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ABSTRACT
Explainability (XAI) has matured in recent years to provide more
human-centered explanations of AI-based decision systems. While
static explanations remain predominant, interactive XAI has gath-
ered momentum to support the human cognitive process of explain-
ing. However, the evidence regarding the benefits of interactive
explanations is unclear. In this paper, we map existing findings by
conducting a detailed scoping review of 48 empirical studies in
which interactive explanations are evaluated with human users. We
also create a classification of interactive techniques specific to XAI
and group the resulting categories according to their role in the cog-
nitive process of explanation: "selective", "mutable" or "dialogic". We
identify the effects of interactivity on several user-based metrics.
We find that interactive explanations improve perceived useful-
ness and performance of the human+AI team but take longer. We
highlight conflicting results regarding cognitive load and overconfi-
dence. Lastly, we describe underexplored areas including measuring
curiosity or learning or perturbing outcomes.

CCS CONCEPTS
• Human-centered computing→ Interaction design theory, con-
cepts and paradigms; • Computing methodologies→ Artificial
intelligence.

KEYWORDS
interactivity, explainability, interpretability, human-grounded eval-
uations, artificial intelligence
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1 INTRODUCTION
Explainability (XAI) — the practice of explaining the inner work-
ings of artificial intelligence systems — is a major challenge from
legal, social and technical standpoints. XAI has seen a surge of in-
terest in recent years, with multiple contributions across fields [1].
Although many explainability techniques have been designed, ques-
tions remain about how explanations can be best communicated
to users. Notably, recent work focusing on human-centered ex-
planations has been advocating the design of interactive explana-
tions [2, 9, 67, 77, 122], which is considered more effective based
in large part on how people explain things to each other [77]. For
example, people expect explanations to be provided in a personal-
ized request-response pattern [27]. According to Hesslow [45] and
Lipton [72], causal explanations are usually presented in relation
to a specific “foil”, i.e. a contrast. One does not ask “why P?” but
rather “why P and not Q?”. To provide meaningful explanations, the
explanation agent has then to find, for each user, the adequate foil.
Interactivity is one way to learn what that foil is, by iteratively col-
lecting user information. Research in the field of education shows
that interactivity plays a fundamental role in learning [12, 105].
Barker et al describe interactivity as “a necessary and fundamental
mechanism for knowledge acquisition” [12].

However, the term “interactive” has multiple meanings in the
XAI community, referring to different kinds of user interactions.
According to Miller [77], the ideal interaction model follows a
human-like dialogue structure, where the AI agent is able to an-
swer a series of questions. Other types of user interaction have
been implemented by XAI researchers, such as simulating the black
box with new inputs [22, 23, 81], re-configuring the explanation
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space [47], changing explanations [55, 110], etc. However, these
studies in XAI do not use a common vocabulary to designate differ-
ent interaction types, making it difficult to study and draw general
conclusions on the different forms of interactive XAI.

The visualization (Infovis) [5, 53, 95, 125, 128] and other Human-
Computer Interaction (HCI) [92, 105] communities have done ex-
tensive work on the classification of different modes of interaction.
The XAI field is less mature. We believe that the XAI field would
benefit from using a more precise and shared vocabulary to des-
ignate the different types of interactivity, taking inspiration from
other HCI sub-fields.

In this article, we conduct a detailed scoping review on inter-
active and user-evaluated explainability systems. We survey two
popular digital libraries for the HCI community: IEEE Xplore and
ACM Digital Library. Our contributions are the following:

• We adapt existing HCI taxonomies of interactivity types to
XAI,

• We analyze how interaction techniques support the human
cognitive process of explaining,

• We analyze the extent, nature and distribution of the inter-
active XAI systems included in the review,

• We offer a summary of the user-based evaluation metrics
implemented in interactive XAI,

• We offer a qualitative summary of the effects of interactive
explanations on several user-based evaluation metrics.

