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Abstract

We present ICAR, a mathematical framework derived from cate-

gory theory for representing cybersecurity NIST and MITRE's ontolo-

gies. Designed for cybersecurity, ICAR is a category whose objects are

cybersecurity knowledge (weakness, vulnerability, impacted product,

attack technique, etc.) and whose morphisms are relations between

this knowledge, that make sense for cybersecurity. Within this rig-

orous and uni�ed framework, we obtain a knowledge graph capable

of identifying the attack and weakness structures of an IS, at the in-

terface between description logics, database theory and cybersecurity.

We then de�ne ten cybersecurity queries to help understand the risks

incurred by IS and organise their defence.

Keywords Vulnerability management, threat management, asset manage-
ment, CVE, CWE, CAPEC, CVSS, CPE, Category theory

1 Introduction

When it comes to cyber systems defense, security operations management
has long involved separate tasks: vulnerability management, cyber threat
management, and asset management. Today, these disciplines are intended
to interoperate within a broader framework, supported by public knowledge
bases on cyber threats, vulnerabilities, and IT assets. This interoperability
draws an integral and integrated research path, at the interface between
ontology language, database theory and cybersecurity, in order to understand
how adversaries use vulnerabilities to achieve their goals.
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From a general perspective, the research e�orts strive to integrate several
repositories: the Common Platform Enumeration (CPE) listing IT assets,
the Common Vulnerabilities and Exposures (CVE) listing discovered vul-
nerabilities, the Common Weakness Enumeration (CWE) listing commonly
appearing weaknesses, the MITRE ATT&CK framework listing Adversary
Tactics and Techniques (ATT) and the Common Attack Pattern Enumera-
tion and Classi�cation (CAPEC) which helps facilitate attack identi�cation
and understanding. The latter repository thus acts as a bridge connecting
vulnerability management and threat management. On this basis, research
work has explored several avenues.

• Some works propose uni�ed ontologies, more or less interoperable, such
as Kurniawan et al. [8], preceded in this by partial ontologies such as
UCO and SPESES, which do not yet include the CTI incorporated in
the ATT&CK (even if they can include other vulnerability repositories,
such as the CYBOX, KillChain or STUCCO standards).

• Other research explores the track of domain-speci�c languages (DSL),
and in essence that of the Meta Attack Language (MAL) meta-language.
This is the case for Xiong et al.'s EnterpriseLang meta-language [14]
and Åberg and Sparf's AttackLang meta-language [1].

• A third research direction proposes to deepen the graph visualization
aspects of attack paths through a relational representation of threats
and vulnerabilities. This is the case of the BRON model of Hemberg
et al. [4].

The approach proposed here is a new way to deepen the mathematical
aspects of integrated security operations management. This approach com-
bines the advantages in that

(i) like the �rst approaches mentioned above, it develops a uni�ed vision
of vulnerability and threat repositories;

(ii) like the second ones, they articulate vulnerabilities and threats within
the framework of a cybersecurity-oriented meta-language, except that
� and this is a fundamental point � it is a mathematical meta-
language rather than an ontological one1.

1It may be noted that the DSL approach adds an ontological layer to the ontology
already at work in the MITRE and NIST repositories.
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(iii) like the third ones, it deepens the study of graph visualization and
structural properties of the uni�ed cybersecurity ontology, by borrow-
ing the powerful and rICARous graph-theoretic concepts of category
theory.

We believe that category theory can be put to good use by cybersecurity
teams. Following the example of a growing number of researchers, involved
in more and more diverse �elds of knowledge, we believe that the concepts
of category theory o�er important keys to understanding that simplify and
unify the treatment of security operations. We see category theory as the
very language of interoperability that enables the integrated management of
assets, vulnerabilities, and cyber threats.

The article is organized as follows. The second section discusses the con-
struction of the integrated cybersecurity resource, which will lead to the
knowledge graph called ICAR. Based on this, the third section shows how
to exploit the knowledge graph to answer di�erent concrete cybersecurity
queries. We will see how the categorical concepts allow us to handle bottom-
up (from assets to defend to adversaries) as well as top-down (from adver-
saries to assets) queries. The fourth section concludes.

2 Building the ICAR resource

2.1 Data sources

The data sources are from the knowledge bases provided by the NIST (Na-
tional Institute of Standards and Technology) and the MITRE Corporation.

• Common Platform Enumeration (CPE) is a way of assigning standard-
ized identi�ers to classes of IT assets.

• Common Vulnerabilities and Exposures (CVE) is a knowledge base
listing publicly known vulnerabilities. Each CVE entry contains an
identi�cation number, a description and at least one reference to pub-
licly known cyber security vulnerabilities. Additional information may
include patch information, severity scores and impact assessments ac-
cording to the Common Vulnerability Scoring System (CVSS), as well
as links to exploit information and advisories.

• Common Weakness Enumeration (CWE) is a knowledge base listing
software and hardware weaknesses: �aws, features, breaches, bugs, and
other errors in the design, architecture or implementation of software
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and hardware components that, if left un�xed, can make systems and
networks vulnerable to attack. CVE entries have a relational link to
CWE entries, as an example of a weakness that actually a�ects a com-
puter system.

• Common Attack Pattern Enumeration and Classi�cation (CAPEC)
enumerates and classi�es attack patterns to facilitate the identi�ca-
tion and understanding of attacks. The attack patterns have a tree
structure, i.e. they are organised into categories and sub-categories of
attacks. They allow the ATTs to be linked to CWE weaknesses.

• MITRE ATT&CK framework abstractly describes cyber attack tech-
niques organised into twelve sequential tactics. The framework is pre-
sented in a matrix format where the columns represent tactics and the
rows represent techniques.

These �ve knowledge bases (or six including CVSS) thus make up an
integrated ontological resource for cybersecurity (which we will call ICAR).
At this point, it is important to note that this resource only represents the
abstract relationships between the data sources. In the language of database,
we would say that it shows the column headings of the primary and secondary
keys, but not the column entries themselves.

2.2 Ontologies as knowledge graphs

The integrated ontological resource can be represented more formally as a
graph.

