  solving  approach  for  this  problem,  which  combines  the  mixed-integer  linear
programming formulation with a novel graph dimension reduction method based on the graph embedding
framework.  This latter  method is  effective since accounting for heterogeneous travel  demands of the
covered territory tends to increase the size of the routing graph drastically, thus rendering exact solving of
small instances computationally infeasible. An application is provided for the real transport demand of the
industrial  district  of  “Vallée  de  la  Chimie” in  Lyon city,  France.  Instances  involving  more than  50
transport requests, and  10 vehicles could be easily solved. Results suggest that this method  generates
routes of reduced nodes with a lower vehicle kilometers traveled compared to the constrained K-means
based reduction. Reductions in terms of GHG emissions are estimated to be around 75% lesser than the
private vehicle mode in our applied service. A sensitivity analysis is also provided.

Keywords: Shared Autonomous Mobility, First-Last Mile Service, Vehicle Routing, Node Embeddings.
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1. INTRODUCTION

The urban expansion in most cities around the world followed an automobile-oriented pattern, leading to
the emergence of several low-density metropolitan areas, thus increasing the overall infrastructure costs
for public transportation (PT)  (Sinha, 2003 [35]). Since then and due to this reason, PT systems have
been relegated to a secondary role behind private car use in urban mobility. The PT cover for low-density
areas and commercial and industrial districts outside the city is limited. Shared mobility, which is the
shared use of vehicles, bicycles, and other means of transport to access PT networks, started to appear to
be a viable solution to this issue, known as the first- and last-mile  commute.  The concept of shared
mobility is not novel in itself, and could be traced back to the 1990s where it was popular, and even to the
year of 1948 for the first car-sharing program (Shaheen & Chan, 2016 [36]). Yet, the major shift in shared
mobility is still  expected by many to happen with the advent  of  shared autonomous vehicles (SAV).
Several  AV manufacturers  and  service  transportation  provider  companies  have  heavily  invested  and
adopted specific  ride-sharing plans,  e.g.,  Waymo in Phoenix area (Waymo, 2020 [41]),  Jaguar Land
Rover (Jaguar Land Rover, 2020 [20]), and eventually Amazon, a fresh new competitor in this market
share (Amazon, 2020 [2]).

The factors making SAV an attractive transit mode are mainly economic, for both sides of customers and
PT and transportation network entities. Due to lower operational and investment costs over fixed routes,
transportation companies could propose services at fair prices with a higher frequency. Higher customer
satisfaction and time reductions may be equally obtained compared with other transit modes such as park-
and-ride and active modes. Another argument in favor of SAV lies in the environmental sustainability of
this technology, which is mainly due to the application of electric vehicles in SAV services. Autonomous
fleets could reduce GHG emissions by up to 73% compared to conventional taxi fleets (Bauer et al., 2018
[3]). It was shown that each SAV could replace around 11, respectively from 5 to 10 privately owned
vehicles, with an increase of 10%, resp. from 6 to 89% travel distance via agent-based simulations of the
city of Austin, Texas (Fagnant & Kockelman, 2014 [10]), resp. Lisbon (International Transport Forum,
2015 [19]). The existence of empty trips justifies this latter increase. All these favorable reports led to a
resurgence of small-size experimentations of SAV services in Europe, the U.S., and globally. Just in Lyon
city in France, where the case study of this paper is located, there are currently three experimentations:
Navya shuttle buses in the Confluence area, around Groupama stadium, and Mia buses in the Meyzieu-
Décine  suburb  area.  Therefore,  there  is  a  great  need  of  efficient  design  models  for  the  short-time
deployment of SAVs, especially to handle the first-last mile transit  issue (see Hyland & Mahmassani
(2017) [18] for a taxonomy of SAV fleet management problem classes to accompany this current mobility
shift).

A critical  component  of  the  design  of  an  SAV service  is  the  vehicle  assignment  or  the  process  of
matching customer requests to vehicles. Most SAV approaches rely on rule-based assignment methods,
e.g.,  Gurumurthy & Kockelman (2018)  [16].  Optimization models  are  almost  not  used here.  This  is
because  SAV studies  are  mostly  on-demand systems,  that  are  dynamic  systems that  require  solving
approaches that are computationally cost-efficient and easy to implement (Narayanan et al., 2020 [30]).
On the other hand, SAV models that are reservation-based, or in other terms static systems that could be
solved beforehand, are relying in general on optimization. However, they are quite few in number, e.g.,
Levin (2017) [22], Ma et al. (2017) [24].  Both Levin (2017) and Ma et al. (2017) proposed a linear
programming model  to  modelize  an  SAV fleet.  In  this  study,  we  propose  using the famous  routing
problem  of  the  Dial-a-Ride-Problem  (DARP),  which  is  derived  from  the  classical  Vehicle  Routing
Problem (VRP) with additional constraints to account for pickup and drop-off requests. VRP and DARP
are  both  computationally  intractable  and  can  be  pinned  down  as  mixed-integer  linear  programming
models. According to Ho et al. (2018) [17], the largest instance solved to optimality for the basic DARP
with time windows is up to 8 vehicles and 96 requests, which is quite small for practical deployment of an
SAV service. Therefore, a mechanism has to be found in order to reduce the dimension of the routing
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graph. To address this research gap, we develop a new reduction method based on the graph embedding
framework, specifically around the node2vec algorithmic framework (Grover and Leskovec, 2016 [14]),
which will be seen later. The problem we solve is a reservation-based SAV service.

