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Abstract

This paper reviews the different existing Contact Dynamics schemes for the simulation of granular
media, for which the discrete incremental problem is based on the resolution of convex problems. This type
of discretization has the great advantage of allowing the use of standard convex optimization algorithms.
In the case of frictional contacts, we consider schemes based on a convex relaxation of the constraint
as well as a fixed point scheme. The model and the computations leading to the discrete problems are
detailed in the case of convex, regular but not necessarily spherical particles. We prove, using basic tools
of convex analysis, that the discrete optimization problem can be seen as a minimization problem of a
global discrete energy for the system, in which the velocity to be considered is an average of the pre- and
post-impact velocities. A numerical study on an academic test case is conducted, illustrating for the first
time the convergence with order 1 in the time step of the different schemes. We also discuss the influence
of the convex relaxation of the constraint on the behavior of the system. We show in particular that,
although it induces numerical dilatation, it does not significantly modify the macrosopic behavior of a
column collapse en 2d. The numerical tests are performed using the code SCoPI.

Introduction

We consider granular materials composed of solid particles of macroscopic size in the sense that they are large
enough not to be subject to Brownian forces. They can interact through a wide variety of inter-particle forces
and are subject to dissipative contacts that may involve friction. Such systems are omnipresent in our daily
lives (sugar, rice, pasta in the kitchen...), in nature (piles of sand, dunes, sandy coasts, rock avalanches...),
in industry (grain silos, storage of medicines...). These systems made of macroscopic particles can also be
immersed in a viscous fluid. They are then called suspensions. Suspensions are present in various fields, both
industrial (waste treatment, concrete, transport of pastes or granules...), natural (silting, coastal dynamics,
landslides, dispersion of pollutants...) or sanitary (wastewater treatment...).

Although they are present in everyday life, the flow properties of these systems are still partly not
understood. It is now well established that a better understanding of their behaviour requires numerical
simulations at the particle scale. It is then necessary to develop models and efficient algorithms in order to take
into account the contact phenomena, with or without friction, for systems involving large numbers of particles.
A great amount of work has been performed on the subject and multiple modeling strategies and numerical
schemes have been developed to solve this problem. The so-called Discrete Element Methods (DEM) include
approaches based on particle-scale models and simulations, as opposed to macroscopic continuous models.
Among these discrete methods, two classes of models can be distinguished.

The first, identified as a ”soft” method, is the so-called Molecular Dynamics approach (MD). It goes back
to the work of Cundall and Strack [12]. The contact between the particles is penalized by an explicit contact
force, modeled by Hertz-like contact laws between slightly deformable particles. The fundamental principle
of dynamics including the corresponding forces is then solved. A description of this method can be found
in [25] and a recent review of the large choice of models for the forces is given in [11]. If MD provides good
results in many situations, it leads to the resolution of stiff ODEs (the contact forces become very large as
the grains approach each other). Moreover, the models involve a large number of parameters and the method
is therefore subject to a delicate calibration step.

A second class of methods, identified as ”hard” methods, is the so-called Contact Dynamics approach
(CD), developed by Moreau and Jean in the 1990s. The model is limited to the main features of the
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contact, such as the non-overlapping of the grains, without further refinement. We refer to the seminal
papers [31, 19, 32, 18] for a detailed description of the so-called Non-Smooth Contact Dynamics method
(NSCD). The corresponding model fall into the framework of non-smooth convex analysis. The contact forces
are implicit, belong to the friction Coulomb cone and are deduced from the Lagrange multipliers associated
with the non-interpenetration constraints. This solves the difficulty due to the stiffness of the forces and makes
it possible to obtain stable algorithms, supporting large time-steps. After time discretization, the discrete
incremental problem to be solved at each time-step is a non-convex Linear Complementarity Problem (LCP),
which is known to be difficult to solve numerically. A review of the main existing algorithms to tackle this
problem can be found in [1]. One can cite for example algorithms based on a faceted discretization of Coulomb
cone, on variational inequalities formulations or on non-smooth equations, and using projection/splitting
methods, Gauss-Seidel like relaxations or generalized Newton methods. Unfortunately, unless in the case of
a faceted cone, no general convergence results for the corresponding iterative methods are available.

Later, some authors proposed CD schemes for which the incremental problem comes down to solving
convex problems. The main advantage of these formulations is that there are many algorithms available
to solve the discrete problem and for which there exists convergence results. A convex formulation is for
example proposed in [43, 7], where the authors use a convex relaxation of the non-overlapping constraint.
The discrete problem then comes down to solving a Conic Complementarity Problem (CCP), which can be
achieved using Projected Jacobi or Gauss-Seidel Jacobi methods. The CCP problem can also be viewed as a
quadratic optimization problem with second order conic constraints. This allows the use of several existing
optimization solvers. For example, it can be solved by accelerated projected gradient descent methods [28, 13],
various spectral and Krylov subspace methods [16] or interior point methods [37, 20, 3, 10]. To avoid the
convex relaxation of the problem, the authors in [2] propose to iterate a fixed point functional to solve the
original LCP problem. Each iteration of the fixed point reduces to solving a CCP problem similar to the one
obtained by convexifying the constraint.

Beyond the difficulty of numerically solving the incremental problem, the question of the convergence
of the different schemes when the time-step vanishes is a also difficult question for which few results are
available. Some convergence results of numerical schemes for granular materials were obtained in the case of
a single contact in [36, 27, 30] and for multiple contacts without friction in [9]. For frictional systems, one
can also cite [40, 4] proving the convergence of numerical schemes for the faceted Coulomb cone.

In this paper, we describe and investigate the behavior of these different convex approaches for granular
media. The document is intended to be self-contained, so the model and computations leading to the discrete
problems are detailed. Section 1 is dedicated to the frictionless case. In Section 2, we consider the two
schemes leading to convex problems in the frictional case: the one resulting from a convex relaxation of
the non-overlapping constraint, and its coupling with a fixed point method. These methods are based on
global minimization problems for the unknown velocity. In both sections, we compute the corresponding
optimality conditions using basic tools of convex analysis. As expected, it leads to a discretization of the
fundamental principle of dynamics, for which discrete Coulomb laws are verified locally. We prove that the
discrete optimization problem can also be seen as a global discrete energy minimization problem for the
system, in which the velocity to be considered is an average of the pre- and post-impact velocities. This
echoes the definition of energy proposed by Frémond in [15] for the undiscretized model. Section 3 is devoted
to numerical tests for the non-frictional scheme and the two convex schemes for friction. After discussing
the algorithms that can be used to solve the incremental problem, we perform a numerical study of the
convergence for the different schemes when the time-step vanishes. The speed of convergence of the schemes
had not been theoretically nor numerically studied until now. We observe that all the schemes considered
converge with order one in the time-step. The convergence studies are conducted on an academic test case (a
sphere falling on an inclined plane), for which an exact solution is available. Finally, we present some tests
in the multi-particle case. We compare the macroscopic behavior of the solutions computed using constraint
convexification to that of the solutions to the original non-convex problem, obtained using the fixed point
algorithm. Finally, a test case involving ellipsoidal particles is reported. The notion of subdifferential is the
basic tool of convex analysis that will be used in the frictional case, as an extention of the notion of derivative
for convex functions. In order to be self-contained, appendix A allows the reader to become familiar with
this notion if needed. Moreover, following the same objective, the computation of the explicit solution for
the sphere falling on an inclined plane is given in appendix B.

1 Convex schemes for frictionless contacts

In this first section, we focus on the inelastic frictionless contact problem. The corresponding model is
presented together with a convex scheme that can be used to approximate the solutions. The scheme is based
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Figure 1: Notations

on a constrained minimization problem for the generalized velocity vector. It is a straightforward extension
to non-spherical particles of the scheme proposed [27]. We show that the corresponding dual problem can be
seen as a discrete global energy minimization problem.

1.1 Notations

1.1.1 Particles description

Let us consider a mechanical system in R3, composed of N convex rigid bodies, with regular boundaries.
The configuration of the i-th body Bi is given by (ci,σi), where ci ∈ R3 is the position of its center of mass
and σi ∈ Rp its orientation. The orientation can be represented by Euler angles – p = 3 – or normalized
quaternions – p = 4 – for example. We denote by

c = (c1,σ1, . . . , cN ,σN ) ∈ R(3+p)N

the generalized position vector.
The instantaneous velocity and instantaneous rotation vector for particle i are denoted by vi ∈ R3 and

ωi ∈ R3 respectively. In order to deal with constant moments of inertia, it is convenient to use local moving
frames linked to each solid. We denote by (e1, e2, e3) the fixed frame of reference and (e′1,i, e

′
2,i, e

′
3,i) the

moving frame linked to particle i:

ek = Rie
′
k,i , k = 1 . . . 3 , i = 1 . . . N,

where Ri is the rotation matrix giving the orientation of particle i. The instantaneous rotation vector of
particle i in the moving frame linked to particle i is then given by

ω′i = Riωi

and we define the corresponding generalized velocity vector as

u = (v1,ω
′
1, . . . ,vN ,ω

′
N ) ∈ R6N .

We finally define the 6N × 6N generalized mass matrix as

M = diag (m1,m1,m1, J1,1, J2,1, J3,1,m2, . . . , J1,N , J2,N , J3,N ) ,

where mi and Jk,i, k = 1 . . . 3 are the mass and (constant) moments of inertia of particle i, given in the
moving frame linked to the particle.

1.1.2 Contacts description

We denote by Ic the set of all possible pairs of contacts: Ic = {(i, j) 1 ≤ i < j ≤ N}. Note that the pair of
grains i and j is represented only once in Ic through the couple (i, j) if i < j and (j, i) if j < i.

For any two grains i and j with (i, j) ∈ Ic, we denote by Pij
i and Pij

j the points which realize the distance

between the grains (with Pij
i = Pij

j if the two grains are in contact), see Figure 1. We define the associated

position vectors riji = Pij
i − ci, rijj = Pij

j − cj .
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The normal direction to the surfaces of the particles at points Pij
i and Pij

j , which is shared by the two

particles. We introduce the unit vector nij , defined as the outer normal vector to particle j at point Pij
j .

The signed distance between particles i and j is then defined by :

Dij(c) = (Pij
i −Pij

j ) · nij ,

so that the non-overlapping condition writes Dij ≥ 0.
Finally, we define the projections on the normal direction and on Πij , the tangent plane to the surfaces,

which is orthogonal to nij : for v ∈ R3

Nijv = v · nij ∈ R,
Tijv = v − (v · nij)nij ∈ R3,

so that we can decompose any vector v ∈ R3 in a local normal and tangential part:

v = vijn nij + vijT where vijn = Nijv , vijT = Tijv.