De�nition 1 (Graph). A graph G is a sequence G := (V,E, src, tgt), where
V et E are sets (respectively the set of vertices and the set of arrows of
G), and src, tgt : E → V are functions (respectively the source and target
function of G). An arrow e ∈ E with source src(e) = v and target tgt(e) = w
is represented as follows:

v
e−−−−→ w.

On this basis, it is possible to represent each dictionary (or ontology)
by a vertex and each link between dictionaries by an arrow, without forget-
ting that dictionaries can have internal links. This is the case of CAPEC
patterns. For example, the CAPEC-593 pattern (Session Hijacking), linked
to the CWE-287 weakness (Improper Authentication) and to several tech-
niques, sub-techniques and MITRE ATT&CK tactics, has itself children (the
CAPEC-60, CAPEC-61, CAPEC-102, CAPEC-107 patterns) and is itself
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linked to the CAPEC-21 pattern (Exploitation of Trusted Identi�ers). We
must therefore add to the knowledge graph a loop on CAPEC representing
the ChildOf dependency relation. It is also possible to add the dual relation
ParentOf, although redundant, as foreseen by the MITRE corporation. This
is also the case for weaknesses. For example, the aforementioned weakness
CWE-287 has children CWE-295, CWE-306, CWE-645, CWE-1390, and is
itself a child of weakness CWE-284 (Improper Access Control). Finally, it
remains to take into consideration the internal structure of the ATT&CK
framework, which is broken down into the dictionaries Tactics, Techniques
(including sub-techniques) and Procedures. In this article, we will only deal
with tactics and techniques. Sub-techniques will be assimilated to techniques
of which they are children.

Taking into account these additional speci�cations, we �nally obtain the
graph depicted in �gure 1, faithful to the structure of the asset, attack and
weakness ontologies.

CV SS

CV E CWE CAPEC Technique

CPE Tactic

Has

Has

Has

isChildOf

isParentOf

Has

isChildOf

isParentOf

Has

Has

isSubTechniqueOf

accomplishesTactic

Figure 1: Representation of the security knowledge graph

Remark interestingly the complementarity of the CAPEC and Techniques
dictionaries in the overall understanding of threat, beyond their simple log-
ical link. Techniques and (attack) patterns contextualise threat di�erently.
Patterns are intended to focus on the compromise of applications in order to
understand the path taken by adversaries to exploit end-to-end application
weaknesses in the information system (IS), while techniques describe the con-
crete dynamics of an attack scenario executed step by step to compromise
the IS (see [9] for more details). Thus, technique T1528, which describes
the theft of application access tokens in order to obtain credentials for ac-
cess to remote systems and resources, can be contextualised in two di�erent
ways: (i) as a step to legitimise application actions under the guise of an
authenticated user or service by obtaining a trusted identi�er, hence its be-
longing to the CAPEC-21 (Exploitation of Trusted Identi�ers) pattern, (ii)
as a strategic step to steal account names and passwords, hence its belonging
to the TA0006 (Credential Access) tactic. Ultimately, the techniques em-

5



body attack tactics as the "how" of the attack (where tactics characterise
the "why").

2.3 Semantic facts and knowledge schema

We can do better. What the knowledge graph represents are roughly the
data tables (the vertices) and the data columns (the arrows). However, there
is still some information missing which is not made explicit in the graph: the
path equivalences in G.

De�nition 2 (Path). Let G = (V,E, src, tgt) be a graph. A path of length
n in G, denoted p ∈ Path

(n)
G is a sequence

p = (v0
a1−−−−−→ v1

a2−−−−−→ v2
a3−−−−−→ . . .

an−−−−−→ vn)

of arrows in G. In particular, Path
(0)
G = V and Path

(1)
G = E. The set of all

paths in G is denoted

PathG :=
⋃
n∈N

Path
(n)
G .

Paths may themselves carry higher level information about the knowledge
structure. This is the case if constraints are imposed on the paths to translate
properties that make sense. These constraints can then be expressed as path
equivalences.

De�nition 3 (Path equivalence). Let G = (V,E, src, tgt) be a graph and

p, q : b → c ∈ Path
(n)
G two paths in G. A categorical path equivalence

relation in G, or simply a path equivalence in G, is a relation denoted ≃
such that p ≃ q if and only if src(p) = src(q) and tgt(p) = tgt(q). Moreover,
if m : a→ b and n : c→ d are two arrows in G, then m and n are respectively
an epimorphism (a right simpli�able morphism) and a monomorphism (a left
simpli�able morphism), i.e. p ≃ p if and only if mp ≃ mq and pn ≃ qn.

Following Spivak [11], we call this equivalence relation facts.
There are facts in our study. It is indeed natural to ask for a form of

reciprocity in the links between weaknesses and attack patterns. If an attack
pattern CAPEC − X exploits a weakness CWE − Y , it is natural that it
is part of the patterns referenced by this weakness. We can therefore add a
path equivalence in the knowledge structure to obtain the following fact:

(CAPEC-X Has−−→ CWE-Y Has−−→) ≃ CAPEC-X.

for all CAPEC-X ∈ CAPEC and CWE-Y ∈ CWE.
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Parent/child relations express other facts. It is natural to require that a
weakness CWE-X declaring a child CWE-Y is itself declared as the parent
of the child. We therefore have a constraint such as

(CWE-X
isParentOf−−−−−−−→ CWE-Y

isChildOf−−−−−−→) ≃ CWE-X.

It is also possible to express path equivalences in the more convenient al-
gebraic form of path equalities, using composition operator (.). The two previ-
ous equivalence relations can then be rewritten, for any i ∈ {CWE,CAPEC}

i.Has.Has =i,

i.isChildOf.isParentOf =i,

i.isParentOf.isChildOf =i.

(1)

Are there other facts? Couldn't we ask that the child of a weakness
belong to the same attack pattern as its parent, or one of its children? The
answer is no. The data structure of the CWE and CAPEC does not have
this characteristic. No hybrid facts can be derived from the two previously
de�ned facts.