A second objective is to design an SAV service as close as it would work in a real environment. First, this
was done by the choice of an application territory. We choose an industrial district in Lyon city (France),
called “Vallée de la Chimie” (VC). Although VC is one of the biggest chemical and petrochemical parks
in Europe, it is poorly served by public transport systems. It  presents a concrete application of the last-
mile transit. This study focuses on a classical commute problem between the city center and suburbs
where two transportation alternatives compete:  highway and rapid transit  system. Second,  we aim to
generate realistic traffic demand accounting for intermodality, i.e., using multiple transport modes on the
same trip. The traditional four-step travel models could only produce demand matrices for separate modes
(McNally, 2007 [26]). We have relied on a Land Use and Transport Interactions (LUTI) model-based tool
called OPTIREL to account for intermodality, without using agent-based simulations. OPTIREL has been
previously applied to design new subway lines in Paris among other projects. Therefore, the problem we
solve is tested on VC for the commute problem with a local rapid transit system.

The remainder of the paper is organized as follows. A brief literature review on the integration of PT-
SAV system, the DARP problem, and the graph embedding framework is presented in the next section.
Section 3  introduces the optimization model and the solving approach, while Section 4 describes the
study case and the generation of traffic demand. In Section 5, we experimentally evaluate the benefit of
the designed last-mile service, before concluding on some final thoughts.

2. LITERATURE REVIEW

In  this  section,  we  briefly  review  the  literature  of  interest  in  this  paper  within  the  following  three
subsections. 

Integration of PT-SAV systems
Several recent studies are starting to explore the benefits of integrating SAV services with existing PT
systems.  The most  commonly adopted approach in this regard is  agent-based simulations,  whether it
concerns the integration, e.g., Shen et al. (2018) [37], Pinto et al. (2020) [31], or merely the intersection
of  PT-SAV systems,  e.g.,  Fagnant  & Kockelman (2014)  [10].  Liang et  al.  (2016)  [23]  proposed  an
optimization model for an automated taxi service serving the last mile transit of a train system. Their
results are shown for a train station in Delft and include comparisons with human-driven taxis. Shen et al.
(2018) [37] simulate several scenarios of integrating bus lines with SAVs for the first-mile connectivity
during the morning peak hours. Their results based on the Singapore PT show significant savings if low-
demand buses are substituted by SAVs, savings that go up to 860 passenger car unit-kilometers. Pinto et
al. (2020) [31] proposed a bi-level optimization framework to simultaneously modelize the joint transit
network parameters and the SAV mobility service. The lower-level problem is a dynamic combined mode
choice – traveler  assignment  problem,  while  the upper-lever is  a modified transit  network frequency
setting problem. Their results are given for the Chicago metropolitan area. A more detailed review of
overall SAV services is provided by Narayanan et al. (2020) [30].

Dial-a-Ride problems
Designing vehicle routes and schedules for collective people transportation such that each user request
has a pickup and a drop-off point locations are referred to as Dial-a-Ride systems, as in early versions of
this service, customers have to phone their requests. From a modeling perspective, DARP belongs to the
family of routing problems. It is a variant of the vehicle routing problem (VRP), precisely the capacitated
VRP with pickup and delivery and Time Windows, with a hands-on transporting passengers rather than
goods. Early solving approaches include Psaraftis (1980) [33], who solved the single-vehicle DARP using
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dynamic programming, and Jaw et al. (1986) [21], who developed one of the first heuristics to the multi-
vehicle DARP. For the exact approaches, Branch-and-Bound and their derived algorithms are the most
applied, e.g., Ropke et al. (2007) [34], Gschwind & Irnich (2014) [15]. Concerning metaheuristics, those
based  on  local  search,  especially  those  combining  local  search  elements  with  other  metaheuristics
currently constitute state-of-the-art solvers, e.g. Masmoudi et al. (2016) [25]. Applications of DARPs are
overall real-life problems with a diverse range of backgrounds, starting from the standard application to
the elderly and disabled people transportation to health care services, to the current emerging applications
in public transportation and shared mobility (Ho et al. 2018 [17], Mourad et al. 2019 [28]). For a more
comprehensive review of the problem classes, solving algorithms, and the applications of the DARP, see
Cordeau & Laporte (2007) [8], Molenbruch et al. (2017) [29], and Ho et al. (2018) [17].