Our work is guided by 4 research questions.
RQ1: What are the interactivity approaches that have been
implemented so far in the XAI field? First, we want to identify
the types of interactivity that have been explored, drawing on both
HCI and XAI literature, and that have been evaluated by users. This
allows us to see if existing taxonomies from the HCI and Infovis
domains can be used and adapted to the XAI domain. We then
propose a two-level taxonomy of interaction techniques in XAI.
RQ2: In what context, with what content, and in what form
were the interactive explanations presented to users? Second,
we want to understand in what contexts and with what methods
interactive explanations have been implemented in the literature.
Due to the increasingly large number of articles on XAI, researchers
may be overlooking best practices and opportunities for interaction.
Interactive explanations can be presented to users in multiple ways:
they can include on demand information, ask the user for feedback,
take different forms and contain vastly different amounts of infor-
mation. To illustrate the complexity of designing interactions, Sims
[105] referred to it as “an art” requiring multiple considerations
and a vast array of skills on the part of designers. This article aims
at helping XAI system builders by centralizing examples of interac-
tive explanations taken from various contexts (user expertise, XAI
method, domain...). To that end, we examine the characteristics of
interactive explanations that have been implemented and evaluated
with users. We provide a qualitative analysis of the context (domain,
audience, data type), content (explanation focus and method) and
communication types (interactivity and representation) found in
our scoping review.
RQ3: What are the metrics used in user-based evaluations
of interactive explanations? Third, we want to report how XAI

researchers have been measuring their explanation systems based
on human-grounded evaluations [32]. To the best of our knowledge,
there have been few efforts to list user-based evaluation measures
for explainability [46], and this work is the first in interactive XAI.

RQ4: What are the effects of interactive explanations on
users’ perception of explanations? Finally, we want to identify
the different effects interactive explanations have on the user ex-
perience. Over the past few years, a growing body of work has
been testing interactive XAI systems with real users, generating
sometimes contradictory findings. Cheng et al. [22] find that the
possibility to simulate new predictions by changing input features
improved user understanding compared to static explanations. How-
ever, concerns were expressed in [73] because interactive explana-
tions were found to reinforce users’ over reliance on AI suggestions.
One possibility is that interactive explanations were more complex
to interpret in [73]’s study, leading to information overload. Simi-
larly, [16] and [42] found no statistically significant improvement
of interactive explanations over static explanations with respect to
comprehensibility and satisfaction, respectively. We present a qual-
itative summary of the effects of interactive explanations on XAI’s
many goals, i.e. user trust, user satisfaction, understanding of the AI
model, performance at a task, perceived fairness etc. This work is
the first, to our knowledge, to summarize the effects of interactive
XAI from a user perspective through a scoping survey, paving the
way for following systematic reviews to formally disentangle these
results.

The remainder of the paper is organized as follows: we start by
describing the relevant related work in Section 2, before laying out
ourmethodology in Section 3. This leads us to outlining interactivity
types for XAI in Section 4, and analyzing the papers we surveyed
in Section 5. Finally, Sections 6, 7 and 8 are dedicated, respectively,
to discussing open challenges for interactive XAI, highlighting the
limits of our work and concluding.

2 BACKGROUND AND RELATEDWORKS
Below,we highlightwork inHCI, XAI, and education that is relevant
to this paper. We also highlight, through these different strands of
literature, reasons to believe that interactivity in XAI could help
users in building sense and knowledge about models.

2.1 Interactivity in HCI
Defining interactivity proves challenging, and multiple definitions
have been offered over time. Early work on interactivity defined it
simply as the extent to which a user can “activate” [105] or “exert
an influence” [112, 114] on the technology being used, its form and
its content. In 1997, Sims [105] mentioned that “there appears to be
no consensus of what interactivity actually represents or involves”.
Dix et al. [29] and Foley et al. [37] broadly define it using the
keywords “communication between user and system” and “human-
computer dialogue” [128]. In Infovis, Yi et al. [128] view interaction
techniques as “the features that provide users with the ability to
directly or indirectly manipulate and interpret representations”. The
authors noted that Infovis systems were designed to communicate
information from the computer to the user, but less so for the user
to enter data, thus overlooking an entire aspect of interaction in
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HCI. Therefore, differences arise between HCI subdomains on how
interactivity is defined. At first glance, it seems that the vision
adopted by the Infovis domain could correspond to interactivity in
XAI. In the XAI field as well, the user needs to manipulate, interpret
and discover information about the model from explanations or
raw data. In Section 4, we will examine how adapted the Infovis’
view of interaction is to the XAI domain. Despite the lack of a
consensual definition, Janlert et al. [49] state that “there seems to
be a common sense understanding of interactivity as something
fairly simple” that HCI researchers see as “the control and action
between a human and an artifact or system.”