This negative result can be attributed to the meaning provided by the
labelling of arrows. Stress that facts are dependent on the meaning of arrows.
They are semantic facts. For example, in a bijective data structure where
each parent has exactly one child and a child exactly one parent, there is an
equivalence between the path p = (v0

isOnlyParentOf−−−−−−−−−→ v1
isOnlyChildOf−−−−−−−−−→) ∈

Path
(2)
G and the path p′ = v0 ∈ Path

(0)
G , but this equivalence no longer holds

in a data structure with multiple parents and children.
This is why it is not possible to apply Spivak's theory of ologs [12]. Ologs

are elegant categorical frameworks for rICARously representing knowledge
structures exploiting databases, but are limited to structures of functional
type. It is inappropriate in this study since the vertices of our knowledge
graph generally have several arrows, and may in some cases have none.

On the other hand, the usual theory of oriented (multi)graphs is too
broad to capture all the properties present in this study, since we added a
path equivalence property. If we add the facts 1 to the knowledge graph 1,
we obtain a richer structure called (knowledge) schema .

De�nition 4 (Categorical schema). A categorical schema S consists of a
pair S := (G,≃) where G is a graph and simeq a path equivalence on G.

In the remainder of this study, we will speak more simply of a schema, in
the absence of any risk of confusion.

7



2.4 More about relation CWE ⇆ CAPEC

It was noted that the CWE and CAPEC dictionaries are linked in both
directions. This may seem strange, as a mapping can in principle be read
both ways: if the weaknesses correctly refer to the attack patterns, it should
be possible to recover the former from the latter.

Actually, this is not always the case. Kanakogi et al. [5] report some
CAPEC-IDs that are not identi�ed by CWE-IDs that fall within their attack
pattern. As a result, some CVE-IDs would not be correctly mapped to
their attack pattern(s). The authors give the example of the CVE-2018-
18442 vulnerability, which is linked to a weakness due to network packet
�ooding. However, while there is an attack pattern for this weakness (the
CAPEC-125 pattern), the fact is that the vulnerability is also associated
with the CWE-20 weakness (incorrect input validation) which, according to
the authors, prevents the vulnerability from being linked to the CAPEC-
125 pattern, as the latter is not referenced by the CWE-20 weakness. This
problem then motivates the authors to link CVE-IDs directly to CAPEC-
IDs. Their solution is to use similarity indicators between CVE-IDs and
CAPEC-IDs, thanks to machine learning and natural language processing.

In fact, the traceability problem discussed by Kanakogi et al. does not
describe an architectural �aw (since weaknesses can list several attack pat-
terns), but re�ects the incomplete mapping between dictionaries. From this
point of view, the strategy of the authors seems to be good, even if it consists
in directly linking dictionaries that are not graphically related. In the end,
this direct approach seems to be complementary to ours in that it allows to
complete the collection of arrows that will be used to populate the knowledge
schema. This remark is also valid for other approaches of direct mapping be-
tween dictionaries, like the projects of Grigorescu et al. [3], Kuppa et al. [7]
or Ampel et al. [2], which aim to link CVE-IDs to MITRE ATT&CK tactics
and techniques.

2.5 ICAR as schema instance

The knowledge schema provides an abstract view of cybersecurity data on-
tologies, the "skeleton". It represents the structure of the data in the form of
a triplet (of vertices, arrows and equivalence relations) in exactly the same
way as the attributes of database tables present the n-uplets of the database.

It is now a question of populating the knowledge schema in such a way
as to make the knowledge base explicit. This explicitation is in fact an
instantiation (a "concretisation") of its schema.

De�nition 5 (Instance). Let S := (G,≃) a categorical schema where G :=
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(V,E, src, tgt) is a graph. An instance I on S is given by

1. a set I(v) for any vertex v ∈ V ;

2. a function I(e) : I(v)→ I(v′) for any arrow e : v → v′ ;

3. the equality I(p) = I(q) for any path equivalence p ≃ q.

In other words, an instance on S is a path equivalence preserving functor
F : S → Set.

Among the in�nite number of instances that can be generated by C, there
is one that interests us the most: the up-to-date resource for cybersecurity
ontologies. We call this instance ICAR for Integrated CAtegorical Resource.
To �x ideas, we represent in the tables 1 an extract of ICAR, where appear
at the time of writing the most salient added or updated entries, among
more than 20,000 CPE, about 176,000 CVEs, 668 CWEs, 559 CAPECs, 193
Techniques and 14 Tactics.

It is di�cult not to make a connection with a database schema, as we
suggested above. It is indeed possible to see an arrow e ∈ E ∈ G ∈ C as
a relation linking the table identi�ed by src(e) with a table identi�ed by
tgt(e). For example, the arrow CWE → CAPEC expresses that the table
CWE points to the table CAPEC, i.e. entries that have a primary key in
CWE are related to entries that have a primary key in CAPEC, via the
secondary keys found in the CAPEC column of the table CWE.

At this point we can see that the database schema is not in normal form,
since the attribute values are not necessarily atomic (so a weakness frequently
has several parents and several CAPECs). Strictly speaking, we should de-
compose the database schema so as to express it in �rst normal form. In fact,
we do not need this normalization in this study because it would unneces-
sarily transform the resource ICAR by adding redundancy. We do, however,
need a normal form to check the consistency of ICAR. This leads us to a
concept of categorical normal form.