Graph embeddings
Graph embedding is a powerful method to represent a graph into a low-dimensional vector space by
preserving as much as possible its topological structure. It addresses the research question of efficient
graph  analytics, since  traditional  methods  suffer  from  the  curse  of  dimensionality  and  space  cost.
Essential graph analytic tasks, such as graph classification, node clustering, and link prediction, become
scalable to large instances. Representation learning and visualization is another research problem tackled
by  graph  embeddings.  There  are  three  main  categories  of  graph  embeddings:  probabilistic,  matrix
factorization-based, and deep learning-based methods (see Goyal & Ferrara, 2018 [13] for a survey on the
topic). Probabilistic models learn the embedding of graphs through random walks. The samplings given
by  those  walks  can  capture  the  neighborhood  structure  of  nodes,  connectivities,  and  other  graph
properties such as node centrality. Compared with other probabilistic models like DeepWalk (Perozzi et
al.,  2014  [32])  and LINE (Tang  et  al.,  2015  [38]),  the  probabilistic  model  of  node2vec (Grover  &
Leskovec, 2016 [14]) is shown to perform better. This is why we chose node2vec implementation for the
graph  embedding  in  the  current  study.  The  random  walk  exploration  of  this  algorithm  interpolates
between breadth-first  (BFS) and depth-first  (DFS) searches  in order to construct  a more informative
embedding.

3. PROPOSED METHOD

Figure 1 illustrates the flowchart of the proposed approach. It is composed of two main distinct blocks:
optimization according to the DARP formulation, and the graph reduction mechanism. Given a set of
stations in the studied area,  the method’s inputs are the origin-destination (OD) matrix of the traffic
demand, i.e., the number of customers traveling between any two stations, the duration of travel and the
traveled distance between all couples of stations. The earliest visit time, service time, and latest visit time
for  each  O-D couple  of  the  demand  matrix  are  also  input  data.  Routing  problems  in  their  general
formulation are defined on an underlying graph where the set of vertices corresponds to the depot and
points to visit,  and the set  of  arcs weighted with costs to travel,  generally distances or travel  times,
represent shortest paths between stations.  On this defined routing graph, each point has to be visited only
once by precisely one vehicle. Since each initial station could be a pickup and a drop-off point to all the
remaining stations, and taking into account all traffic demand inputs of the OD matrix of the area, the
dimension of the routing graph to be solved can quickly increase. If n is the total number of stations, the
graph dimension could attain a maximum of  n (n−1 ) points to visit  without counting the depots. We
assume that the vehicle's capacity is greater or equal to every entry of the OD demand matrix. This will
prevent us from duplicating the same O-D couple of stations in the routing graph to account for the total
demand. The graph reduction mechanism we propose aims to detect groups of pickup and drop-off couple
points  to  be  merged,  and  output  a  reduced  graph  that  can  be  easily  solvable  by  a  mixed-integer
programming solver. Note that clustering and community detection algorithms could be used as well in
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the step of forming groups1. We use the constrained K-means clustering method proposed Bradley et al.
(2000)  [5] for  comparison  matter.  Our  method  is  overall  a  model-based  heuristic  around  a  central
component of mathematical programming. More details of the two main parts of our model is presented
in the following.

Figure 1. Flowchart showing the method’s main modules.

Mathematical formulation
In this study, we build on Cordeau (2006) [7] three-index formulation x ij

k of the DARP by considering a
new objective function and adding new variables. The points to visit are partitioned into two sets: the set
of pickup points P and the set of drop-off points D, such that each demand request of the OD demand
matrix has a pickup point  i∈ P, a corresponding delivery point which will be denoted deliv (i )∈ D, a
maximum riding time Li, and a maximum waiting time M i. Each point i∈ P ∪ D has a service time seri

, the earliest time to visit tw i
early,  a latest time to visit tw i

late, and a demand load denoted req i, such that for
i∈ P ,req i≥ 0 and reqdeliv ( i )=− reqi .

K  is  the set  of  vehicles.  Each vehicle  k ∈ K  has a capacity  Qk ∈ℕ,  GHG emissions up to  Ek  by
kilometer, starts from the depot denoted sk and ends at the depot denoted ek. Let D start={sk :k ∈ K } be
the set of all start depots and Dend={ek :k ∈ K } the set of all end depots. For all j∈ D start ∪ Dend, the
values serv j=req j=0 are fixed.  We associate different start and end depots to each vehicle to make the
model more general. However, all these depots may correspond to the same geographical location, which
coincide in the case of our application to the transit station of the PT network.

The underlying routing graph  G= (V , A ) has a vertex set equal to V =P ∪ D ∪ D start ∪ D end.  The arc
set is defined as A={(i , j ): (i ∈ D start , j ∈ P )∨ (i∈ D , j ∈ Dend )∨ (i , j ∈ P ∪ D ,i ≠ j , i ≠ deliv ( j ) )},

1 This is different  from cluster and route methods, which first apply a clustering algorithm to the input visiting points, and
second generate optimal routes for each cluster, e.g., Chen et al. (2020) [6].  
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and the weights of the graph are given by  c ij and d ij, which denote respectively the duration to travel and
the distance from i to j. 

The decision variable x ij
k  indicates whether the arc (i , j ) is traversed by vehicle k ∈ K  or not, r i and wi

gives respectively the riding time and the waiting time for the request associated with pickup i∈ P, t i
k  is

the arrival time at point i using vehicle k , and q i
k is the load of the vehicle k  when leaving the point i.