However, defining the different types of interactions quickly
complicates the task. Some studies have addressed it by proposing
taxonomies of user-system interactions. Early ones attempted to
provide holistic views of the interaction space in HCI; they focused
on interaction levels, with the idea that “the higher the interac-
tion level, the better the product” [105]. For example, Rhodes and
Azbell [92] introduced a three-level scale of interactivity, ranging
from reactive to proactive to coactive. Schwier and Misanchuk [101]
added two other dimensions to this taxonomy: functions (confir-
mation, pacing, navigation, inquiry, elaboration) and transactions
(keyboard, touch screen, mouse, voice). Sims’ taxonomy [105] ex-
tends the two previous ones by intertwining functions and levels.
It is presented as a scale from basic to complex with the following
levels of interactivity: object, linear, hierarchical, support, update,
construct, reflective, simulation, hyperlinked, nonimmersive contex-
tual and immersive virtual. In the Infovis domain, there is typically
no hierarchy between interaction types; however, taxonomies with
finer granularity have been designed. For example, Yi et al. [128] ob-
serves a difference of approach between system-centric taxonomies
(including categories like “interactive linking and brushing” [53]
or “navigating”, e.g. zooming, panning [125]) and user-task-centric
taxonomies (including categories like “compare within relations”
[95] or “retrieve value” [5]). The taxonomy in [128] proposes to
“connect user objectives with the interaction techniques that help
accomplish them.” It includes seven categories: select, explore, recon-
figure, encode, abstract/elaborate, filter, connect. Yi et al.’s taxonomy
has been extensively used and referred to in Infovis in the last
decade.

2.2 Interactivity in Explainability
The call for more interactive explanations in XAI finds roots in
results from the social sciences about how people communicate
explanations and in the growing number of studies focusing on
human needs rather than solely technical aspects.

Works such as Miller’s review [77] have been putting to the fore-
ground results from philosophy and cognitive sciences to guide the
design of explainable systems. He notably finds that “an explanation
is an interaction between two roles: explainer and explainee”. As
such explanations should be thought as a social process, i.e. a con-
versation. He also mentions the rules that govern this interaction
such as Grice’s maxims [40] of quality (say only what is true), quan-
tity (say no more than you need to), relation (say what is relevant
to the conversation) and manner (say it in a nice way). Although
it is easier to imagine these exchanges taking place in natural lan-
guage, Miller argues that this interaction can use other media such

as images, keywords, or logical rules, while still respecting Grice’s
maxims. This work defines what “human-like” explanations should
look like, arguing that users of XAI systemswill expect explanations
to be delivered in this manner.

The line of research on interactive XAI was also spurred by a
call for personalized explanations, following the results highlighted
by Miller. Work pertaining to the technical aspects of XAI also iden-
tify the importance of such “user-centric” explanations. [100, 108].
Numerous papers have emphasized the need for explanations that
are tailored to the context, audience and purpose of the explana-
tion [2, 32, 33, 36, 90]. Scheinder and Handali [100] reviewed XAI
studies focusing on personalization. For each paper in their corpus,
they documented personalized explanation properties (complexity,
content and presentation), personalization granularity (to each user
or per category of user) and personalization automation (manual
or automatic). Additionally, they observed that personalization of
explanations can be either iterative or one-off, with user informa-
tion being collected once prior to showing explanations [100, 108].
While the personalization of explanations is particularly important
given the role of explanations in filling one’s specific knowledge
gaps, we believe there is a greater granularity of interaction to
explore beyond the categories mentioned in [100].

More and more HCI researchers have been investigating user’s
needs for XAI using standard HCI methods [60, 71, 88, 113]. These
efforts have resulted in numerous examples of sophisticated interac-
tive interfaces integrating sometimes complex XAI techniques. For
example, the strand of research called “conversational XAI” made
significant strides in providing explanations in natural language to
a wide range of user questions [43, 44, 108].