De�nition 6 (Categorical normal form). A database is said to be in cate-
gorical normal form if

1. any table t has a single primary key column IDt �xed at the beginning;

2. any entry belonging to a column c ∈ t refers to a primary key in a
single table t′, which is denoted by pc : t→ t′ ;

3. any database equivalence between two relations pc, qc : t → t′ must be
declared as a path equivalence in the corresponding categorical schema,
i.e. pc ≃ qc.
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CPE
ID

240.99_kindle_books_project:240.99_kindle_books

@nubosoftware/node-static_project:@nubosoftware/node-static

@thi.ng/egf_project:@thi.ng/egf

gwa_autoresponder_project:gwa_autoresponder

01org:tpm2.0-tools

CVE
ID CWE CPE CVSS

CVE-2023-1684 CWE-434 NA* 2.1
CVE-2023-28371 CWE-22 Stellarium:Stellarium 4.3
CVE-2023-21038 NA* NA* 9.5
CVE-2023-21039 NA* NA* 2.1
CVE-2023-21032 NA* NA* 4.1

CVSS
ID

6.8
6.9
7.0
7.1
7.2

CWE
ID ChildOf ParentOf CAPEC

CWE-787 119 121-124 NA*
CWE-79 74 80,81,83-87,692 63,85,209,588,591,592
CWE-89 943 564 7,66,108-110,470
CWE-20 707 179,622,1173,1284-1289 3,7-10,13,14,22-24...
CWE-125 119 126,127 540

CAPEC
ID ChildOf ParentOf CWE Techniques

CAPEC-698 542 - 507,829 1027,1176,1505,1587
CAPEC-699 651 - 1300 1111
CAPEC-700 161 - 284 1599
CAPEC-701 94 - 294,345 1557
CAPEC-702 180 - 1296 1574

Techniques
ID Tactics

T1548 TA0004,TA0005
T1134 TA0004,TA0005
T1531 TA0040
T1087 TA0007
T1098 TA0003

Tactics
ID

TA0043
TA0042
TA0001
TA0002
TA0003

Table 1: Extracts of ICAR entries. The CPE dictionary is formatted on the

following scheme cpe:<cpe_version>:<part>:<vendor>:<product>:<version>:

<update>:<edition>:<language>:<sw_edition>:<target_sw>:<target_hw>:<other>.

Only the substring <vendor>:<product> is represented here. (∗ : Non available)

We check that ICAR actually is in categorical normal form. Condition 1
is met because each dictionary has a single primary key column. Condition 2
is assumed to be met by the successive updates of the dictionaries: if a new
entry appears in the foreign key columns, it is assumed that it is indexed at
the same time in another table as a primary key. There are no unreferenced
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entries in primary key. On the other hand, it is possible that no foreign
key is associated with the entry of a new item as a primary key. This is
typically the case when, for instance, an asset a�ected by a vulnerability has
not yet been found, or the weakness corresponding to this vulnerability is
still awaiting identi�cation, etc. It is also possible for a primary key column
to have no foreign key column. In this case (very common in databases),
the table is limited to a single column. This is the case here for the CPE
and Tactics tables. In this case, we speak of a leaf column. Condition
3 is respected because it is easy to check that the facts 1 are translated
into relational equivalences in database: the attack patterns declared in the
weaknesses declare in turn the declaring weaknesses, and vice versa, and the
children declared by the weaknesses or the attack patterns declare in turn
their declaring parents.

3 Using the ICAR resource

In this section, we illustrate the applicability of ICAR through several use
cases. First of all, we must start by introducing the assets of the IS subject
to attack.

3.1 Instantiate ICAR with an IS

Graph 1 brings together knowledge about vulnerability and threat manage-
ments in a single categorical schema. But there is still to consider the as-
set management. Assets are explicitly taken into account by Kiesling et
al. [6] in the SEPSES knowledge graph. Indeed, we �nd there the sub-graph

CPE hasProduct−−−−−−→ Product. We take up this idea with two di�erences. Firstly,
we consider only a subset of assets. This restriction allows us to refer to
a concrete entity to be analysed, i.e. an IS made up of assets inventoried
in a database (to be monitored or investigated). This inventory of assets is
commonly materialised by a con�guration management database (CMDB).
Secondly, and by pure convention, we reverse the arrow formalising the de-
pendency between CPEs and assets. This is indeed what CMDBs suggest,
which normally provide for each component added to the database as a pri-
mary key a foreign key CPE as illustrated in table 2.
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CMDB

ID CPE

A0006 cpe:2.3:a:microsoft:internet_explorer:8.0.6001:beta:*:*:*:*:*:*

VM008 cpe:2.3:a:vmware:vcenter_server:6.0:3b:*:*:*:*:*:*

LB001 cpe:2.3:h:f5:big-ip_10250v:-:*:*:*:*:*:*:*

OS007 cpe:2.3:o:linux:linux_kernel:2.6.39:*:*:*:*:*:*:*

OS008 cpe:2.3:o:paloaltonetworks:pan-os:8.1.16:*:*:*:*:*:*:*

Table 2: Extract columns ID and CPE from a CMDB

CMDB can thus be connected to ICAR via the CPE attribute. It can be
noted that this correspondance is surjective (each CPE reference refers to at
least one asset in the CMDB) but not necessarily injective since a CMDB
can have several assets with the same CPE2. And �nally, it is possible to
complete the knowledge schema C of which ICAR is the instance, which
is represented in �gure 2 by noting DBX the inventory of assets from the
CMDB of SI X.

CV SS

CV E CWE CAPEC Technique

DBX CPE Tactic

Has

Has

Has

isChildOf

isParentOf

Has

isChildOf

isParentOf

Has

Has

isSubTechniqueOf

accomplishesTactic

Has

Figure 2: Knowledge schema with inventory of assets

We therefore have the following Q1 query:

Query 1 (Q1). Instantiate an inventory of assets DBX ∈ Product.

Let's start by noting that the instantiation we're talking about here is
di�erent from the instantiation of the knowledge schema. The idea now is
to instantiate an object which already has the database structure (ICAR),
in other words to populate ICAR (where ICAR instantiates the knowledge
schema as a "concretisation"). In category theory, this notion of instantiation
can be approached in many ways. In fact, there are at least two ways of
dealing with Q1, either by �rst "connecting" table Product to table CPE
and then �ltering on the assets DBX ⊂ Product, or by directly connecting

2It can also happen that the CPE reference is not entered in the CMDB. Furthermore,
there are many "exotic" assets that are not listed in the CPE dictionary
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DBX and CPE tables. In the �rst case, a �ltering operation must be added
to the asset connection operation. This operation is not trivial in category
theory. Moreover, it implies adding ex post the quantitative aspect induced
by the potential presence of more assets with same CPE reference. This is
why we will apply the second method, which is easier and more direct. The
idea of �ltering will nevertheless be discussed later in order to answer query
Q6.