In addition to minimizing total travel times for all vehicles, the degree of customer dissatisfaction in the
sense of Psaraftis (1980) [33] is also minimized plus to the greenhouse gas emissions due to the transport
of passengers.  Plausible values of  Ek  are drawn from the life-cycle assessment (LCA) conducted by
Gawron et al. (2019) [12].  (ω1 ,ω2 ,ω3) gives the weights between the three quantities in the objective
function. The model is as follows.
  

Min  ω1 ∑
k ∈ K

∑
i , j ∈V

c ij x ij
k +ω2 ∑

i ∈ P
(r i+w i )+ω3 ∑

k ∈ K
∑
i ∈V

∑
j ∈V

Ek d ij x ij
k
                                         (1)

                   

Subject to: 

 ∑
i ∈ P

xs ki
k =∑

i∈ D
xi ek

k =1                                                 (k ∈ K ) ,                                       (2)

 ∑
k ∈K

∑
j ∈V

xij
k =1                                                          (i∈ P ) ,                                        (3)

∑
j ∈V

x ij
k − ∑

j ∈V
xdeliv (i ) j

k =0                             ( i∈ P ,k ∈ K ) ,                                        (4)

        ∑
j ∈V

x ji
k − ∑

j ∈V
x ij

k=0                             ( i∈ P ∪ D , k ∈ K ) ,                                       (5)

        t j
k ≥ (t i

k+ser i+c ij ) xij
k                              ( i , j ∈V ,k ∈ K ) ,                                       (6)

tdeliv (i )
k ≥t i

k+ seri+c ideliv (i )                                      ( i∈ P ,k ∈ K ) ,                                       (7)
        tw i

early ≤ t i
k ≤tw i

late                               ( i∈ P ∪ D , k ∈ K ) ,                                       (8)
        q j

k ≥ (q i
k+reqi ) xij

k                                  (i , j ∈V ,k ∈ K ) ,                                       (9)

        r i ≥tdeliv (i )
k − ( t i

k+ seri )                                       (i∈ P ,k ∈ K ) ,                                     (10)
        wi≥ t i

k − twi
early                                               (i∈ P ,k ∈ K ) ,                                     (11)

        c ideliv (i ) ≤r i ≤ Li                                                                   (i∈ P ) ,                                     (12)
        0 ≤wi ≤ M i                                                                    (i∈ P ) ,                                     (13)
        0 ≤q i

k ≤Qk                                                       ( i∈V , k ∈ K ) ,                                    (14)
         x ij

k=0∨1                                                   (i , j ∈V ,k ∈ K ) .                                    (15)

The routing constraints (2)-(5) ensure that each vehicle starts and ends at its corresponding depot points in
constraint (2), each request is answered in constraint (3), the same vehicle is used for pickup and drop-off
in constraint (4), and the flow conservation in constraint (5). Constraint (6) tracks the service time, while
constraint  (7)  ensures that  pickup  points  are  visited  before  their  delivery  points,  and  time  window
constraints are given in (8). Constraint (9) tracks the load of vehicles, which is needed later to compute
the vehicle occupancy rate (VOR) indicator. Constraints (10) and (11) are respectively relative to the
riding time and the waiting time for each request.  Constraints (12)-(15) represent the binary and the
bounding restrictions for the decision variables. Note that the current mixed-integer programming solvers
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can efficiently handle indicator constraints as in (6) and (9). Other useful constraints to add concern the
battery  management  aspect,  which  includes  the  recharge  time,  the  battery  energy  consumption  and
detours to recharge stations as in Bongiovanni et al. (2019) [4]. Recent simulations (Vosooghi et al., 2020
[40]) suggest that a best strategy for SAV could be deploying batteries with more charging space to avoid
charging the battery within the rush hours of  the morning and the evening peaks, otherwise alternating
charging and routing could drastically increase the passenger kilometer traveled. For this reason and for
the time being, we suppose that battery charging operations are set outside the routing process, and that
vehicles are set to be initially charged before transporting customers. 

For the heuristic to determine the number of vehicles |K| (mentioned in Figure 1), we use the following
formula for vehicles with an identical capacity Q=Qk:

                                               vehicles (m )= ∑
i , j ∈V 2 , i ≠ j

demand ( i , j ) / (n× Q ) .  

m is an estimate of the average number of O-D requests each vehicle is expected to answer during the
time horizon (usually m=3 or 4).

Graph reduction mechanism
The steps of the graph reduction are listed in the below algorithm. At first,  node2vec  is applied to the
routing graph  G,  which is introduced in the previous section and is weighted by the travel durations
(cij )(i , j )∈ A, for the following inputs: the desired dimension size of the embedding d , the number of random
walks to launch from each node and their length, plus other parameters related to the guided exploration
strategy of the walks. Thereafter, each node of G can be represented by a feature vector of dimension d .
To obtain a similarity matrix S for the nodes of G, we apply the cosine similarity, which is defined for
any  two  real-valued  vectors  v1 and  v2 as  the  cosine  of  the  angle  θ between  them,  i.e.,
cos (θ )=v1⋅v2 / (‖ v1 ‖×‖v2 ‖ ) . Other measures of similarity and distances could be also used at this step.
This step is important because it gives a quantification of the similarity between any two nodes of G
while taking into account as much as possible the topology structure of the graph.