In what follows, the subscripts n (resp. T ), will designate the quantities corresponding to the normal
coordinates (resp. tangential components) of vectors.

1.1.3 From particles to contacts

We define Aij as the linear operator which maps the generalized velocity field u ∈ R6N to the relative velocity

between the points Pij
i and Pij

j at which the distance between spheres i and j is attained , i.e.

Aiju = (vi + ωi ∧ riji )− (vj + ωj ∧ rijj )

= (vi − riji ∧Riω
′
i)− (vj − rijj ∧Rjω

′
j) ∈ R3.

Straightforward computations show that, for any generalized velocity u ∈ R6N and any vector f ∈ R3, we
have Aiju · f = u ·ATijf with

ATijf = (0, . . . ,0, f , RTi (riji ∧ f)︸ ︷︷ ︸
position i

,0, . . . ,0, −f ,−RTj (rijj ∧ f)︸ ︷︷ ︸
position j

,0, . . . ,0) ∈ R6N ,

so that ATij maps a vector f ∈ R3 to the generalized force/moment vector corresponding to the force f exerted

on particle i at point Pij
i and the opposite force −f exerted on particle j at point Pij

j (the moments being
in the local reference frames linked to the particles) .

The real NijAiju and the vector TijAiju represent the normal and tangential relative velocities respec-
tively. As a consequence, when two spheres are in contact with no relative normal motion, i.e. NijAiju = 0,
then TijAiju = 0 expresses a rolling motion with no slip, while TijAiju 6= 0 corresponds to a sliding motion.

1.2 Inelastic contact modeling

The specificity of the Contact Dynamics models lies in the fact that they explicitly express that two rigid
bodies cannot interpenetrate. This means that, for all α = (i, j) ∈ Ic, the distance Dα must remain non
negative. Then, the set of admissible configurations is:

Q =
{

c ∈ R(3+p)N s.t. Dα(c) ≥ 0 , ∀α ∈ Ic
}
.

Since there is no friction, for all α = (i, j) in Ic, the corresponding contact force fα (also denoted f ij)
exerted on particle i at point Pij

i is a repulsive force, collinear to nα:

fα = fαn nα where fαn ≥ 0.

The contact force exerted on particle j is f ji = −f ij = −fα. Moreover, the contact force must vanish as soon
as the contact is broken. This can be expressed by the equality Dαf

α
n = 0 which implies that fα cannot be

active (i.e. it has to vanish) as long as the distance is not zero. These conditions are known as the Signorini
conditions:

Dα(c) ≥ 0 , fαn ≥ 0 , Dα(c) fαn = 0 , ∀α ∈ Ic. (1)



5

We will see later that the force fαn can be seen as the Lagrange multiplier associated to the constraint Dα ≥ 0.
The last equality in Signorini conditions is the corresponding complementarity condition.

When two rigid bodies come into contact, expressing the Signorini condition is not sufficient to determine
the motion. Indeed, if the reaction fαn must be positive, no information is given on its value. The model
lacks an impact law, relating the normal impact velocity before contact to the velocity after contact. Using
the fact that

dDα(c)

dt
= dDα(c)

dc

dt

where dDα(c) is the differential of Dα at c, one can for example write the inelastic contact law as:

u+ = PCcu
− with Cc =

{
u ∈ R6N , s.t. dDα(c)u ≥ 0 if Dα(c) = 0 , ∀α ∈ Ic

}
, (2)

where u+ (resp. u−) is the right-sided (resp. left-sided) limit of function t 7→ u(t) and P denotes the
projection in R6N . The set Cc is the so-called set of admissible velocities. It reflects the fact that, to avoid
overlaps, the distance must increase as soon as it vanishes.

Let us note, at this point of the discussion, that the velocity of the particle is likely to be non-smooth. In
particular, the post-collisional velocity u+ can be different from the pre-collisional velocity u−. This raises
the question of the meaning to be given to the different equations stated. To deal with the discontinuous
character of the velocity, the space to consider is the space of functions with bounded variations. This allows
to define the velocities before and after contact time. In that case, the force fαn is an impulse at contact time
and, since the distance is continuous, the Signorini conditions can be understood in the sense of distributions
or even in the sense of measures.

We can now state the equations of dynamics, driven by the fundamental principle of dynamics. If
(fexti , texti ) ∈ (R3)2 are the external force and torque exerted on particle i, the fundamental principle of
dynamics writes for particle i:

mi
dvi
dt

= fexti +
∑
j,j 6=i

(f ijn nij + f ijT ) ∀i = 1 . . . N,

Ji
dω′i
dt

= −ω′i ∧ (Jiω
′
i) +RTi texti + RTi

∑
j,j 6=i

riji ∧ (f ijn nij + f ijT )

 ∀i = 1 . . . N,

where the equation for the rotational velocity ω′i is written in the moving frame linked to particle i. Note
that, in case of spherical particles, the moment matrix do not depend on the frame and is diagonal. In that
case, the second equation can be written for ωi in the fixed frame, the wedge product is zero and the rotation
matrix is replaced by the identity matrix.

To finish, we define the generalized force vector as fext = (fext1 , RT1 text1 , . . . , fextN , RTNtextN ) ∈ R6N , k(u) =
(0,−ω′1 ∧ (J1ω

′
1), . . . , 0,−ω′N ∧ (JNω

′
N )) ∈ R6N and F(u) = fext + k(u). The equations of motion writes, in

the sense of distributions or measures:

dc

dt
= L(u), (3)

M
du

dt
= F(u) +

∑
α∈Ic

ATαf
α
nnα, (4)

Dα(c) ≥ 0 , fαn ≥ 0 , Dα(c) fαn = 0 , ∀α ∈ Ic, (5)

u+ = PCcu
−, (6)

c(0) = c0, u(0) = u0, (7)

where the initial conditions (c0,u0) are given and the operator L in the first equation provides the evolution
equation for c and depends on the chosen parametrization for the rotations.

1.3 Convex numerical schemes: an affine constraint

In this subsection we present a time-step scheme to approximate the solution to (3,7) by solutions of a discrete
minimization problem under affine constraints as proposed in [27]. We show that this problem rewrites as a
discrete energy minimization problem.
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1.3.1 A discrete set of admissible velocities

We denote the time-step by ∆t, by ck the configuration of the particles at time k∆t and by uk ∈ R6N the
generalized velocities at step k. The scheme is based on a Euler discretization to compute the position of the
centers at time k + 1:

ck+1
i = cki + ∆tvk+1

i .

Similarly, the orientations σk+1
i are computed from σki , vk+1

i and ωk+1
i . The corresponding scheme depends

on the chosen representation of the orientation.
It now remains to describe how to compute uk+1. Denoting by v(Pij

i ) = vi + ωi ∧ riji ∈ R3 the velocity

of point Pij
i , we note that

dDij

dt
= nij · (v(Pij

i )− v(Pij
j )) = nij · (Aiju) = NijAiju.

Then, the founding NSCD algorithm [19, 18] choose to discretize the set of admissible velocities Cc (2) using
the following discrete constraint:

∀α ∈ Ic, Nk
αA

k
αuk+1 ≥ 0 if Dk

α ≤ 0, (8)

where the superscript k expresses the fact that the corresponding quantities have to be computed a time k∆t
(i.e. for the configuration ck). Such a discretization was also used in [39, 6]. Doing so, the constraint is implicit
in the unknown velocity. However, for any α in Ic, if Dk

α > 0, the corresponding non-overlapping constraint
is not taken into account at time-step k and the time discretization can make Dk+1

α strictly negative so that
the corresponding particles overlap. To stabilize the scheme, we follow [5, 27] and use a Taylor expansion of
the constraint: the discrete constraint is written

Dk
α + ∆tNk

αA
k
αu ≥ 0, (9)

for α in Ic, and the discrete set of constraints is defined as

Kk =
{
u ∈ R6N s.t. Dk

α + ∆tNk
αA

k
αu ≥ 0 , α ∈ Ic

}
. (10)

In that case, the constraint is implicit again. It is a first order approximation of the non-overlapping con-
straints Dk+1

α ≥ 0 for α ∈ Ic, the error being of order O(∆t2). Note that, in case of spherical particles, due
to the convexity of the distance function, this constraint has the advantage to return feasible configurations
(i.e. it avoids numerical interpenetration).

1.3.2 The corresponding velocity-based quadratic optimization problem with affine inequality
constraints

The time-stepping algorithm proposed in [27] for spherical particles can be straightforwardly adapted to non
spherical particles by considering the following problem: find u ∈ R6N solution to the minimization problem

(Pkmin,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
u∈Kk

J(u),

J(u) =
1

2

∥∥u−Uk+1
∥∥2

M
, Uk+1 = uk + ∆tM−1Fk,

Kk =
{
u ∈ R6N , gkα(u) ≤ 0 , α ∈ Ic

}
,

gkα(u) = −Dk
α −∆tNk

αA
k
αu.

(11)

where Fk = F(uk) and ‖w‖M is the M-norm ‖w‖2M := w ·Mw. The vector Uk+1 is the discrete free flight
velocity: it is equal to the velocity that would be computed using an explicit Euler scheme without contact.
The discrete problem (11) can be seen as a discretization of the continuous contact law (6): the particle
velocity uk+1 is the projection of Uk+1 on the discrete set of admissible velocities Kk.

For each time-step, solving the incremental problem amounts to minimize the convex functional J under
the affine inequality constraints gkα ≤ 0 , α ∈ Ic. There exists a unique solution to this constrained mini-
mization problem. Moreover, the constraints are qualified (finite number of affine constraints). Then, if uk+1

is solution to (11), there exists Lagrange multipliers fαn ≥ 0 , α ∈ Ic such that the following Kuhn-Tucker
optimality condition is verified:

∇J(uk+1) = −
∑
α∈Ic

fαn∇gkα(uk+1), (12)

gkα(uk+1) ≤ 0, fαn ≥ 0, gkα(uk+1) fαn = 0 , α ∈ Ic.
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Computing ∇J and ∇gα, we obtain that these optimality conditions write

M
uk+1 − uk

∆t
= Fk +

∑
α∈Ic

(Nk
αA

k
α)T fαn ,

Dk + ∆tNk
αA

k
αuk+1 ≥ 0 , fαn ≥ 0 , ∀α ∈ Ic,

(Dk + ∆tNk
αA

k
αuk+1) fαn = 0 , ∀α ∈ Ic.