In pratical terms, if we think in terms of database management, the addi-
tion of DBX to ICAR can be understood as a database migration, and more
precisely as a database union. This intuition can be translated into terms
of "categorical data". The idea of "migration" �nds a natural translation
in category theory with the concept of functor. Let S be the (categorical)
schema associated with �gure 1 (i.e. devoid of assets) and T the schema
associated with �gure 2 (i.e. enriched with an inventory of assets). Following
the example of Spivak [?, 13], we can then de�ne a schema morphism (i.e. a
functor) F : S → T . Migration functors follow.

De�nition 7 (Migration functors). Let S and T be two schemas, S−Inst and
T − Inst instances on S and T respectively, F : S → T a schema morphism

and I ∈ T − Inst : T → Set. Then the composite functor S
F−→ T

I−→ Set lives
in the S-instance (I ◦ F ∈ S − Inst) and we de�ne the functor ∆F such that

∆F : T − Inst→ S − Inst (2)

I ⇝ I ◦ F (3)

as well as the functors ΣF ,ΠF : S − Inst → T − Inst as adjoint functors of
∆F , respectively on the left and on the right.

In the language of category theory, ∆F , ΣF and ΠF are called pullback3,
left pushforward and right pushforward respectively.

Intuitively, ∆F can be understood as a projection operator in the sense
that data (tables, columns) is duplicated. In contrast, ΣF is interpreted in
terms of unifying tables, and ΠF in terms of joining tables. This di�erence
between left and right pushforwards (between uni�cation and junction) is
important. When the tables to be joined have no common key, the merging
operation can take place in one of two ways:

• either by adding the rows of the second table to those of the �rst, which
has the e�ect of creating Skolem variables in the un�lled "foreign"
columns (in this case we reason on the sum of the primary key spaces);

3Here, the term "pullback" is understood as "a category of instances assigning a set of
row-IDs to a schema element". This de�nition is related to Grothendieck's construction
(and �bration).
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• either by multiplying the rows of the second table with those of the
�rst, which has the e�ect of duplicating the rows of the �rst table as
many times as there are rows in the second (in this case we reason on
the product of the primary key spaces).

But the situation is simpli�ed if tables have a common key. In this case,
left pushforward and right pushforward are equivalent and there is no du-
plication of rows or new variables created. This is exactly what happens
in our case since asset inventories are supposed to include CPE IDs. Table
reconciliation therefore occurs naturally by matching the foreign keys of the
inventories with the primary keys of the CPE dictionary.

3.2 List all vulnerable assets

For a CISO or security analyst, one of the most natural queries is to list the
vulnerable assets of the IS.

Query 2 (Q2). List all vulnerable assets of a given IS

To process this query, one must �rst list the entries in the CMDB whose
foreign key (i.e. the CPE attribute) also appears as a foreign key in the CVE
table. In category theory terminology, we say that we use a pullback (or �ber
product), which is one of the many variations of the categorical concept of
limit.

De�nition 8 (Pullback). Let be the dictionaries CVE and CPE, DBX the

inventory of the IS X, and the relations DBX
has−−→ CPE and CVE

has−−→ CPE.

The pullback of the cospan DBX
has−−→ CVE

has←−− CPE, denoted DBX ×
CPE

CVE,

is de�ned by the set

DBX ×
CPE

CVE := {(x, y)|x ∈ DBX , y ∈ CVE, has(x) = has(y)}

respecting the commutative diagram

DBX ×
CPE

CVE has //

has

��

CVE

has

��
DBX has

// CPE

Figure 3: Pullback od DBX and CPE
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To obtain the only vulnerable assets (dissociated from their vulnera-
bilities), it is su�cient to retain only the left projection of the pullback.
For assets a�ected by several vulnerabilities, an additional projection mor-
phism is necessary. We then obtain the set of vulnerable assets denoted by
AffectedAssetsX.

3.3 List all vulnerabilities of the IS

In the same way, it is also useful to list all vulnerabilities a�ecting a given
IS.

Query 3 (Q3). List all vulnerabilities of a given IS

This query, which is a dual of the previous one, consists in keeping only
the vulnerabilities from the pullback 3. This list is obtained by using the
right projection of DBX ×

CPE
CVE. The resulting set is denoted VulnX.

3.4 List the vulnerabilities a�ecting an asset

Similarly, it is natural to ask for a list of vulnerabilities a�ecting a particular
asset in the IS.

Query 4 (Q4). List the vulnerabilities a�ecting an asset x ∈ DBX .

To process this query, we have to isolate the pairs (asset, vulnerability)
of the same asset x in the pullback 3. We therefore need to reason about the
following commutative diagram:

x ×
CPE

CVE isIn //

has

��

DBX ×
CPE

CVE

has

��
x

isIn
// DBX

It turns out that this diagram also de�nes a pullback, by virtue of the
pullback propagation theorem. Consider the following diagram:

x ×
CPE

CVE isIn //

has

��

DBX ×
CPE

CVE has //

has

��

CVE

has

��
x

isIn
// DBX has

// CPE

such that the commutative square on the right-hand side is a pullback. It
follows that that of the left-hand side is also a pullback, and consequently
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the entire commutative diagram. The set x ×
CPE

CVE thus satis�es Q4 by

providing all vulnerabilities impacting asset x.

3.5 List the assets a�ected by a vulnerability

From the pullback DBX ×
CPE

CVE, we see that it is also possible to �lter the

resulting pairs by CVE rather than by asset. This �ltering ful�ls another
mission of the CISO (or of any administrator or analyst whether or not they
have been mandated to do so): that of monitoring the changes needed to
guarantee the logical and physical security of the IS for which he is respon-
sible. This task includes monitoring vulnerabilities likely to a�ect the IS,
and in practice begins by consulting the security alerts issued by the CERT
(to which every CISO is in principle a subscriber). Each alert contains one
or more CVE entries on a given subject. When a CISO becomes aware of
a vulnerability, he has to ask themselves whether the IS is a�ected, with
the level of attention weighted by its CVSS score. Assuming that the new
vulnerability is added to ICAR, we therefore have the following Q5 query,
dual to Q4 :

Query 5 (Q5). List the assets a�ected by a vulnerability y ∈ CVE.