The remaining steps concern merging the points to visit. We opt for merging pick-up and drop-off (P-D)
couples two by two. This gives us more flexibility in the rate of contraction of the graph G, and allows us
to  quickly  compute  the  optimal  order  within  the  merged  P-D  couples.  For  each  two  P-D  couples
( p1 , deliv ( p1 ) , p2 ,deliv ( p2)), we compute the following average similarity using the similarity matrix S

simil ( p1 , p2)=(S ( p1 , p2)+S (deliv ( p1 ) ,deliv ( p2))+S ( p1 ,deliv ( p1)) )/6
                              +(S ( p2 , deliv ( p2 ))+S ( p2 , deliv ( p1 ))+S ( p1 ,deliv ( p2 )))/6 ,        (17)

which indicates how close the two couples are. Note that we affect a higher input parameters for BFS
over DFS in the guided search of node2vec to favor closer nodes within the vicinity of each node of G.
After ranking pairs of the P-D couples by their similarity, we choose the top r × (|P|∪|D|)/2 pairs, with
r  is the rate of contraction of the graph. The following step proceeds by computing the optimal order of
visiting points within each of the chosen pairs. There are only six possible orders respecting the pickup
and drop-off constraints among the total 32, which are shown in Figure 2-a. For each optimal order, we
output  two  aggregated  nodes  in  the  novel  graph,  i.e.,  if  an  optimal  order  is  for  instance
( p1 , deliv ( p1 ) , p2 ,deliv ( p2)),  the  new  nodes  will  correspond  to  p ’=( p1 ,deliv ( p1)) and
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deliv ( p ’ )=( p2 ,deliv ( p2)). The final step updates the graph weights involving the new nodes, as shown
in Figure 2-b. Distances between nodes are updated in the same manner. The graph reduction algorithm
has an overall time complexity of O (|V|2) , since node2vec runs in O (|V|2) and the number of pairs of P-

D couples processed in the merging steps is at maximum COMBIN (n=(|P|∪|D|)/2 , k=2)≤|V|2/8. 
  

Algorithm: node2vec-based graph reduction

Inputs: The routing graph G= (V , A ), the contraction rate r .

1. Apply the node2vec algorithm to G.

2. Compute the similarity matrix S of G using the cosine measure on the embedding of 1.

3. Compute for each two P-D couples ( p1 , deliv ( p1 ) , p2 ,deliv ( p2)) the value simil ( p1 , p2).

4. Select the top r × (|P|∪|D|)/2 similar pairs of P-D couples.

5. Compute the optimal order of points to visit within each chosen pair.

6. Update the graph’s costs for the arcs going to/coming from the newly merged nodes.

Figure 2. Possible arrangements  for a pair of P-D couples in (a), 
and the updated travel costs involving merged P-D pairs in (b).
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4. CASE STUDY: THE INDUSTRIAL DISTRICT OF “VALLÉE DE LA CHIMIE”, LYON CITY

In this section, we describe the studied territory and the process used to generate the input demand data.

Territory  
Lyon is the second-largest urban area of France and is home to several industrial hubs. The largest of
them is “Vallée de la Chimie” (VC) for approximately  17 km2.  Situated about  10 km away from city
center, VC has currently over 1,000 companies, 6 research and development centers, mostly working in
the chemical, energy and the environmental sectors, and it attracts over 20,000  jobs (Métropole de Lyon,
2020 [27]). 

In terms of mobility infrastructure, a Rapid Transit System (RTS) links VC to the city center on a regular
schedule (each 30 min in rush hours, otherwise once by hour). There are quite few buses connecting VC
to Lyon city (in total three, two are drawn in the right map of Figure 3 in light red lines). The highway A7
also crosses the territory. This artery is essential for logistic transportation and gets severely congested in
the morning rush hours, as A7 is also the south entry point to the city. Commuting to work accounts for a
significant part of mobility flows from/to VC. By considering the low PT supply and the highway’s high
saturation, a typical last-mile transit issue occurs. A number of experimentations to overcome this issue
are currently conducted in this territory: Personal Rapid Transit (PRT) from the Esprit project (Esprit,
2019 [9]) and a demand-responsive transit (DRT) service from the local PT service (TCL, 2020 [39]). VC
constitutes a good study example for the SAV deployment. 

This test case is finally classic and generalizable to several other mobility situations all over the world.
Indeed, it corresponds to the framework of a commute problem with two main alternatives: PT and the
private vehicle which experiments bottleneck.

Figure 3. The placement of VC within the Lyon urban area in the left map, and  
the transport network connecting VC in the right map. Source:  www.openstreetmap.org/.
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Demand generation
To generate the traffic demand, we apply a  Land Use and Transport Interaction (LUTI) model. LUTI
models are spatial interaction models that integrate the socio-demographic and economic features of the
population to the transport infrastructure and mobility features, to answer questions such as, what is the
transport modal share of a middle-sized income household living in the suburb to commute to work to the
city center. With LUTI models, the cause/effect relationships between land use and transport become well
understood,  and  the  mobility  patterns  are  well  identified.  It  is  noteworthy  that  LUTI  models  are
extensively used for urban and transport plannings (see Acheampong et al., 2015 [1] for a review on the
topic).