Using (9), together with the fact that (Nk
αA

k
α)T fαn = (Akα)T fαnnkα, one can see that these equations are a

natural Euler-based time discretization of (4,5):

M
uk+1 − uk

∆t
= Fk +

∑
α∈Ic

(Akα)T fαnnkα, (13)

Dk + ∆tNk
αA

k
αuk+1 ≥ 0 , fαn ≥ 0 , ∀α ∈ Ic

(Dk + ∆tNk
αA

k
αuk+1) fαn = 0 , ∀α ∈ Ic.

This suggests that the solution to the model (4-7) can be approximated by solving the constrained convex
problem (Pkmin,u) (11) at each time-step . It has in fact been shown that the corresponding discrete solution
converges towards the solution to the model when the time-step goes to zero (see [27] for a single contact
and [9] for multiple contacts). Although one can expect a convergence with order 1 in ∆t, the proofs of
convergence in these papers are based on compactness methods and no theoretical results on the order of
convergence of the algorithm are currently available.

1.3.3 The corresponding dual problem: maximization of a (discrete) global energy dissipation

In this section we detail the computations leading to the dual optimization problem. Indeed, an advantage of
considering the dual problem is that in that case, the unknowns are the set of contact forces (fαn )α and the
corresponding constraints are fαn ≥ 0 , α ∈ Ic. The projection on this new set of constraints is straightforward
and many algorithms can take advantage of this explicit projection to solve the problem (see Section 3.1.1).

To begin, let us first define the following vectors and matrices:

D = (Dα nα)α∈Ic ∈ R3N(N−1)/2 , Dn = (Dα)α∈Ic ∈ RN(N−1)/2,

A =


...
Aα
...


α∈Ic

∈M3N(N−1)/2×6N , An =


...

NαAα
...


α∈Ic

∈MN(N−1)/2×6N .
(14)

In the previous notations, the index n reflects the ”normal” character of the quantity considered (e.g. the
matrix A applied to a generalized velocity vector u provides the corresponding relative velocities at each
contact point while An returns their normal coordinates).

The discrete space of admissible velocity in (11) can be rewritten as

Kk =
{
u ∈ R6N , gk(u) ≤ 0

}
, gk : R6N → RN(N−1)/2

u 7→ −Dk
n −∆tAk

nu
. (15)

Let us now denote by λn ∈ RN(N−1)/2 the vector of Lagrange multipliers corresponding to the N(N−1)/2
constraints (λn = (fαn )α∈Ic). The Lagrangian associated to the minimization problem (11) is:

L(u,λn) = J(u) + λn · (−Dk
n −∆tAk

nu).

The constraints being qualified, the duality theory says that

inf
u∈K

J(u) = inf
u∈R6N

sup
λn≥0

L(u,λn) = sup
λn≥0

inf
u∈R6N

L(u,λn),

so that the primal minimization problem (11) is equivalent to the following problem: find λn ∈ RN(N−1)/2

solution to the dual maximization problem

max
λn∈K̄

J̄(λn), (16)
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with
J̄(λn) = min

u∈R6N
L(u,λn) , K̄ =

{
λn ∈ RN(N−1)/2 , λn ≥ 0

}
.

Standard calculations allow to express explicitly the function λn 7→ J̄(λn). First, λn being fixed, one
can write the optimality condition for the unconstrained minimization problem and find uλn minimizing
u 7→ L(u,λn):

uλn = U + ∆tM−1(Ak
n)Tλn.

Note that uλn is the velocity that would be computed using the discrete fundamental principle of dynam-
ics (13) with contact forces λn. From this, we can rewrite the dual problem as:

(Pkmin,λ)

∣∣∣∣∣∣∣∣∣∣∣

min
λn∈K̄

(
−J̄(λn)

)
,

J̄(λn) = L(uλn ,λn) = −∆t2

2
λTnAk

nM−1(Ak
n)Tλn − (Dn + ∆tAk

nU)Tλn,

K̄ =
{
λn ∈ RN(N−1)/2 , λn ≥ 0

}
.

(17)

As mentioned before, the projection onto the set K̄ is explicit and, therefore, several optimization solvers
such as projected gradients are available to solve the problem.

Let us now show that problem (Pkmin,λ) (17) can be seen as a global discrete mechanical energy minimiza-
tion. Indeed, one can rewrite the functional up to constants independent of λn as (the superscripts k, as well
as the subscript n in uλn , are omitted for readability reasons):

J̄(λn) =
1

2
uTλMuλ −UTMuλ + λTn (−Dn −∆tAnuλ) + cst

=
1

2
uTλM(U + ∆tM−1AT

nλn)−UTM(U + ∆tM−1AT
nλn) + λTn (−Dn −∆tAnuλ) + cst

=
1

2
uTλMU +

1

2
∆tuTλAT

nλn −∆tUTAT
nλn + λTn (−Dn −∆tAnuλ) + cst

=
1

2
(U + ∆tM−1AT

nλn)TMU +
1

2
∆tuTλAT

nλn −∆tUTAT
nλn + λTn (−Dn −∆tAnuλ) + cst

=
1

2
∆t(M−1AT

nλn)TMU +
1

2
∆tuTλAT

nλn −∆tUTAT
nλn + λTn (−Dn −∆tAnuλ) + cst

=
1

2
∆tλTnAnU +

1

2
∆tλTnAnuλ −∆tλTnAnU− λTnDn −∆tλTnAnuλ + cst.

Then, we have:

−J̄(λn) = λTn

[
Dk
n + ∆tAk

n

(
uλn + U

2

)]
+ cst =

∑
α∈Ic

fαn

[
Dk
α + ∆tNk

αA
k
α

(
uλn + U

2

)]
+ cst. (18)

The functional to minimize corresponds to a discrete energy, dissipated by the normal contact forces λn =
(fαn )α for relative velocities computed from the mean of the free-flight velocity U and the real velocity uλn .
Then, the solution to the numerical scheme both satisfies the discrete fundamental principle of dynamics (13)
at each contact point and minimizes a global discrete energy over all the contacts. This discrete energy is
in agreement with the models proposed by Frémond in [14] or [15, Chap.8], where the expression of virtual
work involves the term m(u+ − u−) · (v+ + v−)/2 with u the actual velocity and v the virtual one. In (18),
U stands for the pre-impact velocity, uλn the post-impact velocity, and the instantaneous contact force f
is related to the momentum jump m(u+ − u−) by the fundamental principle of dynamics at the instant of
contact.

2 Convex schemes for frictional contacts

In this section, we present how the previous computations can be extended to design convex algorithms
in the frictional case. After stating the problem and the corresponding non-convex natural time-stepping
scheme, we present two schemes proposed in the literature and based on convex problems. The first one
is a convex relaxation of the natural discrete problem, leading to a convex minimization problem under
conic constraints [4, 43, 7, 26]. The second one proposes to solve the non-convex problem using a fixed
point method [2] in which each iteration reduces to an iteration of the type of the relaxed scheme. As in the
frictionless case, we prove that the corresponding incremental problem can be understood as the minimization
of a global energy.
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Figure 2: Notations: force decomposition

2.1 Modeling friction

Due to friction, the contact force fα is no longer colinear to nα:

fα = fαnnα + fαT ,

where fαn = Nαfα is the normal component of the force along nα and fαT = Tαfα is its tangential part
(projection onto Πα, the tangent plane to the surface, see Figure 2).

To model frictional contact, one has to describe the contact law. The normal contact law is still driven
by the non-overlapping constraint: the Signorini conditions (1) together with the contact law (2) have to be
satisfied. As for the tangential contact law, we consider Coulomb’s law. For any α ∈ Ic, the contact force
must belong to the so-called Coulomb cone:

CCoulomb
µ,α =

{
f ∈ R3 s.t. |TαAαf | ≤ µNαAαf

}
(19)

=
{
f ∈ R3 s.t. | fαT | ≤ µfαn

}
,

where µ is the friction coefficient and depends on the physical properties of the surfaces. In case of a sliding
motion (NαAαv+ 6= 0), the force has to belong to the boundary of Coulomb cone and must be oriented in
the opposite direction to the relative tangential velocity. The tangential contact law can then be written as:
for any α ∈ Ic,

If TαAαu+ 6= 0 (sliding motion) , fαT = −µfαn
TαAαu+

|TαAαu+ |
,

If TαAαu+ = 0 (no slip) , | fαT | ≤ µfαn .

The equations of motion now write, in the sense of distributions or measures:

dc

dt
= L(u), (20)

M
du

dt
= F(u) +

∑
α∈Ic

ATα(fαnnα + fαT ), (21)

Dα(c) ≥ 0 , fαn ≥ 0 , Dα(c) fαn = 0 , ∀α ∈ Ic, (22)

u+ = PCcu
−, (23)

If TαAαu+ 6= 0 (sliding motion) , fαT = −µfαn
TαAαu+

|TαAαu+ |
, ∀α ∈ Ic, (24)

If TαAαu+ = 0 (no slip) , | fαT | ≤ µfαn , ∀α ∈ Ic, (25)

c(0) = c0, u(0) = u0. (26)

2.2 Convex numerical schemes: a second-order cone constraint

2.2.1 A non-convex natural Euler-based time-stepping discretization

As in the previous section, one can follow [19, 18, 39, 6], and discretize the normal constraint using (8). Here,
following again [27] and [5], we consider the Taylor expansion of the constraint (10) in order to stabilize the
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scheme. Then, to solve (21,25), a natural Euler-based time-stepping discretization is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M
uk+1 − uk

∆t
= Fk +

∑
α∈Ic

(Akα)T (fαnnkα + fαT ),

Dk
n + ∆tNk

αA
k
αuk+1 ≥ 0 , fαn ≥ 0 , ∀α ∈ Ic,

(Dk
n + ∆tNk

αA
k
αuk+1) fαn = 0 , ∀α ∈ Ic,

If TαAαuk+1 6= 0 (sliding motion) , fαT = −µfαn
TαAαuk+1

|TαAαuk+1 |
, ∀α ∈ Ic,

If TαAαuk+1 = 0 (no slip) , | fαT | ≤ µfαn , ∀α ∈ Ic.

(27)

Although this scheme is stable, it requires solving, at each time-step, a non-convex Linear Comple-
mentarity Problem which proves to be expensive to solve. As stated in the introduction, the most widely
spread numerical strategies to compute the corresponding solutions are based on projection/splitting meth-
ods, Gauss-Seidel like relaxations or generalized Newton methods. Unfortunately, no convergence result for
the corresponding iterative methods are available.