2.3 Interactivity for learning and sensemaking
XAI is also deeply connected to results in educational research.
The parallel seems natural as the XAI field aspires machines to
teach humans [100] or machines to explain themselves. According
to Roussou [97], many educational researchers agree that interac-
tivity plays an important role in learning, notably by supporting
“learning by doing”. Amthor [6] argues that “people retain about
20% of what they hear; 40% of what they see and hear; and 75%
of what they see, hear, and do.”. This follows the constructivist ap-
proach, which emphasizes the need for people to build knowledge
by testing and simulating new situations that have meaning for
them [28, 97]. Kent et al. [54] demonstrates through quantitative
user studies “the role of interactivity as a process of knowledge
construction” and further asserts that interactivity patterns inform
on the actual learning process of an individual. Evans and Gibbons
[34] finds that interactivity promotes deep learning by stimulating
users’ cognitive engagement in the learning process. To tie more
concretely these results to the XAI field, we can draw a parallel
between the processes of learning, knowledge construction and
that, closely related, of sensemaking. Cabrera et al. studied the
cognitive process of sensemaking of models, and highlighted that
“understanding of models is an iterative and ongoing process”, mo-
tivating the need for their XAI system to be interactive. In this case,
the sensemaking—or knowledge construction—, comes from the
ability to iterate between the discovery of instances, the formation
of hypotheses, their evaluation, etc.
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3 SURVEY METHODOLOGY
To review the role of interactivity in XAI, we conducted a scoping
review drawn from an initial extraction of 716 papers, narrowed
down to our final corpus comprising 48 articles. In this section we
detail the characteristics and different phases of the survey method.

3.1 Review type
Like a systematic review [82], a scoping review [8] includes many
rigorous steps to survey the literature. Scoping reviews do not re-
quire the pre-registration of the results nor the assessment of the
quality of the studies [83] as systematic reviews do, but they include
similar methodological steps: the definition of research questions,
a systematized search and selection process, and an analysis and
reporting the results [8]. We followed the standardized search and
selection methods from the systematic review methodologies [87],
as suggested in [8] for scoping reviews, to ensure the replicabil-
ity and transparency of our findings. In particular, we followed
the following steps of the PRISMA methodology outlined in [87]:
paper identification, screening, eligibility evaluation and analysis
procedure. This allows us to guarantee the quality of our search
and selection process, as encouraged by the PRISMA Extension for
Scoping Reviews PRISMA-ScR [118].

Scoping reviews are an appropriate survey type to examine how
research is conducted on a specific topic, give a summary of the
focus of the field, map key concepts, identify the types of evidence
found in a field, pave the way for future systematic reviews, and
identify gaps in the literature [83]. This corresponds to the objec-
tives of this paper: identify, map, report and discuss the available
evidence on interactivity in XAI.

However, our work goes beyond what is traditionally expected
of a scoping review in particular in Section 5.3, where we advance
a summary of the effects of interactivity through Figure 3. We
argue this step enables us to better delimit gaps in the literature,
and provide qualitative grounds for a following systematic review
on a more restricted set of studies. This analysis is made possible
through a minimal quality control of the included studies that we
enforced through the exclusion of entries that were not published in
a peer-reviewed conference proceeding or journal. However, a more
thorough quality assessment of studies - which entails a restriction
on the scope of the survey - should be performed in order to extract
quantitative evidence about the effects of interactivity. Here, we
aim at identifying the different types of results in the interactive
XAI field and orientate further research. Section 7 discusses the
limitation of the methodology in further detail.

For all these reasons, we refer to our type of review as a detailed
scoping review.

3.2 Corpus creation
3.2.1 Identification. We focused on the ACM Digital Library and
IEEE Xplore, two popular databases for the HCI community, which
encompass prominent publishing venues for the XAI field (ACM
CHI, ACM IUI, IEEE VIS, IEEE TVCG...). Consequently, we focused
on XAI work that mainly—though not exclusively—pertain to the
HCI community, rather than the computer science side of XAI.
The main reason for this is that our focus was on interactivity and
user studies—two topics finding roots in HCI. Moreover, the CS

side of XAI has been historically and predominantly occupied with
technical advances in XAI [32], and has only very recently taken
into consideration the user’s perspective. While we acknowledge
that more interactive XAI systems have been emerging from the
CS community recently, such as [106], interaction design has been
quite distant from theoretical domains in computer science, as
mentioned in [1]. This led us to focus on HCI databases and leave
out works published in purely AI conferences, such as NeurIPS,
AAAI, or CVPR, among others.