This query is processed by choosing from DBX ×
CPE

CVE the pairs corre-

sponding to the vulnerability y we are looking for, which we note DBX ×
CPE

y

(i.e. as many pairs as assets impacted by y).
The same applies to the resulting commutative diagram, which is a pull-

back, and by combining Q4 with Q5 we obtain the pair (x, y) giving the
vulnerability y of the asset x, that is useful for consulting the remediation
status of a vulnerability to be treated (is it �xed, in progress, scheduled...?).

x× y isIn //

isIn

��

DBX ×
CPE

y has //

isIn

��

y

isIn

��
x ×

CPE
CVE isIn //

has

��

DBX ×
CPE

CVE has //

has

��

CVE

has

��
x

isIn
// DBX has

// CPE
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3.6 List vulnerabilities by criticality

In cybersecurity, vulnerabilities are not of equal importance. There is a
tendency to focus on the most severe vulnerabilities. It is not uncommon for
a CISO to plan enhanced monitoring for critical vulnerabilities. Typically,
he may request a regular report on vulnerabilities with a score of 9 or more
(in CVSS v3.0 notation), or more generally with a score within a range
S ⊂ [0.0, 10.0]. Query Q6 follows.

Query 6 (Q6). List vulnerabilities by CVSS score s ∈ S ⊂ [0.0, 10.0].

As we saw with Q1, pullback can be used to assign a set of row-IDs
to a schema element, which seems to do the trick. However, we need an
additional ingredient to �lter on the values taken by the entries in the CVSS
score column. Indeed, migration functors de�ned above do not operate in
the context of schema morphism, but in that of type morphism. We therefore
need a notion of typing.

De�nition 9 (Typing). Let S be a schema and A a discrete category (i.e.
a category containing only objects and identity morphisms) composed of at-
tribute names. A typing for S is a triplet (A, i, γ) where i is a functor from
A to S mapping each attribute to its vertex, and γ is a functor from A to
Set, mapping each attribute to its type.

Then, i re�ects the pairing of the knowledge graph's vertices with the
attributes of A and γ re�ects the assignment of the attributes of A to their
type. Consequently, we call a typed instance a pair (I, δ) where I : S → Set
is an instance together with a natural transformation δ : I ◦ i⇒ γ.

A
i //

γ $$

S

Set

(a) Typed schema

A

⇐δ

i //

γ $$

S

Izz
Set

(b) Typed instance

Figure 4: Typing

Intuitively, δ re�ects the assignment of a type to each ID in I. Typically,
this could be the assignment of a string type or a �oat type, but more generally
it can be any type.

Now, as Spivak points out [11], if we go back to pulback, we see that it
is possible to adapt migration functors to type-change functors.
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De�nition 10 (Type-change functor). Let S be a schema and k : A → B
a morphism of typing instances. We refer to the induced functors ∆̂k :
S− Inst/A → S− Inst/B and Σ̂k, Π̂k : S− Inst/A → S− Inst/B as type-change

functors. ∆̂k, Σ̂k and Π̂k are respectively called the pullback, the left pushfor-
ward and the right pushforward type-change functor.

In the context of Q8, we are therefore dealing with a morphism of
typing instances which associates a subtype B with the prede�ned type
A = [0.0, 10.0] ⊃ B.

3.7 Measuring the attack surface of an IS

The attack surface is a summary of the weak points in a IS that an attacker
can exploit to gain access and carry out malicious actions. The more weak
points there are, the greater the attack surface and the greater the risk of
being attacked. Measuring the attack surface therefore makes it possible to
assess the barriers an attacker needs to overcome to exploit the weakness.

Query 7 (Q7). Measuring the attack surface of an IS X.

There are a thousand and one ways of de�ning the attack surface of an
IS, and just as many ways of measuring it once it has been de�ned. One
of the simplest de�nitions is based on the CVSS scores of the vulnerabilities
present in the IS. From that point on, the attack surface can be measured in
di�erent ways, bearing in mind that the CVSS standard is itself a system of
metrics based on three metric groups [10]4.

The simplest indicators are :

(i) the list of assets a�ected by a vulnerability with their associated CVSS
score (as many weak points exploitable by an attacker) ;

(ii) the sum of the assets a�ected by a vulnerability weighted by their CVSS
score.

Formally, indicator (i) corresponds to the set of pairs {(DBX−ID,CV SS−
ID)} for any asset DBX − ID and for any score vulnerability CV SS − ID.

4Base, Temporal, and Environmental. The base metrics produce a score ranging from
0 to 10, which can then be modi�ed by scoring the temporal and environmental metrics.
In addition to the base score, the CVSS standard is made up of two other groups of
measures: temporal scores and environmental scores. The latter are not provided by the
NVD, either because they change over time due to events external to the vulnerability
(temporal scores), or because they refer to impacts that are relative to the organisation
(environmental scores).

18



It is obtained from the schema morphism CV E
has−−→ CV SS and the pullback

DBX ×
CPE

CV E previously de�ned as follows:

DBX ×
CPE

CV SS
has // CV SS

DBX ×
CPE

CV E
has //

has

OO

has

��

CV E

has

OO

has

��
DBX has

// CPE

The product DBX ×
CPE

CV SS summarises as a simple list the mapping of

possible entry points for a potential attacker, with their associated criticality.
Seen as the product of DBX and CV SS, DBX×CPECV SS can then be used
to de�ne the synthetic indicator (ii). Assuming that the assets a�ected are
of equal importance, the synthetic attack surface indicator, AttackSurface, is
easily obtained as the sum of the CVSS scores projected into the list on the
right:

AttackSurface :=
∑

(x,y)∈DBX ×
CPE

CV SS

right(x, y)

We note that, despite their equal importance, vulnerable assets do not
involve equally important threats (as attack media). Not only do the assets
a�ected di�er in the severity of their vulnerabilities, but they can also di�er
in the number of vulnerabilities a�ecting them, and it is not uncommon
for an asset to accumulate vulnerabilities. For example, Gitlab 15.8.0 has
vulnerabilities CVE-2022-3411, CVE-2022-4138, CVE-2022-3759 and CVE-
2023-0518, the last three of which are of high severity.