2.2.2 A relaxed scheme based on a quadratic optimization problem with second-order cone
constraints

To make the problem easier to solve, one can follow the idea of the frictionless algorithm and search for a time
discretization leading to a convex constrained optimization problem to be solved at each time-step. To do
so, one should find an optimization problem for which the optimality conditions are discretization of (21,25),
the contact forces being the corresponding Lagrange multipliers. Note that, in order to obtain an optimality
constraint for which the Lagrange multipliers belong to a cone, one now has to consider non-differentiable
constraints (of conic type) and substitute the notion of sub-differential of a function for that of gradient. We
refer the reader who is not used to handling sub-differentials to appendix A where the notion is introduced
and the computations are detailed.

So let us consider the following minimization problem:

(Pkmin,µ,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
u∈Kk

µ

J(u),

J(u) =
1

2

∥∥u−Uk+1
∥∥2

M
, Uk+1 = uk + ∆tM−1Fk,

Kk
µ =

{
u ∈ R6N , gkα,µ(u) ≤ 0 , α ∈ Ic

}
,

gkα,µ(u) = −Dk
α −∆tNk

αA
k
αu + µ∆t

∣∣T kαAkαu
∣∣ ,

(28)

and show that the corresponding optimality conditions are a formal discretization of (21,25).
If uk+1 is solution to (28), and if the contraints are qualified (see discussion below), there exists Lagrange

multipliers fαn ≥ 0 , α ∈ Ic such that the following Kuhn-Tucker optimality condition is verified (counterpart
of (12) in the non-differentiable case):

∇J(uk+1) ∈ −
∑
α∈Ic

fαn ∂g
k
α,µ[uk+1], (29)

gkα,µ(uk+1) ≤ 0, fαn ≥ 0, gkα,µ(uk+1) fαn = 0 , α ∈ Ic.

where ∂gkα,µ[u] denotes the sub-differential of function gkα,µ at point u.

In general, sub-differentials cannot be summed. However, in our case, gkα,µ is the sum of a differentiable
part (for which the sub-differential contains a unique point which is the gradient) and a non-differentiable
part. In that case, the two sub-differential can be summed and we have (see appendix A):

If T kαA
k
αu 6= 0, ∂gα,µ[u] =

{
∆t(Akα)T

(
−nkα + µ

T kαA
k
αu

|T kαAkαu |

)}
,

If T kαA
k
αu = 0, ∂gα,µ[u] =

{
∆t(Akα)T

(
−nkα + µw

)
/ w ∈ Πk

α and |w | ≤ 1
}
,
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where Πk
α is the tangent plane to the surfaces for contact α at step k. From this, the optimality condition

for (28) can be written as

M
uk+1 − uk

∆t
= Fext +

∑
α∈Ic

(Akα)T (fαnnkα − µfαnw),

fαn ≥ 0, gα,µ(uk+1) ≤ 0, fαn gα,µ(uk+1) = 0 , ∀α ∈ Ic,

If T kαA
k
αuk+1 6= 0 (sliding motion), w =

T kαA
k
αuk+1

|T kαAkαuk+1 |
, ∀α ∈ Ic,

If T kαA
k
αuk+1 = 0 (no slip) , w ∈ Πk

α and |w | ≤ 1 , ∀α ∈ Ic.

Setting the tangential forces as fαT = −µfαn w, we finally obtain that uk+1 is solution to the discrete problem

(PkCCP,µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M
uk+1 − uk

∆t
= Fk +

∑
α∈Ic

(Akα)T (fαnnkα + fαT ),

Dk
α + ∆tNk

αA
k
αuk+1 ≥ µ∆t

∣∣T kαAkαuk+1
∣∣ , fαn ≥ 0 , ∀α ∈ Ic,(

Dk
α + ∆tNk

αA
k
αuk+1 − µ∆t

∣∣T kαAkαuk+1
∣∣) fαn = 0 , ∀α ∈ Ic,

If T kαA
k
αuk+1 6= 0 (sliding motion) , fαT = −µfαn

T kαA
k
αuk+1

|T kαAkαuk+1 |
, ∀α ∈ Ic,

If T kαA
k
αuk+1 = 0 (no slip) , | fαT | ≤ µfαn , ∀α ∈ Ic,

(30)

which is a (formal) discretization of the continuous frictional problem (21,25).
Let us now discuss the fact that the existence of Lagrange multipliers leading to this problem is subject

to the aforementioned constraint qualification condition. Checking this qualification condition amounts to
show that the interior of the feasible set Kk

µ (28) is not empty. If the non-empty character of Kk
µ is assured

in many situations, the existence of a point belonging to its interior is not obvious in general. In the case of a
single contact, it is ensured by the choice of velocities leading to a relative velocity oriented along the normal
to the contact point (whatever the shape of the particles). The qualification of the constraint can also be
proved in the case of granular media made of N spherical particles. Indeed, in that case, the velocity vector

u0 = (εc1, 0, εc2, 0, . . . , εcN , 0)

do not generate tangential relative velocities and lies in the interior of Kk
µ for ε > 0. In the multi-particle

case, with more general particle shapes, it may be necessary to suppose that µ∆t is sufficiently small, in
order to relax the constraint and obtain its qualification.

Thus, provided that the constraints are qualified, one can choose to approximate the solution to the
frictional model (21) by solving the CCP problem (PkCCP,µ) (30) or the constrained minimization prob-

lem (Pkmin,µ,u) (28). The first strategy is followed in [4] where the Coulomb cone is approximated by a
faceted discretization or in [43, 7] where a Gauss-Seidel-like iterative method proved to converge under as-
sumptions on the configuration of the system is implemented. The second strategy is followed in [26] where
the constrained minimization problem is solved using an interior point method.

To finish this section, let us say that, as stated in the introduction, very few results of convergence in
∆t are available for these schemes. One can cite [40] where the convergence of the non-convex scheme is
proved for a single contact problem and a faceted approximation of Coulomb cone. In [4] a convergence result
for the convex CCP scheme (30) is stated. Again the faceted cone is considered and the limit solutions are
proved to satisfy the fundamental principle of dynamics with forces belonging to the faceted cone. Obtaining
convergence to the limit contact laws in the multi-particle case is a particularly tricky problem that has not
yet been addressed. Moreover, none of the existing results provides an error estimate as a function of the
time-step.

2.2.3 The corresponding dual problem: maximization of a (discrete) global dissipation under
conic constraint

As in the frictionless case, it may be convenient to solve the dual discrete problem instead of (Pkmin,µ,u) (28).
We prove in this section that this dual problem can again be seen as a global energy minimization problem.
More precisely, we propose a frictional counterpart of the frictionless energy −J̄ (18), based again on the
mean of the free-flight and actual velocities, and show that (30) are the corresponding optimality conditions.
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Let us denote by λ = (fα)α∈Ic the set of unknown forces and uλ the corresponding velocity given by the
discrete fundamental principle of dynamics at step k:

uλ = U + ∆tM−1(Ak)Tλ, (31)

where Ak was defined in (14).
By analogy with the frictionless case (Pkmin,λ) (17,18), and following again Frémond (see [14] or [15,

Chap.8]), we define the discrete energy as:

Ḡ(λ) =
∑
α∈Ic

fαn

[
Dk
α + ∆tNk

αA
k
α

(
uλ + U

2

)]
+
∑
α∈Ic

〈
fαT ,∆tT

k
αA

k
α

(
uλ + U

2

)〉
=
∑
α∈Ic

〈
fα, Dk

αnkα + ∆tAkα

(
uλ + U

2

)〉
= λT

[
Dk + ∆tAk

(
uλ + U

2

)]
=

∆t2

2
λTAkM−1(Ak)Tλ+ (Dk + ∆tAkU)Tλ.

For each α in Ic, the unknown force fα have to belong to the Coulomb cone CCoulomb
µ,α defined in (19). Then

we consider the following dual minimization problem

(Pkmin,µ,λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
λ∈K̄µ

Ḡ(λ),

Ḡ(λn) =
∆t2

2
λTAkM−1(Ak)Tλ+ (Dk + ∆tAkU)Tλ,

K̄µ =
{
λ = (fα)α ∈ R3N(N−1)/2 , hµ(fα) ≤ 0 , ∀α ∈ Ic

}
,

hµ(fα) = | fαT | − µfαn .

(32)

Solving this dual problem has several advantages. First, although it again consists of a convex minimization
problem under conic constraints, it is now easier to show that the constraints are qualified. Indeed, while
the constraints of the primal problem (Pkmin,µ,u) are cross-dependent in the multi-particle case (changing the
velocity of one of the particles modifies all the constraints linked to this particle), in the dual problem, all
constraints are independent. Finding a point in the interior of the admissible set can be achieved for example
by choosing fαT = 0 and fαn > 0 for any α in Ic. Another advantage of the dual problem is that, as for the
inelastic case (Pkmin,λ), the projection onto the set of admissible forces is explicit and one can then solve the
problem using for example projected gradient like algorithms.

Let us now show that any solution to this problem provides a solution to (PkCCP,µ). The constraints being

qualified, the optimality conditions writes (see again appendix A if needed): if λ is solution to (Pkmin,µ,λ),
there exists Lagrange multipliers (γα)α∈Ic such that:

∇Ḡ(λ) ∈ −
∑
α∈Ic

γα∂hµ[λ], (33)

hµ(fα) ≤ 0, γα ≥ 0, hµ(fα) γα = 0 , α ∈ Ic.

Let us prove that this set of equations implies that uλ defined in (31) is solution to (PkCCP,µ) with the set
of forces λ = (fα)α. By definition, uλ satisfies the discrete fundamental principle of dynamics for this set of
forces. So it remains to show that the discrete constraint, complementarity condition and tangential contact
laws are satisfied. First, we have

∇Ḡ(λ) = ∆t2AkM−1(Ak)Tλ+ (Dk + ∆tAkU)

= ∆t2
(

1

∆t
Ak(uλ −U)

)
+ (Dk + ∆tAkU)

= Dk + ∆tAkuλ.