Our aimwas to review different types of interactive explanations,
focusing on how they are perceived by end users. Therefore, we nar-
rowed our focus to work presenting an XAI interface and including
a user-based evaluation of the XAI system. Note that there also exist
non user-based evaluations of XAI methods. Finale Doshi-Velez and
Been Kim [32] distinguish three evaluation strategies: application-
grounded—testing explanations in real-word settings with domain
experts—, human-grounded—testing explanations with lay users—,
and functionality-grounded—testing explanations using metrics
that do not require human feedback. The scope of our survey is lim-
ited to empirical studies with human subjects, as we are interested
on the users’ perception of XAI systems. Providing insight into how
people interact with XAI can guide practitioners in making more
effective technical and design choices.

The keyword search was contextualized focusing on three di-
mensions: AI Systems, Explainability and User studies. The term
“interaction” is ubiquitous in HCI (for example the CSS concepts
section in ACM papers often include the term), and as such we
did not restrict our keyword search to this dimension, choosing
instead to select articles on interactive explanations in the eligibil-
ity phase. Since we wanted to focus on articles whose main topic
was AI, we searched for keywords representing AI systems and ex-
plainability dimensions in the Title, Abstract and Author Keywords
fields. For the user study dimension, we searched the full text of
the articles: we noticed that often, authors do not explicitly men-
tion that they conducted a user-based evaluation in their abstract.
The search results were limited to relatively recent articles (2015
or later), as XAI is a recent field of study, found to be expanding
around 2016-2017 [2, 13]. In addition, user-based evaluations and
interest from the HCI community in the domain are even more
recent [32]. Using 2015 as a starting point, we are sure to capture
the uptake in number of contributions in XAI. In addition, we used
ACM DL and IEEE Xplore filtering tools to narrow our search to
research articles only. In ACM DL, we used the following filter:
All Publications/Proceedings/Content type/Research article AND
All Publications/Journals/Content type/Research article, therefore
excluding surveys, tutorials, introductions, editorials, newsletters,
books, magazines, reports, encyclopedias, short papers, extended
abstracts, posters, and other non-archival content. In IEEE Xplore,
we used the filters Conferences and Journals, leaving out early ac-
cess articles, magazines, books and standards. This step allowed us
to make a first sorting of the non-archived articles, and facilitate
the following phase of manual screening. For each record, the ar-
ticle title, authors, publication venue, and publication year were
exported to an Excel spreadsheet. Below is the search query used
(the wildcards * denote where we have retrieved the plurals and
term variants):
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Figure 1: PRISMA flow diagram adapted from Page et al. [87] giving an overview of the PRISMA 2020 survey guidelines, used
for the search and selection phases of our scoping review.

AI systems => Abstract: (AI, artificial intelligence, machine
learning, algorithm*) AND

Explainability => Abstract: (explainab*, explanation*, intelli-
gib*, interpretab*, transparen*, XAI) AND

User studies => Abstract: (participant*, human-subject*, hu-
man evaluation*, human experiment*, user-stud*) AND

Date => 2015 or after AND
Journal or conference article => Non-archival records pre-

filtered out.

3.2.2 Screening. One author deleted 44 records that were either
duplicates or non-archival records that remained after the database
filtering (primarily workshop entries and student consortia). This
step resulted in a total corpus of 672 unique papers.