These indicators obviously give a simplistic view of attack surfaces as they
actually characterise IT systems. In reality, the assets of an IS do not have
the same sensitivity for a variety of reasons: some assets are exposed to the
Internet, others are not; some are in production, others in pre-production, de-
velopment, decommissioning, etc.; some are constrained to high availability,
others are not, etc. However, it is possible to take into account the impor-
tance of assets by adding a sensitivity criterion. This criterion is generally
incorporated into CMDBs, which include a "CI Importance" property for
this purpose, in line with ITIL architecture. If a�ected assets are of unequal
importance, then each asset must be weighted by an importance indicator,
i.e. a new IMPTX data set connected to DBX must be added to the ICAR

19



resource. In this case, it is su�cient to repeat the previous developments by
reasoning about the pullback IMPTX ×CPE CV SS :

IMPTX ×
CPE

CV SS DBX ×
CPE

CV SS
has

oo has // CV SS

IMPTX ×
CPE

CV E

has

OO

has

��

DBX ×
CPE

CV E
has

oo has //

has

OO

has

��

CV E

has

OO

has

��
IMPTX DBXhas

oo
has

// CPE

It should be noted that, in all cases, the attack surfaces thus de�ned on
the basis of CVSS metrics cannot be interpreted as measures of risk5. In risk
analysis, risk is always the product of a threat, a vulnerability and a severity.
ICAR lacks far too much information to be used as a basis for risk analysis,
both in terms of business analysis (business values, feared events, impact of
damage su�ered) and threat analysis (sources of risk, attractiveness of the IT
target, etc.). CVSS metrics can only measure the severity of vulnerabilities,
which is only one component of risk.

3.8 List vulnerabilities that can be exploited by a tech-

nique or tactic

We now turn to the long paths to examine how vulnerability management
is linked to threat management. This link is bidirectional: top-down and
bottom-up. We start with the top-down approach. It is natural to ask what
vulnerabilities can be exploited by a given technique pursuing a given tactic.
This approach makes it possible to map the dangers corresponding to the
di�erent tactical stages of the kill chain, which is useful for organisation's
defenders, who can prioritise vulnerabilities to be remedied, and for its ad-
versaries, who can investigate their attacks. For example, at the start of an
attack, the adversaries apply one or more reconnaissance techniques. They
may, for example, target a website or an active directory with the aim of
compromising accounts, creating accounts, obtaining capabilities (resource
development tactics) or even taking their attack a step further with initial
access tactics (remote access to the network, installation of a passive listen-
ing system, etc.). The list of vulnerabilities that can be exploited by this
tactic can then enable the defender to be more vigilant about the assets that

5As the NVD also points out, "CVSS is not a measure of risk" [?]
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could be targeted by the adversary (i.e. a Wordpress application, an LDAP
server, etc.). This knowledge is also useful to the adversaries because it tells
them what they should be looking for, an asset or a version number if they
already know an asset. So we have request Q8.

Query 8 (Q8). List vulnerabilities that can be exploited by a technique or
tactic

There are several ways of dealing with this request. The simplest is
probably to observe techniques and tactics as sieves.

De�nition 11 (Sieve). Let v be a technique or a tactic. A sieve on v is a
collection S of morphisms such that :

1. e ∈ S ⇒ cod(e) = v,

2. (e ∈ S ∧ cod(f) = dom(e))⇒ e ◦ f ∈ S.

In other words, a sieve on an object A in ICAR is a collection of arrows
of codomain v closed by precomposition of morphisms in ICAR. However,
this de�nition does not correspond exactly to Q8. On the one hand, the
universal aspect of the collection of arrows is missing, as we are looking for
the list of all vulnerabilities that can be exploited by a technique or tactic.
This universality property is provided by the notion of maximal sieve.

De�nition 12 (Maximal sieve). A sieve S on v is said to be maximal (or
principal) if it contains all the arrows of codomain v. It is denoted ↑ v.

On the other hand, the resulting sieve has too many arrows, since it in-
cludes all the precompositions of v-target morphisms. However, what counts
for Q8 are only the CVE-domain arrows. To subtract the other arrows (i.e.
arrows of CWE, CAPEC or Sub-technique domain), we need a notion of dif-
ferential sieve. Let S be a sieve on v in ICAR and S ′ a sieve on v in ICAR',
where ICAR' is the subcategory of ICAR without CVEs.

In other words, ICAR' consists of the sub-collection of objects from ICAR
such that Ob(ICAR′) = Ob(ICAR) − {w ∈ CV E}, and the subcollec-
tion of morphisms of ICAR such that Mor(ICAR′) = Mor(ICAR) − {e ∈
Mor(ICAR)|src(e) ∈ CV E}. In this context, the object satisfying Q8 for
techniques is the di�erential sieve ST = S\S ′. ST therefore contains all the
arrows whose domain is the set Techniques and whose codomain is the set
CVE. To give a clearer idea, �gure 5 represents the construction stages of
Q8 for technique T1499 (Endpoint Denial of Service), from the subcategory
extracted "under technique T1499" (a), to the maximum sieve on T1499 (b),
and �nally to the di�erential sieve (c) answering to Q8.
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CVE-2023-1544

%%
CVE-2023-20047

,,
CVE-2023-20067

//
CWE-770

//

%%

CAPEC-125

$$

CVE-2023-22323

55

CVE-2021-43174

,,
CVE-2023-28968

//
CWE-1325

//
CAPEC-130

//
T1499.003

//
T1499

CVE-2023-0412

$$
CVE-2023-0413

,,
CVE-2023-0907

//
CWE-404

BB

99

//
CAPEC-131

;;

CVE-2023-0936

55

(a) Subcategory extracted under technique T1499.