Then, computing the subdifferential of hµ, we can write the optimality condition (33) as: for all α in Ic,
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there exists vα ∈ R3 with

Dk
αnkα + ∆t Akαuλ = −γα(vα − µnkα), (34)

hµ(fα) ≤ 0, γα ≥ 0, hµ(fα) γα = 0, (35)

If fαT 6= 0,vα = − fαT
| fαT |

, (36)

If fαT = 0,vα ∈ Πk
α , |vα | ≤ 1, (37)

where we recall that Πk
α is the tangent plane to the surfaces for contact α at time-step k. Projecting

equation (34) on nkα and Πk
α we obtain that

γα =
1

µ

[
Dk
α + ∆tNk

αA
k
αuλ

]
, (38)

− γαvα = ∆t T kαA
k
αuλ.

This, together with | γαvα | ≥ γα gives the discrete constraint for uλ. The discrete contact law comes
from (36,37). It then remains to prove the discrete complementarity condition. To do so, let us suppose that
Dk
α+∆tNk

αA
k
αuλ > µ∆t

∣∣T kαAkαuλ

∣∣ and show that fαn = 0. In that case, from (38) we see that |vα | < 1 and
then from (36,37) we obtain fαT = 0. But we also have that γα = (Dk

α + ∆tNk
αA

k
αuλ)/µ > 0 so from (35),

hµ(fα) = 0 and fαn = µ | fαT | = 0 which ends the proof.

2.2.4 Coupling with a fixed-point scheme

One of the drawbacks of the convex relaxation gkα,µ(u) ≤ 0 of the constraint in problem (Pkmin,µ,u) (28) is
that the non-overlapping constraint is over-estimated:

Dk
n + ∆tNk

αA
k
αuk+1 ≥ µ∆t

∣∣T kαAkαuk+1
∣∣ > 0.

Although the error is controlled by ∆t, this can lead to an undesired numerical dilatation of the medium (for
example for large values of µ or large tangential velocities).

To avoid this problem, the authors in [2] propose to couple the convexification with a fixed-point formu-
lation. They consider the convexified problem (Pkmin,µ,u) or equivalently (PkCCP,µ), introduce a new vector of

parameters s = (sα)α ∈ RN(N−1)/2 and modify the constraint as:

Dk
n + ∆tNk

αA
k
αuk+1 ≥ µ∆t(

∣∣T kαAkαuk+1
∣∣− sα) , ∀α ∈ Ic. (39)

If uk+1
s is solution to this parameterized problem, they consider:

F k : RN(N−1)/2 → RN(N−1)/2

s 7→
( ∣∣T kαAkαuk+1

s

∣∣ )
α∈Ic

and search for a fixed point of this functional:

(PkFP,µ,λ)

∣∣∣∣∣ Find s in RN(N−1)/2 s.t.

F k(s) = s
(40)

Indeed, if s? is a fixed point of F k, one has s?α =
∣∣T kαAkαuk+1

s?

∣∣ for any α ∈ Ic and then, the constraint (39) for

uk+1
s? is reduced to Dk

n+∆tNk
αA

k
αuk+1

s? ≥ 0 and uk+1
s? solves the non-convex discrete incremental problem (27).

The existence of a fixed point is proved under the same assumptions as those necessary for the qualification
of the constraint in the convexified problem (interior of the feasible set Kk

µ (28) not empty).

3 Numerical tests

In this section, we study the behavior of the different methods we have presented. If the behavior of the
algorithms for solving the incremental (convex) problem has already been studied, we also present here a
numerical study of convergence when the time-step tends to zero for the different dicretization schemes.
In particular, we show in a simple case, for which an explicit solution can be computed, that each of the
schemes converges with order 1 in ∆t. In the case with friction, we also study the influence of the constraint
convexification on the macroscopic behavior of the system. We show that, although it induces a numerical
dilation effect, the profiles obtained in the case of a granular collapse are similar to those obtained without
convexification, via the fixed point method. The numerical tests are run with the code SCoPI developped at
CMAP laboratory [22].
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3.1 Numerical algorithms to solve the discrete incremental problems

For each of the previously described methods, solving at each time-step the incremental problem turns back
to solving a convex problem: (Pkmin,u) or (Pkmin,λ) without friction (see (11) or (17)) and the convexified

problems (Pkmin,µ,u) or (Pkmin,µ,λ) with friction (see (28) or (32)). When using the fixed point method

(PkFP,µ,λ) (see (40)), one also has to solve, at each iteration of the fixed point method, a problem similar to
the convexified frictional formulations. The main advantage of these formulations is that several methods are
available to solve the convex problems.

3.1.1 Available numerical algorithms

First, one can use the optimality conditions leading to the CCP formulation (PkCCP,µ) (see (30)). Some
authors have proposed an approach based on this formulation, using Projected Jacobi and Gauss-Seidel
Jacobi methods [43, 7, 41, 42]. These methods require several iterations on the potential contacts and are
known to become prohibitive for a large number of particles and contacts. A method that is also often used
for problems with friction is to approximate Coulomb cone by a faceted cone, leading to a classical quadratic
program (see e.g. [39, 38, 4]). Note that in 2d, Coulomb cone is actually a faceted cone.

More efficient strategies can be used, taking advantage of the convex minimization formulations. A first
strategy consists in using the fact that, for the force-based minimization problems (Pkmin,λ) and (Pkmin,µ,λ),
the projection onto the constraint spaces is explicit. This allows the use of projected gradient methods to
solve the minimization problems. Using a projected fixed-step gradient method on these dual problems is
equivalent to using Uzawa algorithm [44] on the corresponding primal problems. The advantage of considering
the dual problem is that we can take advantage of the many variants of the gradient algorithm. For example,
Accelerated Projected Gradient Descent such as Nesterov algorithm are used in [28, 13] or various Krylov
subspace and spectral methods in [16]. These accelerated algorithms still have a linear convergence rate, but
they provide significant reductions in the number of iterations compared to the fixed-step gradient. A second
strategy is to choose to solve the convex minimization problems using solvers than can deal with quadratic
optimization under conic constraints and having a quadratic convergence rate. For example, the classical
Primal-Dual Interior-Point was used in [37, 3, 20] to solve the minimization problem on forces and in [26]
to solve the problem based on velocities. As expected, the number of iterations required to achieve a given
accuracy is greatly reduced compared to gradient-like methods. However, each iteration is most costly and
they can lose their competitive advantage compared to first order methods for large numbers of particles
(see for example [29]). Improving the available algorithms to solve the friction problem is still an active
domain of research. One can cite for example the recent works [10, 13] where the authors propose a method
to accelerate the Newton step in second-order methods.

3.1.2 Gradient-like methods

Gradient-like methods are easy to implement and were proved in [29] to be efficient compared to classical, non
accelerated, second order methods. In order to give the reader a complete vision of the techniques involved,
we briefly describe here these algorithms and we illustrate their behavior through basic test cases. We refer
to [28] for a deep investigation of accelerated projected gradient algorithms based on Nesterov algorithm.

Both force based problems, (Pkmin,λ) (17) without friction and (Pkmin,µ,λ) (32) with friction, can be rewrit-
ten as:

min
λ∈K

1

2
λTQλ+ CTλ,

where the projection ΠK on the set K is explicit.
The simplest algorithm for solving this problem is the fixed-step Projected Gradient Descent algorithm

(PGD), corresponding to Uzawa’s algorithm [44] for the associated primal problem (see Algorithm 1).
The gradient method can be accelerated using Nesterov’s method [34] coupled to the projection step, and

leading to an Accelerated Projected Gradient Descent algorithm (APGD) which is described in Algorithm 2.

As proposed in [28], Nesterov’s algorithm can be augmented with adaptive step size. Indeed, the algorithm
converges provided ρ(n) ≤ 1/L where L is the Lipschitz constant of the cost function. We search for steps
ρ(n) as large as possible and preserving the convergence. If the global constant L is not known in general, it
can be estimated at each step n by a local constant L(n). For example, one can choose ρ(n) = 1/L(n) and
request that L(n) satisfies the following condition:

f(λ(n+1)) ≤ f(λ(n)) +∇f(y(n))T (λ(n+1) − y(n)) +
L(n)

2

∣∣∣λ(n+1) − y(n)
∣∣∣2 ,
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Algorithm 1 Fixed-step Projected Gradient Descent (PGD)

1: function gradient(Q, C, ΠK , ρ, tol)
2: n = 0
3: λ(0) = 0

4: while
|λ(n)−λ(n−1) |
|λ(n−1) |+1

≤ tol do

5: dg(n) = Qλ(n) + C

6: λ(n+1) = ΠK

(
λ(n) − ρdg(n)

)
7: n = n+ 1

8: return λ(n)

9: end function

Algorithm 2 Nesterov’s Accelerated Projected Gradient Descent (APGD)

1: function Accelerated Gradient(Q, C, ΠK , ρ, tol)
2: n = 0
3: λ(0) = 0
4: y(0) = 0
5: θ(0) = 1

6: while
|λ(n)−λ(n−1) |
|λ(n−1) |+1

≤ tol do

7: dg(n) = Qy(n) + C

8: λ(n+1) = ΠK

(
y(n) − ρdg(n)

)
9: θ(n+1) = 1

2

(
θ(n)

√
4 +

(
θ(n)

)2 − (θ(n)
)2)

10: β(n+1) = θ(n) 1−θ(n)

(θ(n))
2
+θ(n+1)

11: y(n+1) = λ(n+1) + β(n+1)
(
λ(n+1) − λ(n)

)
12: n = n+ 1

13: return λ(n)

14: end function
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where f(λ) = 1
2 λ

TQλ+ CTλ is the cost function. At each step, L(n) is first decreased (L(n+1) = 0.97L(n)

so that ρ(n) increase) and then increased (L(n+1) = 2L(n)) as long as the previous condition is violated
(see [28] for more details). This leads to an Accelerated Projected Gradient Descent algorithm with Adaptive
Step denoted by APGD-AS in the following. Again following [28], an adaptive restart can be implemented by

setting θ(n+1) = 1 whenever ∇f(y(n))T (λ(n+1)−λ(n)) > 0. This leads to an algorithm denoted by APGD-AR
in the following. The algorithm implementing both adaptive step and restart is denoted by APGD-ASR.

To compare the behavior of the different gradient algorithms, we consider the following configuration: a
disk with radius r = 1 and mass m = 1 is placed on an inclined plane with angle α = π/6, and the gravity is
set to g = (0,−1) (see Figure 15). It’s initial velocity is set to zero.

×

•
P

α
Π

g

Figure 3: Notations. Disk placed on an inclined plane.