3.2.3 Eligibility evaluation. The remaining records were randomly
assigned to three of the authors, who performed a two-phase eligi-
bility assessment: a first one based on the title and abstract and a
second, more in-depth one based on the full text. The first phase
was primarily concerned with excluding recordings that were not
focused on XAI (IC1, IC2), that did not include a human-AI interac-
tion (IC3), or that were a secondary study (IC7). The second phase
consisted of verifying IC4, IC5, and IC6, since full-text viewing was
required to assess these criteria. The inclusion criteria were the
following:

IC1 XAI focus. The paper’s contribution is in the XAI field;
IC2 XAI system. The paper shows an implementation of an

XAI systems;
IC3 Human-AI interaction. The paper is in the field of human-

AI interaction (works in human-robot interactions are ex-
cluded);

IC4 User-based evaluation. The paper presents an evaluation
of its explainability approach using human-grounded evalu-
ation [32];

IC5 Human-computer interface. The paper describes the inter-
face that was presented to the human users evaluating the
XAI system;

IC6 Interactivity. The explainability approach presented in the
paper is interactive, meaning the user can interact with the
explanation (requiring another interaction than that with the
interface to perform a specific task)1;

1Some examples of papers excluded because of IC6 are [11, 17, 31], which present
static explanations to end-users, although the user interface to perform a downstream
task may be interactive.

IC7 Primary study. The paper is not a review nor a position
paper.

After the three reviewing authors had completed the eligibility
phase, an external reviewer was asked to apply the above criteria
to a subset of 67 articles randomly selected from the base of 672
papers, representing 10% of the papers. Inter-rater reliability was
92%, and the remaining disagreements involved mostly cases in
which the external reviewer included the articles when the authors
did not. However, we believe that the extra step of reviewing the
full text in detail is what justified the exclusion of the items that
the external reviewer included.

One of the articles included in our corpus [41] was an analysis of
an external primary study that did not match our keywords because
it did not mention explainability-related terms in the abstract, but
it met our inclusion criteria. We therefore replaced the secondary
study with the primary study [127].

Eventually, 48 papers met the inclusion criteria and were in-
cluded in the final corpus.

3.3 Analysis and coding book
3.3.1 Analysis process. The synthesis methodology we used in this
review is an emerging synthesis [99], more specifically a narrative
account of included studies, as is usually the case in scoping re-
views [8]. To support this analysis, we use a concept matrix and
a charting approach to provide basic numerical summaries of the
extent, nature and distribution of the studies included in the review.

Following Webster and Watson [123], we created a concept ma-
trix for the analysis of the interactivity landscape in the XAI field.
The matrix is organized into four dimensions, whether the concepts
relate to the context of the explanation, its content, its communi-
cation, or its user-based evaluation. Three authors independently
coded and classified the articles included in the final corpus. For
the dimensions context and content, the categories used for coding
were predefined. In the communication dimension, only the concept
of “representation” had a set of predefined categories. With respect
to the type of interactivity, the different categories were intention-
ally not preset in advance and each of the three coders created
their own categories after encountering an interactive explanation
implementation. We did this because our goal was to create new
categories that matched the range of interactivity types provided by
the corpus. The authors then reviewed the resulting categories and
discussed how to reconcile them into a taxonomy of interactivity
types adapted from well-known existing ones [105, 128]. A similar
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Table 1: Codebook used to retrieve information from the corpus with four dimensions: [explanation] context, content, communi-
cation and evaluation and their corresponding sub-dimension. Each paper was assigned a specific code for each sub-dimension.
Each paper’s sub-dimension may be described by multiple codes. The “Reference” column indicates references from which the
coding of the sub-dimension was inspired and adapted from. “NA” indicates the coding was created by the authors.

Dimension Code Reference

Context
Domain Law and Civic, Healthcare, Business and Finance, Education, Leisure, Artificial, Generic,

Other.
[66]

Audience Domain experts, AI experts/Data scientists, Non-expert, Other. [66]
Data type Image, Video, Audio, Tabular, Natural language, Sequential data. NA
Content
XAI focus Raw Data, Output, Model Limitations, Model Confidence How?, Why?, Why not?, How

to?, What if?, What’s the difference with?, Context.
[70, 71, 113]

XAI method Local Feature Contribution, Decision Rules, Sensitivity Analysis and Partial Dependence
Plot, Example-based, Saliency mask, Concept-based, Surrogate model, Counterfactual,
Wizard of Oz.