We use  the LUTI  model  called  OPTIREL,  which  has  the  advantage  to  account  for  intermodality.
OPTIREL proceeds by decomposing the area’s space according to the transport mode used from/to the
target territory. For instance, the first zone of the studied territory is solely accessible by walking, the
second zone is larger and is accessible by bus or RTS system (from/to the territory), the third zone is even
larger. It delimits areas accessible by private vehicles combined with relay parking.  In this manner, it is
possible to define mobility solutions combining several modes in the step of the modal decomposition.
The classical  four-step travel  models  define  zones according  to  the  administrative  or  the  population
census based spatial  decomposition,  which turns  out  to  be a rigid assumption for  combining several
modes in the third step of modal share. The traffic demand considered in our application corresponds to
the PT demand arriving in the territory by train during the morning peak [7h-10h]. This  interval will set
our time horizon. Ten stations are defined for the planned SAV service, which correspond to stations of
the  Esprit project (Esprit, 2019 [9]), and  cover the north part of VC. They are shown in Figure 4. The
main transit station is “Gare Feyzin” which will coincide with the depots of all vehicles. We can notice
from our input OD demand matrix, generated by OPTIREL, and shown in Figure 4, that traffic coming
from  “Gare  Feyzin”  is  the  highest.  Interestingly,  the  traffic  is  also  high  from  the  stations “Hector
Berlioz”and “Thomas” which are the closest stations to the transit station. Finally, duration and distances
between stations are generated using web mapping services.

Figure 4.  The locations of the ten stations considered in the study (left map), and the input OD
demand matrix (right plot), which is colored according to the demand intensity: green=low, yellow

and orange=middle, and red=high.
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5. RESULTS

In this section, we test the proposed method on the study case and show its usefulness.  

Parameters setting
For solving the DARP, ILOG CPLEX 12.10 solver is used, with the termination criteria set to a relative
gap of  1%. Although the routing graph is  reduced,  we have noticed that  the problem (1)-(15) takes
extended time to  find a  first  solution,  which is  not  the  case  for  the  problem (1)-(15)  excluding the
precedence constraint (7).  Thus, we solve the latter problem in a first step, rearrange the points to visit
for each vehicle by solving the single-vehicle DARP problem (1)-(15) , and then consider this solution a
starting point for our main optimization. The effect of adding an initial  good quality starting point is
beneficial  in  our  CPLEX solving  process.  In  the  absence of  precise  data  about  the  customers’  time
windows, we set the constraints (8) to two time windows, each with one hour duration, and uniformly at
random partition P and D points on the two time windows, with the condition that each dropoff point has
the same time window of its pickup point.  We do not consider customers waiting times  wi with this
configuration of time windows. A fixed service time seri=1 minute is associated to each point to visit
i∈ P ∪ D.  In  the  baseline  scenario,  we  set  the  capacity  of  vehicles  to
Q=25>20=maxi , j ∈V 2 , i ≠ j demand ( i , j ),  the number of vehicles to vehicles (m=3 )=4, the maximum
riding time to L=15 minutes, and the weights of the objective function to (ω1 ,ω2 ,ω3)= (1,1,0.1 ). The
GHG emission rate is chosen to be equal to Ek=0.171 KgCO2− eq /km, which corresponds to the short-
range electric  autonomous taxi  scenarios  in  Gawron et  al.  (2019)  [12].   For the input  parameters of
node2vec, the dimension size is set to  30, while the walk length is equal to 6 for 1000 random walks
launched from each node.  Since node2vec is a stochastic method, we launch this method multiple times,
exactly 50 times for each configuration of  Q and  L, then choose the instance with the minimal inside
travel time. This latter value is given by the summation of travel times inside the reduced nodes. For
instance, the inside travel time of the graph of Figure 2-b is equal to c ij+ckl. The calculation is done for
each configuration of Q and L as the possible arrangements of P-D couples could be less than six (Figure
2-a).  All experiments are performed on an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz machine with
32 GB RAM memory.

Constrained K-means
The  constrained  K-means  clustering proposed  by  Bradley  et  al.  (2000)  [5]  extends  the  traditional
algorithm ensuring that each cluster contains at least a minimum number of elements. The problem of
minimum cost flow optimization is used to solve the new formulation. Similarly, it is possible to add a
maximum size constraint to clusters.  In order to have a fair comparison with node2vec, we associate to
each pickup node a value similar to the average of the expression (17) :

                                cost avg ( p )=∑ (c pq+cdeliv ( p )deliv (q )+c pdeliv ( p )+cqdeliv (q )+c pdeliv ( q )+cqdeliv ( p )) /12

                                                  +∑ (cqp+cdeliv (q ) deliv ( p )+cdeliv ( p ) p+cdeliv (q ) q+cdeliv (q ) p+cdeliv ( p )q )/12.  
This expression has twelve terms for each q ∈ P to account for the asymmetry of the travel times  c ij.
Clusters are generated with a maximum size of two and a minimum size of one, for the clustering with the
best inside travel time among 50 runs.
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Indicators
Two  main  performance  measures  are  used:  the  vehicle  kilometers  traveled  (VKT),  and  the  vehicle
occupancy  rate  (VOR).  Two  additional  measures  are  extracted  from  them.  VKT indicates  the  total
distance traveled by all vehicles of K to satisfy the demand, and is equal to,

VKT ( x )=∑
k ∈ K

∑
i , j ∈V 2 , i ≠ j

d ij x i , j
k .