The time-step is ∆t = 0.05 and we compute the solution to the first time-step optimization problem in
the non frictional case. For each solver, the tolerance is set to tol = 10−9 and the step (initial step in case
of an adaptive step algorithm) is ρ = 2. We plot on Figure 4 the evolution of the constraint and the cost
function as a function of the iterations. The convergence of PDG algorithm is monotonous and, as expected,
the accelerated algorithms converge quicker.
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Figure 4: Disk placed on a plane without friction. Evolution of the constraint (left) and cost (right) as a
function of the iterations for the different gradient minimization algorithms implemented in SCoPI.

The corresponding number of iterations required for each algorithm to reach accuracies of 10−3 and 10−9

are given in Table 1.
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Solver Number of iterations Number of iterations
tol = 10−3 tol = 10−9

PGD 206 2926
APGD 68 2029

APGD-AS 47 164
APGD-AR 54 160

APGD-ASR 39 100

Table 1: Disk placed on a plane without friction. Number of iterations as a function of solver and tolerance

3.2 Convergence of the numerical schemes

In this section, the inner solver is fixed and we focus on the convergence of the different schemes when the
time-step ∆t goes to zero. As already said, very few theoretical results can be found in the litterature and the
demonstrations are based on compactness methods. No study (theoretical or numerical) of the convergence
speed is available. To illustrate the good behavior of the different schemes, we consider in the following the
same configuration as in the previous section, the disk being now initially located above the plane (at distance
r). We have an explicit solution to the problem with and without friction (see appendix B), which allows us
to study numerically the convergence of the numerical solutions when the time-step vanishes.

3.2.1 Disk falling on a plane without friction.

We plot on Figure 5 the numerical solution based on the convex problems (Pkmin,λ) and computed with the

code SCoPI for ∆t = 0.05, using the APGD-ASR algorithm with parameters ρ = 2 and tol = 10−9 to solve
the inner incremental problem. The exact solution is plotted on the same figure. We place ourselves in the
reference frame adapted to the plane: normal and tangential directions to the plane. In a first stage, the disk
falls with a constant acceleration (linear velocity) and then touches the plane. After the instant of contact,
the normal velocity is zero (the disk remains on the plane) and, as there is no frictional force, the tangential
velocity continues to grow linearly with the same slope.
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Figure 5: Disk falling on a plane without friction. Distance (left plot), normal velocity (middle plot), and
tangential velocity (right plot). Solution obtained with the code SCoPI and analytical solution.

The L2 error between the numerical and exact solutions is defined as

e∆t,x =

√∑
k

∆t |x(tk)− xk |2, e∆t,θ =

√∑
k

∆t(θ(tk)− θk)2,

where t 7→ (x(t), θ(t)) ∈ R3 is the exact position of the center and angular orientation and (xk, θk) ∈ R3 the
corresponding numerical approximation at k-th time-step tk. Without friction, the sphere does not roll on
the plane so that only e∆t,x is relevant. We can see from Figure 6 that the numerical scheme converges with
order 1 for this test.

3.2.2 Disk falling on a plane with friction.

We now consider the same numerical experiment as in the previous section, with frictional contact. In that
case, we have two schemes at hand to compute a numerical approximation at time-step k: the convexified
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Figure 6: Disk falling on a plane without friction. L2 error on the position of the center of the disk as a
function of ∆t.

scheme (Pkmin,µ,λ) and the fixed point method (PkFP,µ,λ). We plot on Figure 7 the exact solution, together with
the two corresponding numerical approximations. The numerical solutions are computed for ∆t = 0.05 and
the inner problems (based on a conic constraint) are solved using Mosek solver with default parameters [33].
The stopping criterion for the fixed-point problem is (sp+1 − sp)/(sp + 1) ≤ tolFP where tolFP = 10−2. The
test is run for two values of the friction coefficient: µ = 1 (rolling motion) and µ = 0.1 (slipping motion). At
a first stage, until contact, the disk falls with constant acceleration, without rotation. By touching the plane,
the translation and angular velocities are instantaneously modified by the contact law: the normal velocity
vanishes and the tangential and angular velocities undergo a shock. Then, the normal velocity remains zero
(the disk remains on the plane) and the tangential and angular velocities becomes linear again, with a slope
modified by the friction force.
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Figure 7: Disk falling on a plane with friction. Distance (left), tangential velocity (center), and rotation
velocity (right), for µ = 1 (top panels, rolling motion) and µ = 0.1 (bottom panels, slipping motion).
Solutions obtained with the code SCoPI and analytical solution.

Although the numerical solutions computed by the two schemes have the same behavior, one can observe
the effect of convexification on the insets of the left column. In the case of the fixed point algorithm (square
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marks), after convergence, we have F (s?) = s? (see equation (40)) so that the final constraint is

Dk
n + ∆tNk

αA
k
αuk+1 ≥ µ∆t(F (s?)α − s?α) = 0 , α ∈ Ic,

and the distance is equal to zero after contact. The situation is different when solving the convexified problem
(circle marks). First of all, in the case of a rolling motion (µ = 1, Figure 7(A) – top panel), the relative
velocity of the contact point is zero so that the constraint verified by the numerical solution is again

Dk
n + ∆tNk

αA
k
αuk+1 ≥ µ∆t

∣∣T kαAkαuk+1
∣∣ = 0 , α ∈ Ic.

Consequently, in the case of a rolling motion, the convex problem leads to null distances after contact. But
in the case of a sliding motion, the relative speed is not zero (and even increases linearly during the motion)
so that we have

Dk
n + ∆tNk

αA
k
αuk+1 ≥ µ∆t

∣∣T kαAkαuk+1
∣∣ > 0 , α ∈ Ic.

In that case, the distance during contact is positive and some numerical dilatation occurs (µ = 0.1, see inset
Figure 7(A) – bottom panel). Note that, although the corresponding dilatation is controlled by the time-step
∆t, the error due to the discretization of the constraint is now of order ∆t at each time-step. This could
theoretically affect the convergence of the convexified scheme. On its side, the fixed point method recovers
the original Taylor expansion, only introducing an error of order ∆t2 at each time-step. In order to check
the good behavior of the two algorithms, we plot on Figure 8 the corresponding L2 error for both methods.
To observe the error of the scheme and not the one resulting from the incremental problem resolution, Mosek
accuracy parameters are set to 10−11 for this test. We can see that both algorithms actually converge to
the exact solution with order 1 in ∆t. Finally, let us note that the fixed point algorithm, contrary to the
convexified problem, is based on an iterative method and thus solves several optimization problems for each
iteration in time. For this test case, the average number of iterations is independent of the time-step and it
performs on average 2.8 iterations for µ = 1 and 1.2 iterations for µ = 0.1.

10−4 10−3 10−2

10−4

10−3

10−2

10−1

Slope 1

∆t

e ∆
t,
x

Convex scheme, µ = 0.1
Fixed Point, µ = 0.1

Convex scheme, µ = 1
Fixed Point, µ = 1

(a) Error on the position

10−4 10−3 10−2

10−4

10−3

10−2

10−1

Slope 1

∆t

e ∆
t,
θ

(b) Error on the rotation angle

Figure 8: Disk falling on a plane with friction. L2 error on the position of the center of the disk (left pannel)
and the rotation angle (right pannel) as a function of ∆t, with different solvers and different values of µ.

3.3 Multiparticle tests

In this section we first confirm, following [28], the good behavior of the gradient-like methods when the
number of particles increase. Then, in case of frictional contacts, the convexified and fixed point schemes are
compared. In particular, we study the influence of the constraint convexification on the macroscopic behavior
of the system.

3.3.1 Frictionless model. Behavior of the gradient-like methods when the number of particles
increases.

As shown in [28], we check here that the accelerated gradients algorithms behave well when the number of
particles increase.



20

At each time-step, the CPU time required to compute the solution to the optimization problem depends
strongly on the number of constraints imposed. Although all constraints α ∈ Ic must be verified, it is obvious
that those related to very distant pairs of particle will not be activated (the contact force will be zero). In
order to optimize the computation time, we therefore consider in the sets of constraints K only the neighboring
particles, whose distance is below a given threshold Dmax: α ∈ Īc = {α, Dα ≥ Dmax}. Among these pairs
of neighboring particles, some will come into contact during the considered time-step, and others not. We
call active contacts the pairs of particles in contact (i.e. for which the Lagrange multiplier, or equivalently
the contact force, is not zero). In the following, given that the maximum displacement of a particle during a
time-step is 20% of its radius, we set Dmax to the largest value of the radii of the particles.

We consider N = n3 particles whose centers are initially placed on a regular grid in a cubic box of side
L = 10. If δ = L/n is the step-size of the corresponding grid, the radii of the spheres are generated according
to a uniform law in [0.8 δ/2, 0.9 δ/2]. In order to obtain an initial configuration in which the spheres are not
aligned, a random displacement uniformly generated in [−0.05 δ/2, 0.05 δ/2] is added to the centers of the
spheres (see Figure 9(left) for N = 125 000 particles). The mass is uniformly chosen in [1, 2] and the gravity
is g = −1. The time-step is chosen so that the particles do not move more than 20% of their radius per time
iteration. The parameters of the different solvers are set to ρ = 0.2/∆t2 and tol = 10−3. The stationary
state obtained for t = 8 with algorithm APGD-AR is plotted on Figure 9(right).

Figure 9: 125 000 particles falling in a box without friction. Initial configuration (left) and stationary state
computed with algorithm APGD-AR (right)

We compare on Figure 10 the number of iterations of the different solvers as a function of the number of
active contacts for the simulation with 125 000 particles. We observe that, as expected, PGD performs more
iterations than the accelerated gradient methods. Even though APGD-ASR is the algorithm performing the
least number of iterations, the different accelerated versions have a similar behavior, linear in the number of
contacts.

We compare in Table 2 the computation time of the different algorithms. The second to last columns
illustrates the behavior of each algorithm when the number of particles increase. For each algorithm, we give
the computational time for 125 000 particles, normalized by the time spent by the same algorithm for 512
particles. We can see that, for, about 250 more particles, 400 more constraints and 220 more active contacts,
the different algorithms spent about 13 times more time to compute the solutions. We also indicate in the
last column, the gain in terms of computational time of the different accelerated algorithms, compared to
PGD for the same number of particles. We observe that, although APGD-ASR performs fewer iterations,
the corresponding computation time is higher than that of APGD-AR, the search for the optimal step being
expensive.

3.3.2 Frictional model. Comparison of the convexified and the fixed point schemes.

In the following, we now compare the behavior, for increasing numbers of particles, of the two schemes that
approximates the frictional problem: the convexified scheme (Pkmin,µ,λ) and the fixed point method (PkFP,µ,λ).