CVE-2023-1544

%%

CVE-2023-20047

&&

CVE-2023-20067

**

CWE-770

))

CAPEC-125

((

CVE-2023-22323

++
CVE-2021-43174

,,
CVE-2023-28968

--
CWE-1325 22CAPEC-130 11T1499.003

//
T1499

CVE-2023-0412

22

CVE-2023-0413

33

CVE-2023-0907

44

CWE-404

55

CAPEC-131

77

CVE-2023-0936

88

(b) Maximum sieve ↑ T1499 containing all arrows e ∈ ICAR/T1499 such that cod(e) =
T1499 and all arrows f ◦ e such that e ∈ S and f ∈ cod(f) = dom(e).

CVE-2023-1544

$$

CVE-2023-20047

&&

CVE-2023-20067

**

CVE-2023-22323

++
CVE-2021-43174

--
CVE-2023-28968

//
T1499

CVE-2023-0412

11

CVE-2023-0413

33

CVE-2023-0907

44

CVE-2023-0936

88

(c) Di�erential sieve ST on technique T1499. The CWE, CAPEC and Sub-technique-
domain arrows have disappeared.

Figure 5: Construction stages of Q8

Obviously, the reasoning is the same for the list of vulnerabilities that can
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be exploited by a tactic. All we have to do is point the sieve construction
STA to the tactic(s) we want, for example to tactic TA0040 (Impact), which
is the tactic performed by technique T1499.

3.9 List techniques and tactics related to a vulnerability

We now turn our attention to the bottom-up approach. From the point of
view of the defender, who knows his IS, it is natural to ask what attack tech-
niques (and therefore tactics) are associated with its vulnerabilities. This
knowledge enables them to focus on the vulnerabilities deemed most danger-
ous from the point of view of their tactical exploitation. This knowledge is
also useful for the adversary if he knows some of the targeted assets or even
in the absence of any information about the attacked IS. We therefore have
query Q9:

Query 9 (Q9). List techniques and tactics related to a vulnerability

This is essentially the dual request of Q8. Since category theory is an
ideal framework for studying all kinds of dualities, we just have to do use
dual notions of prede�ned notions. We thus introduce a notion of cosieve.

De�nition 13 (Cosieve). Let v be a vulnerability. A cosieve on v is a col-
lection coS of morphisms such that :

1. e ∈ coS ⇒ dom(e) = v,

2. (e ∈ coS ∧ dom(f) = cod(e))⇒ f ◦ e ∈ coS.

We then de�ne the notions of maximal cosieve and di�erential cosieve as
before. The di�erential cosieve coSTA corresponding to Q8 is then given by
the complement of the cosieve on v whose target is not a tactic: coSTA =
CcoScoS

′ = coS\coS′, where coS and coS′ are cosieve on a vulnerability v in
ICAR and ICAR' respectively. coSTA is the collection of arrows with source
v and target Tactics. The construction is the same for techniques. Simply
de�ne the set ICAR′′ = ICAR′−Techniques and repeat the reasoning from
the cosieves in ICAR' and ICAR�. Figure 6 depict the construction of the
di�erential cosieve on vulnerability CVE-2006-5268 (administrative access
to the RPC interface) for techniques, from (a) the sub-category of objects
and morphisms above CVE-2006-5268 to (b) the �nal di�erential cosieve on
CVE-2006-5268 satisfying Q9.
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CAPEC-57
//
T1040

CAPEC-94
//
T1557

T1185

CVE-2006-5268
//
CWE-287

44
11

//

,,
**

CAPEC-593

00
//

..
T1550.001

//
T1550

T1563

CAPEC-633
//
T1134

CAPEC-650
//
T1505.003

//
T1505

(a) Sub-category of objects and morphisms above CVE-2006-
5268.

T1040

T1557

T1185

CVE-2006-5268

77
44
22
//
,,
**
''

T1550

T1563

T1134

T1505

(b) Di�erential cosieve on
CVE-2006-5268

Figure 6: Construction of Q9 for techniques associated with vulnerability CVE-

2006-5268

3.10 Measuring the threat surface of an IS

The "threat surface" is the set of techniques (or tactics) that an attacker
can use to exploit the vulnerabilities of an IS. The threat surface is the
counterpart of the attack surface on threat management6.

Query 10 (R10). Measuring the threat surface of IS X

Formally, the threat surface is a simple extension of the di�erential cosieve
used to list the techniques and tactics associated with a vulnerability. We
just need to apply the di�erential cosieve to all the vulnerabilities in the IS,
i.e. to the set VulnX .

4 Conclusion and future work

The aim of this article was to provide a mathematical foundation for com-
mon queries in cybersecurity management. The proposed ICAR categorical
model thus covers vulnerability management, threat management and as-
set management in a uni�ed framework. However, ICAR is not a method
for enriching cybersecurity ontologies. In particular, it does not allow us to
investigate the relations between vulnerability management and threat man-
agement. In this sense, the empirical results of the queries examined here
are dependent on the quality of the data they use. Our model therefore un-
derlines the importance of work aimed at more �nely meshing the various
dictionaries of the NIST and the MITRE corporation. Generally speaking,

6The threat surface is strictly speaking an attack surface, but since this name is usually
used to describe the vulnerabilities of the IS, we use the term "threat surface"
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it is clear that query and visualisation models will be enhanced by AI-based
works mentioned above.

This article only gives an overview of possible queries for cybersecurity
operations. Others could naturally have been envisaged, such as the search
for the shortest attack path (i.e. the path with the fewest breaches to exploit).
Other queries will be considered later on. Future work will also address
the algorithmic design of queries. In this sense, ICAR model should also
be seen as a mathematical foundation for establishing a database schema
compatible with the de�ned categorical schema and associated categorical
notions. In other words, the queries dealt with in this article will subsequently
be extended in terms of query language (SQL). The aim is to provide a
bidirectional dictionary between conceptual categorical queries and database
queries.
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