We also  use a correlated measure to VKT, which is the total GHG emissions generated for all trips to
provide an order of magnitude of SAV emissions : GHG ( x )=Ek VKT ( x ). To get a glimpse of the GHG
environmental gain of using SAV, which is previously established in the literature, we show the gap:

 GHGgain ( x )=
GHG pv (demand ) −GHG ( x )

GHG pv (demand )
,

with  GHG pv (demand ) represents  GHG  emissions  estimated  for  the  input  demand  and  the  personal
vehicle mode.

The third measure VOR is an average of the load rate of all vehicles at each step of the routing, and is
equal to,

VOR ( x ,q )= 1
|K|

1
|P|∪|D| ∑k ∈ K

∑
i , j∈ P ∪ D,i ≠ j

x ji
k qi

k

Q
.

VOR can also  be  seen  as  an  index  of  comfort  of  the  mobility  service.  The last  measure,  the  zero
occupancy  rate  (ZOR)  is  equal to  the  percentage  of  trips  between  any two stations  which have  an
occupancy rate equal to zero, and is given by,

ZOR ( x , q )= 1
|K| ∑k ∈ K

∑
i , j ∈P ∪ D, i≠ j , qi

k=0

x ji
k

(|P|∪|D|)− 1
.

All measures are computed on the original non-reduced problem. 

Baseline scenario
Accounting for the total demand of VC leads to solving a problem of 54 points to visit 2 plus the dummy
start  and end vehicle  depots,  which is  a computationally  hard problem for  k >2 vehicles.  The graph
reduction mechanism makes this optimization  more manageable. CPLEX solver could attain a solution
for the baseline scenario within a relative MIP gap of 23% in 0.28, 277.17, and 3609.62 seconds when the
graph contraction rate is respectively 50%, 45%, and 40%. In the rest of the study, we set the contraction
rate of the routing graph at  r=50% . Figure 5  illustrates the SAV routes obtained for the baseline
scenario. This scenario has a total traveled distance of  VKT=65.46 (respectively  74.44 km) for an
average occupation rate of VOR=42.1% (resp.  31.6 %), and a total emissions of GHG=11.12 (resp.
12.73 Kg CO2 − eq) for node2vec (resp. constrained K-means) based node reduction. By drawing on the
estimates of the vehicle occupancy rate and the GHG emissions of private vehicles computed for the
Lyon urban area  (François et al, 2017 [11]), we obtain :

 GHG pv (demand )= ∑
i , j ∈V 2 , i ≠ j

demand (i , j ) × d ij
175 gCO2 − eq /Km

1.33 person /car
=43.8 Kg CO2 − eq. 

Therefore, compared to the private vehicle mode, the SAV service leads to a reduction of  74.61% of
GHG emissions for the territory of VC when relying on the node2vec reduction.

2 The  number of points to visit for the full OD demand matrix of Figure 4 is 180 points. We have only 54 points in our input
data, since some O-D couples have a null demand.
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N2V

K-
means

Figure 5. SAV routes for the baseline scenario with the graph embedding 
reduction (first row) and the K-means based reduction (second row).   

Sensitivity analysis
Figure 6 shows the sensitivity analysis performed on the baseline scenario, by varying the fleet size |K|,
the maximum riding time L, and the vehicle’s capacity Q . For a number of vehicles equal to 1, 5, and 10,
the total traveled distance VKT slowly decreases to be resp. 67.70, 64.53, and 59.88 km for the node2vec
reduction. K-means clustering generates tours in the same decreasing trend, but with higher VKT, which
is  an  indication  of  a  lower  performance  to  find  best  pairs  of  P-D couples  to  merge.  While |K| is
multiplied by 10,  VKT of  node2vec is  divided by 1.13.  Having more vehicles  actually  allows more
flexibility  for  the  routing  optimization  to  produce  efficient  assignments  of  vehicles  to  the  transport
requests. VKT is decreasing  in function of  Q, which is expected since larger capacities imply smaller
tours.  Node2vec is again much efficient than K-means reduction in this regard. VKT is overall stable
under varying  L. As some values of  L and  Q may constraint the number of possible arrangements of
Figure 2-a, an oscillatory effect when varying L and Q could be seen for VKT and VOR index as well.
GHGgain plots on the other hand show the substantial cut in terms of GHG emissions if SAV are deployed
instead  of  private  vehicles,  especially  for  the  node2vec  method.  The  reduction  corresponds  to  resp.
73.57% and 76.62% of GHG emissions if the fleet size is equal to resp. 1 and 10. Concerning the vehicle
occupation rate,  we notice that this rate is not affected much by the size |K| and the riding time L, and
oscillates around the mean value of 35%. The vehicle’s capacity Q, on the other hand, has some influence
on VOR. VOR decreases from 38.5 (resp. 43.3%) to 24.9 (resp. 22.7%) when the capacity increases from
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20 to 50 for node2vec (resp. K-means) reduction. This particular point should be carefully considered by
the designers of SAV services to achieve a fair tradeoff between users’ comfort and the costs for an
additional capacity of automated vehicles and buses. As for empty trips, ZOR is solely impacted by the
size |K|. This index decreases for an increase of |K|, otherwise it has a constant value around 10%.