Since each iteration of the fixed point method consists in solving a convexified problem, the comparison of
the computation times of the two algorithms essentially amounts to a comparison of the number of iterations
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Figure 10: 125 000 particles falling in a box without friction. Number of iterations of the different solvers as
a function of the number of active contacts.

Number of Final number Final number Computation time Computation time
Solver particles (N) of constraints of active contacts – influence of N – – acceleration –
PGD 512 2 426 1 488 – –

APGD 512 2 439 1 354 – 0.37
APGD-AS 512 2 452 1 416 – 0.66
APGD-AR 512 2 418 1 372 – 0.31
APGD-ASR 512 2 428 1 447 – 0.45

PGD 125 000 910 646 299 758 9.4 –
APGD 125 000 910 867 292 170 12.9 0.51

APGD-AS 125 000 910 794 291 796 14.4 1.01
APGD-AR 125 000 910 715 292 480 12.9 0.43
APGD-ASR 125 000 910 238 292 839 14.2 0.69

Table 2: Falling particles without friction. Number of contacts, number of iterations, and computational
time as a function of the different solvers and as a function of the number of particles.
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of the fixed point. To achieve this comparison, we consider a group of particles arranged in a (fictitious) cube
as in the previous test case and now falling on a horizontal plane. We plot Figure 11 the initial configuration,
as well as the configuration obtained at time t = 2.58 with ∆t = 0.0086, N = 1 728 and µ = 1 for the fixed
point algorithm. The planes drawn on the figures are fictitious planes: they are not taken into account in
the simulation but allow to visually compare the two figures (spreading, height of the pile of particles). We

Figure 11: 1 728 particles falling on an horizontal plane with friction. Initial configuration (left) and config-
uration at t = 2.58 (right) for µ = 1. Fixed point algorithm.

ran the simulations for N = 512, N = 1000 and N = 1728. As observed in [2], the number of iterations of
the fixed point does not depend much on the number of particles. It depends on the friction coefficient: in
our test cases, we observe on average 3.5 iterations for µ = 0.1 and 8 iterations for µ = 1.

In parallel to the comparison of the computation time, it is interesting to measure the effect of the
constraint convexification on the macroscopic behavior observed during the simulations. Indeed, as we have
already pointed out, if the convexified scheme is obviously faster, it causes a numerical dilation effect in the
granular medium (see Section 3.2.2). A comparison has been made in [26] showing that, on a 2d column
collapse problem, the profiles obtained with the convexified scheme, as well as the dynamics, were comparable
to those previously obtained by the NSCD method solving the non-convex LCP problem. Here, we compare
the convexified and the fixed point schemes on the collapse of 302 = 900 disks, falling on a horizontal plane
in 2d. The disks are initially placed on a regular grid of width and height H = 10. All the spheres have the
same radius r = H/(2 × 31) and have a random mass between 1 and 2. In order to break the symmetry,
the first row is shifted by r/2. The gravity is set to -1. The time-step is chosen so that the spheres move
at most 10% of their radius. We compare on Figure 12 the profiles computed at different times, for friction
coefficients µ = 0.1 and µ = 1. One can see that the profiles and dynamics obtained using the two schemes
are similar.

3.3.3 Non-spherical particles

Finally, let us illustrate how the different schemes can be used for non-spherical particles. The additional
difficulty in this case is the computation of the points realizing the minimal distance between the particles.
Indeed, contrary to the case of spheres, we do not have any analytical expression for these points, even
for simple non-spherical shapes such as ellipses in 2d. It is well known that this calculation is of critical
importance in DEM simulations of granular media at the grain scale, and that it takes time. One can for
example cite [24, 23, 35, 45, 8], in which different algorithms are proposed to solve this problem. In our
simulations, we choose to solve a nonlinear system by a Newton-type method, in order to find the common
normals of the two particles at these minimal distance points.

The method is tested in 2d without friction by considering a column collapse of 100 ellipses. The major
axis of each ellipses in the vertical direction is r = 0.45 and is chosen randomly between 0.22 and 0.68 in
the horizontal direction (see initial configuration on Figure 13(A)). The gravity is set to 5 and the mass is
randomized between 1 and 2. The plane is composed of small glued spheres of radius 0.045. The solver is
APGD-AR with tol = 10−3 and ∆t = 0.01. The configurations obtained are given for different time-steps on
Figure 13.
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Figure 12: 2d column collapse with friction. Comparison of the profiles obtained at different times by the
convexified scheme (Conv. – dashed lines) and the fixed point scheme (FP. – plain lines). µ = 0.1 (left panel)
and µ = 1 (right panel).

(a) t = 0 (b) t = 0.67 (c) t = 1.1
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Figure 13: 2d column collapse of ellipses without friction. Snapshots at different times.
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4 Conclusion

This paper is a self-contained review of existing schemes based on convex discrete incremental problems,
for simulating granular media. These schemes can be seen as convex minimization problems for which the
optimality conditions result in a formal discretization of the fundamental principle of dynamics: the local
contact laws are satisfied. We have shown that they can also be understood as the minimization of a global
discrete energy problem for the whole system, in which the velocity to be considered is an average of the pre-
and post-impact velocities, as suggested by Frémond in [15]. No theoretical or numerical results concerning
the convergence speed of the schemes we consider are available. We have conducted a numerical study showing
that each of them converges with order one in the time step (for an academic test case whose solution is
known). We also showed that, on a 2d column collapse test case, the convex constraint relaxation, although
inducing a numerical dilatation, does not significantly modify the macroscopic behavior of the medium.
The numerical tests have been performed with the code SCoPI developed at the CMAP laboratory and
the behavior of the different algorithms for large numbers of particles is very encouraging. A future work
will consist in coupling these contact schemes with fluid/particle solvers and with the gluey particle scheme
proposed in [21]. The latter has been developed to take into account lubrication in simulations of suspensions
and falls within the same convex optimization framework as the schemes described in this paper. This will
provide a numerical tool taking into account both friction and lubrication and based on a stable Contact
Dynamics scheme.

A Notion of sub-differential.

In this appendix, some definitions and results on subdifferentials are given, useful for understanding the
model with friction. The notion of subdifferential allows to describe the local variations of a convex function,
not necessarily derivable. We refer to [17, Chap. VI] for an extensive description of subdifferentials and their
use in optimisation.

A.1 Definition.

Let us consider a convex function φ : Rn → R. The subdifferential of φ at point x ∈ Rn, denoted by ∂φ[x],
can be defined through minorization by affine functions:

∂φ[x] = {y ∈ Rn/ ∀x̂ ∈ Rn, φ(x̂) ≥ φ(x) + y · (x̂− x)} .

Let us illustrate this notion in one dimension (see Figure 14). In that case, the subdifferiential contains the
slopes of the lines issued from point (x, φ(x)) and remaining under the graph. If φ is derivable at point x0,
we have ∂φ[x0] = {φ′(x0)}. More generally, if φ is left and right derivable at point x1, ∂φ[x1] is a closed
interval: ∂φ[x1] = [φ′(x1

−), φ′(x1
+)].

x

•

x0 x

•

x1

Figure 14: Subdifferential. Left: the function is differentiable at point x0. Right: the function is not
differentiable at point x1.

For example, if abs : R→ R is the absolute value, abs(x) = |x|, then

∂ abs[x] =
x>0
{1}, ∂ abs[x] =

x<0
{−1}, and ∂ abs[0] = [−1, 1].

Note that, whatever is the dimension, a function φ : Rn → R is differentiable at x0 if and only if the set
∂φ[x0] contains only one point. In that case, this point is the gradient of φ at x0. Then we have:

φ differentiable at x0 =⇒ ∂φ[x0] = {∇φ(x0)} .
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A.2 Optimality conditions and Lagrange multipliers for non-differentiable func-
tions.

The notion of subdifferential allows to generalize optimality conditions for non-differentiable functions. In-
deed, as illustrated by the red dashed slope on Figure 14, if φ is convex we have

x is a minimum of φ⇐⇒ 0 ∈ ∂φ[x].

In case φ is differentiable, this equivalence is the usual optimality condition for convex functions: x is a
minimum of φ if and only if ∇φ(x) = 0.

Another generalization of optimality condition, used in (29), is the generalization to a non-differentiable
constraint of the Kuhn-Tucker optimality condition. Let us consider the minimization problem

min
x∈K

J(x), K = {x ∈ Rn, g(x) ≤ 0} ,

where J : Rn → R is a differentiable convex function and g : Rn → R is convex. Then, if the constraint at
point x is qualified (see below), x is a minimum of J on K if and only if there exists a Lagrange multiplier
λ such that the following Kuhn-Tucker optimality condition is verified [17, Thm. 2.1.4 p. 305 ]:

∇J(x) ∈ −λ∂g[x], (41)

g(x) ≤ 0, λ ≥ 0, g(x)λ = 0.

As for the differentiable case, the qualification of the constraint is needed to prove the existence of the
Lagrange multipliers when x is a minimum (it is not necessary for the reverse implication, which follows
from the convexity assumptions). For the frictional problem (29), we use the Slater qualification assumption
saying that, if g is not affine, it is sufficient to check that there exists a point x0 in K for which the constraint
is strictly satisfied:

∃x0 ∈ K such that g(x0) < 0 (Slater qualification condition). (42)

A.3 A useful example.

We consider in the following an example we use to compute the sub-differentials of the constraints gkα,µ in (28).
We denote by P the projection onto a plane Π in dimension 3 and consider the following function

h : R3 → R
v → |Pv|.

Let us prove that

|Pv| 6= 0 =⇒ ∂h[v] =

{
Pv

|Pv|

}
, (43)

|Pv| = 0 =⇒ ∂h[v] =
{
w ∈ R3 s.t. w ∈ Π and |w| ≤ 1

}
. (44)

• In case |Pv| 6= 0, h is differentiable so that ∂h[v] = {∇h(v)}. To compute the gradient of h, we simply
write, using a Taylor expansion,

h(v + εw) = |P (v + εw)| = |Pv + εPw| = h(v) + ε
Pv

|Pv|
· Pw + o(ε2).

It remains to remark that, since Pw −w ⊥ Π and Pv ∈ Π, we have
Pv

|Pv|
· Pw =

Pv

|Pv|
·w so that

h(v + εw) = h(v) + ε
Pv

|Pv|
·w + o(ε2).

which concludes the proof of (43).