6. CONCLUSION

In this study, we propose a model-based heuristic design for a shared autonomous vehicle (SAV) service
by combining the formulation of the Dial-a-Ride-Problem (DARP) and a graph reduction mechanism.
This latter procedure is based on the graph embedding framework  node2vec, and allows us to merge
similar couples of pickup and drop-off points, and hence solving instances with a large number of O-D
requests and fleet size. A study case analysis is provided for an industrial district of the Lyon urban area
(France), wherein the traffic demand is generated by a LUTI model. In the paper, we address in a classical
commute  problem between  city  center  and  suburbs  where  two  transportation  alternatives  compete:
highway and rapid transit system (RTS). The SAV service is deployed as a last-mile transit for the RTS.
Our results suggest that node2vec is more efficient for node reduction than the constrained K-means (in
terms of vehicle traveled distance),  in addition around 75% reduction of GHG emissions are  gained by
SAV service when compared to the private vehicle choice.   

The limitations of the study mainly  concerns the maximum reduction rate, which is currently 50% as
reduction is done by merging couples of pickup and drop-off pairs, and the specificity of our application
case. One natural improvement  is to enlarge the reduction mechanism to three pickup and drop-off pairs.
We  also  think  that integrating  the  current  approach  with  the  LUTI  model  would generate  precise
partitions of the mode share for the studied territory and population, which would in return help to fix the
adequate parameters of the SAV service, i.e., load capacity, fleet size, maximum riding time, in a cause-
and-effect loop. 
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Figure 6. Sensitivity analysis on the baseline scenario of the fleet size (first column), the clients
maximum riding time (second column) and the vehicles’ capacity (third column) for the indicators

VKT (fist row), VOR (second row), ZOR (third row) and GHG gain (fourth row).
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Table 1. Numerical values of the sensitivity analysis (plotted in Figure 6).

Fixed
parame

ters

Variable
paramet

er

VKT [Km] VOR [%] ZOR [%]
GHG

[Kg CO2-eq]

N2V K-means N2V K-means N2V K-means N2V K-means

Q = 25

L = 15
min

|K| =1 67.7 78.7 30.8 29.4 35.2 38.9 11.6 13.45

|K| =2 67.0 76.8 41.7 29.9 17.6 19.4 11.5 13.13

|K| =3 65.6 75.8 32.2 36.9 11.7 13.0 11.2 12.97

|K| =4 65.5 74.4 42.1 31.6 8.8 9.7 11.2 12.73

|K| =5 64.5 73.0 43.5 29.4 7.0 7.8 11.0 12.49

|K| =6 62.8 73.9 42.4 36.9 5.9 6.5 10.7 12.63

|K| =7 61.6 73.7 42.5 38.7 5.0 5.6 10.5 12.61

|K| =8 60.4 72.6 39.8 35.4 4.4 4.9 10.3 12.41

|K| =9 59.3 72.6 38.6 38.2 3.9 4.3 10.1 12.41

|K| =10 59.9 73.2 39.4 38.1 3.5 3.9 10.2 12.51

|K| =4

Q = 25

L = 10min 64.3 72.0 30.3 31.7 9.7 9.7 11.0 12.31

L = 11min 66.1 70.9 38.6 33.8 9.7 9.7 11.3 12.1

L = 12min 65.4 68.5 34.9 40.4 9.3 9.3 11.2 11.7

L = 13min 69.7 73.2 36.5 42.2 9.7 9.3 11.9 12.5

L = 14min 66.0 74.2 36.4 32.4 8.8 10.2 11.3 12.7

L = 15min 69.8 75.8 35.5 30.1 9.3 10.2 11.9 13.0

L = 16min 67.4 74.9 32.8 41.9 8.8 9.3 11.5 12.8

L = 17min 67.5 71.6 34.4 32.4 9.7 10.2 11.5 12.2

L = 18min 71.9 76.6 33.6 29.6 10.2 10.2 12.3 13.1

L = 19min 71.8 74.9 38.7 27.6 9.7 10.2 12.3 12.8

L = 20min 68.1 73.2 37.5 37.8 9.3 9.3 11.6 12.5

|K| = 4

L = 15
min

Q = 20 70.9 70.1 38.5 43.3 9.7 9.7 12.1 11.0

Q = 25 68.2 73.3 32.4  38.2  9.7 9.3 11.7 12.5

Q = 30 63.1 70.8 40.5 40.7 7.4 8.3 10.8 12.1

Q = 35 62.4 80.1 34.0 24.8 7.4 9.3 10.7 13.7

Q = 40 62.5 78.3 28.1 24.0 8.3 9.3 10.7 13.4

Q = 45 54.1 70.6 33.6 24.3 6.9 7.4 9.3 12.1

Q = 50 51.6 66.2 24.9 22.7 6.5 7.4 8.8 11.3
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