• In case |Pv| = 0, h is no more differentiable at point v. Let us first prove that

∂h[v] ⊂
{
w ∈ R3 s.t. w ∈ Π and |w| ≤ 1

}
.
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So let w ∈ ∂h[v]. First, we have w ∈ Π. Indeed, if n is the normal to Π, we consider v̂λ = v + λn.
Since n ⊥ Π, h(v̂λ) = |P (v + λn)| = |P (v)| = h(v). Then, from w ∈ ∂h[v], we obtain

∀λ ∈ R, h(v) = h(v̂λ) ≥ h(v) + w · (v̂λ − v) = h(v) + λw · n,

and this cannot be true for any λ ∈ R unless w · n = 0 i.e. w ∈ Π.
Let us now prove that |w| ≤ 1. To do so, we consider v̂ = v + w. Using on the one hand that Pv = 0
and on the other hand that Pw = w (since w ∈ Π), we obtain

|w| = |P (v + w)| = h(v̂) ≥ h(v) + w · (v̂ − v) = w · (v̂ − v) = |w|2,

so that |w| ≤ 1 as expected.

• In now remains to prove the reverse inclusion when |Pv| = 0. Suppose that w ∈ Π and |w| ≤ 1. In
that case, for all v̂ ∈ R3 we have

h(v) + w · (v̂ − v) =
Pv=0

w · (v̂ − v) =
w∈Π

w · (P v̂ − Pv) =
Pv=0

w · P v̂ ≤
|w|≤1

|P v̂| = h(v̂),

which proves that w ∈ ∂h[v].

To finish with the computations of subdifferentials, let us consider

hA : Rn → R, hA(u) = h(Au) = |PAu|,

where A : Rn → R3 linear. The rule for pre-composition with a linear mapping [17, Thm. 4.2.1 p. 263 ] gives
∂hA(u) = AT∂h(Au) so that

|PAu| 6= 0 =⇒ ∂hA[u] =

{
AT

PAu

|PAu|

}
, (45)

|PAu| = 0 =⇒ ∂hA[u] =
{
ATw,w ∈ R3 s.t. w ∈ Π and |w| ≤ 1

}
.

B A disk falling on an inclined plane: explicit solution.

In this appendix, we compute the explicit solutions used in section 3 to study the convergence of the different
schemes. We consider a disk falling on an inclined plane, with and without friction.

B.1 Notations

We consider in 2d a line (called ”plane” in the following) passing through the point (0,0) and inclined with
an angle α from the horizontal. A disk of center c, mass m, radius R and moment of inertia J = m

2 R
2 is

falling on the plane (see Figure 15). The equations of motion are written in the reference frame of the plane:
n is the normal to the plane and t the tangent direction. Any vector x ∈ R2 is decomposed in a normal and
a tangential part:

x = xnn + xT t.

At t = 0, the disk is placed at a distance h from the plane with a zero initial velocity:

c(0) = (h+R)n, v(0) = 0.

The velocity of the center of the disk is denoted by v = vnn + vT t and its angular velocity is ω. Its motion
is decomposed into three parts: the free fall, the impact with the plane and the motion on the plane.

B.2 Free fall

During the free fall, the disk is only subject to the gravity g. The equations of motion of its center write,

m
dvT
dt

= mg sinα,

m
dvn
dt

= −mg cosα,

J
dω

dt
= 0.
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Figure 15: Notations. Disk falling on an inclined plane.

B.3 Impact

The impact happens at t = ti, when there is contact between the disk and the plane, i.e. cn(ti) = R, which
leads to

ti =

√
2h

g cosα
.

During the contact, we denote by P the point of the particle touching the plane. Its velocity is

vP = vP,nn + vP,T t with vP,n = vn, vP,T = vT +Rω.

As long as the disk touches the plane, it is subject to the contact force r = rnn + rT t that obeys the
Coulomb’s law:

if v+
P,T 6= 0 (sliding motion), rT = −µ | rn |

v+
P,T∣∣∣ v+
P,T

∣∣∣ , (46)

if v+
P,T = 0 (no slip) , | rT | ≤ µ | rn | , (47)

where µ is the friction coefficient.
At impact time ti, the velocities being discontinuous, it yields to Dirac delta reaction forces r. If the

subscript plus (resp. minus) denotes the right-sided (resp. left sided) limit of a quantity at time ti, the
equations of motions are,

m
(
v+
T − v

−
T

)
= riT , (48)

m
(
v+
n − v−n

)
= rin, (49)

J
(
ω+ − ω−

)
= RriT , (50)

where (rin, r
i
T ) are the intensities of the Dirac reaction forces.

From B.2, we have that, just before the impact, at t = t−i , the velocities are given by,

v−T = vT (t−i ) = g sinαti, (51)

v−n = vn(t−i ) = −g cosαti, (52)

ω− = ω(t−i ) = 0. (53)

Since equation (49) is not coupled with (48) and (50), we can solve the normal problem. The distance
between the disk and the plane is 0 and the disk cannot overlap the plane so that v+

n = 0. Then, equation (49)
yields rin = mg cosαti.

The remaining of the section is dedicated to the resolution of the tangential problem (48) and (50).
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1. Let us first assume there is no slip. We have v+
P,T = v+

T +Rω+ = 0. This, together with (53), (50) and
the formula for J yields

riT = −m
3
v−T .

Then, using (48) and (50) leads to

v+
T =

2

3
v−T ,

ω+ = − 2

3R
v−T .

From Coulomb’s law (47) we obtain a necessary condition for non-slipping motion: µ ≥ tanα
3 .

2. Case 1: µ < tanα
3 .

From the above, there is a sliding motion: v+
P,T 6= 0.

(a) Let us first show that v+
P,T > 0. If v+

P,T < 0, Coulomb’s law leads to

riT = µ|rin| = −mµv−n ,

and from (48-50) we have

v+
T = v−T − µv

−
n ,

ω+ = −2µv−n
R

.

Then, using (51-53), one can show that v+
P,T = g (sinα+ 3µ cosα) ti > 0, which is in contradiction

with the hypothesis v+
P,T < 0. Therefore, v+

P,T > 0

(b) Since v+
P,T > 0, similar computations lead to,

riT = µmv−n ,

v+
T = v−T + µv−n ,

ω+ =
2µv−n
R

.

Let us notice that v+
P,T = g cosαti(tanα− 3µ) > 0.

3. Case 2: µ ≥ tanα
3 .

Let us first show that, in that case, the particle undergoes a no slip motion. If it was sliding, (v+
P,T 6= 0)

one can consider the two following cases, depending on the sign of v+
P,T :

(a) If v+
P,T < 0, the same computation as in (2a) leads to the same contradiction.

(b) If v+
P,T > 0, the same computation as in (2b) gives v+

P,T = g cosαti(tanα−3µ) < 0, which is again
in contradiction with the hypothesis.

Therefore, v+
P,T = 0 and there is no slip. Then, using the results from (1) we have

riT = −m
3
v−T ,

v+
T =

2

3
v−T ,

ω+ = − 2

3R
v−T .
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B.4 Motion on the plane

We now consider the case t > ti. After the impact, the disk moves on the plane and the equations of motion
are

m
dvT
dt

= mg sinα+ rT , (54)

m
dvn
dt

= −mg cosα+ rn, (55)

J
dω

dt
= RrT . (56)

The disk remains in contact with the plane, so vn = 0 and (55) yields rn = mg cosα. The particle do not
undergo anymore impacts and the motion is smooth.

1. To solve the tangential problem (54, 56), let us first assume there is no slip. In that case, we have
vP,T = vT +Rω = 0 so that

dω

dt
= − 1

R

dvT
dt

This, together with (54) and (56) gives

rT (t) = −mg sinα

3

and using again (54) and (56) yields

vT (t) =
2g sinα

3
(t− ti) + v+

T ,

ω(t) = −2g sinα

3R
(t− ti) + ω+.

Then, Coulomb’s law (47) gives the same necessary condition for non-slipping motion as before: µ ≥
tanα

3 .

2. Case 1: µ < tanα
3 .

From the above, there is a sliding motion (vP,T 6= 0). From B.3(2a), we have vP,T (t+i ) > 0. Then, as
long as vP,T > 0, following similar computations as before, we obtain

vT (t) = g(sinα− µ cosα)(t− ti) +
(
v−T + µv−n

)
,

ω(t) = −2gµ cosα

R
(t− ti) +

2µ

R
v−n ,

rT (t) = −µmg cosα.

This leads to vP,T (t) = g cosα(tanα − 3µ)(t − ti) + g cosα(tanα + 3µ). Then, vP,T is increasing and
remains greater than zero so that the previous formulas are valid for any t > ti.

3. Case 2: µ ≥ tanα
3 .

In that case, we proved in B.3(3) that vP,T (t+i ) = 0. Let us first show that there is a no-slip motion for
t > ti. If not, there exists a time t̄ > ti for which vP,T (t̄) 6= 0. The motion being smooth, one can find
t∗ > ti and δ > 0 such that vP,T do not vanish on ]t∗, t∗ + δ[ and vP,T (t∗) = 0. We then have to deal
with two cases:

(a) vP,T (t) < 0 on ]t∗, t∗ + δ[ for a given δ > 0. Then, following the same reasoning as in the previous
non-slip cases we have, for t ∈ [t∗, t∗ + δ]

vT (t) = g(sinα+ µ cosα)(t− t∗) + vT (t∗),

ω(t) =
2µg cosα

R
(t− t∗) + ω(t∗),

rT (t) = µmg cosα.

Therefore, vP,T (t) = g(sinα + 3µ cosα)(t − t∗) > 0, ∀t > t∗, which is in contradiction with the
hypothesis.
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(b) Similarly, if vP,T (t) > 0 on ]t∗, t∗ + δ[, we have for t ∈ [t∗, t∗ + δ]

vT (t) = g(sinα− µ cosα)(t− t∗) + vT (t∗),

ω(t) = −2g cosα

R
(t− t∗) + ω(t∗),

rT (t) = −µmg cosα.

Therefore, vP,T (t) = g cosα(tanα − 3µ)(t − ti) < 0, ∀t > ti. This is again in contradiction with
the hypothesis.

So we proved that vP,T (t) = 0, ∀t > ti. Then, using computations done in (1),

vT (t) =
2g sinα

3
(t− ti) +

2

3
v−T ,

ω(t) = −2g sinα

3R
(t− ti)−

2

3R
v−T ,

rT (t) = −mg sinα

3
.
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