[66]

Communication
Interactivity Clarify, Arrange, Filter/focus, Reconfigure, Simulate, Compare, Progress, Answer, Ask. [105, 128]
Representation Chart, Table, Text, Rules, Directly on the data structure, Other. NA
Evaluation
Comparison / baseline No explanation, Static explanation, Other, No baseline. NA
Evaluation measure Perceived usability, Perceived usefulness, Understanding, Perceived explanation

length/quantity, Time spent interacting with XAI system, Trust, Cognitive load, Per-
formance at task, Learning, Predicted accuracy, Perceived control, Perceived fairness,
Perceived transparency, User skepticism, Other.

NA

Only for evaluations using static or no explanation as a baseline, the following codes applied for
each evaluation measure:
Higher than, Same as, Lower than [the baseline], Other.

approach was taken for the evaluation portion of the matrix. As
new types of evaluations were found, new categories were cre-
ated. We grouped together concepts that were very similar (such
as explanation utility and explanation usefulness). Finally, evalua-
tions that were used only once in the corpus were regrouped in the
“other” category of the matrix. The authors discussed and shared
the definition of the notions during several meetings. One author
reviewed all the papers and corresponding codings to check the
consistency of the two other reviewers’ coding with their own, and
subsequently consolidated the matrix. Below we detail the different
concepts we have analyzed in each dimension.

3.3.2 Context. We retrieved the environment in which the explana-
tions for each item were designed: domain, audience, and data type.
The domain and audience categories are adapted from those found
by [66] in its survey of AI-assisted decision making tasks. This
allows us to see if the interactive explanations are well distributed
across these contextual concepts.

3.3.3 Content. To analyze the content of the explanation, we searched
for the explanation focus, which described the type of information
that was provided to the user, and the explainability method used to
extract it. The list of explanation focus points was adapted from Lim

and Dey’s [71], Liao et al.’s [70] and from Sun et al.’s [113] classifica-
tions of user questions in XAI. The categories of the explainability
method were adapted from [66].

3.3.4 Communication. Communication refers to the form in which
the explanation was provided to the user, including the type of inter-
action used and the type of visual representation of the explanation.
The categories of interactivity are described in more detail in Sec-
tion 4. The categories of representation were kept general as they
were not the focus of this article.

3.3.5 Evaluation. One of the main challenges in XAI is how to
measure the quality of an explanation [25]. User-based methods
have been an increasingly adopted approach following calls such
as Doshi-Velez’s [32] to take user perspective into account instead
of just technical constraints. While “human-grounded” evaluations
may have drawbacks such as sampling bias or change blindness
[107], they do inform how end users understand, perceive, and use
explanations. This approach also has the advantage that standard
questionnaires are shared by researchers to measure concepts such
as trust (using the McKnight framework), satisfaction, understand-
ing, cognitive load (using NASA-TLX), etc. We also retrieved the
baselines (no evaluation, static evaluation, other explanation, etc.)
used to evaluate the presented explanation in each empirical study.
This makes it possible to compare the results of multiple studies
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and to get an overview of assessments of interactive explanations.
For each evaluation in the corpus that used either static or no ex-
planation as a baseline, we reported the results according to four
categories: higher than, same as, lower than the baseline, or “other”,
which referred to more nuanced results dependent on other external
factors, or to evaluations that did not rely on a defined baseline.

4 INTERACTIVITY TYPES IN
EXPLAINABILITY

Let us now describe the categories of interactivity in XAI that we
have identified in our corpus. We took inspiration from other exist-
ing taxonomies of interactivity [105, 128] to define these categories.
This section addresses our RQ1 and RQ2.

Nine different categories of interactivity in XAI emerged from
our analysis. Following Yi et al. [128] and Roth and Mattis [95], we
formulated the categories so that they express interaction actions
that correspond to user intents. We adapted some categories from
Sims [105] and Yi et al. [128]. However, contrarily to Yi et al.’s
taxonomy, the object of the interaction are explanations instead
of datapoints. Explanations are larger constructs encompassing a
visual representation, an input data range, an AI model’s configu-
ration (dataset, model type and parameters) and an explainability
technique.

In addition to the categorisation of interaction types, we orga-
nized the taxonomy into three different groups corresponding to
the type of support they provide for the human cognitive process
of explaining.

This higher-level categorization is based on Miller’s review [77]
of social science findings on properties of human explanations.
Miller points out that explanations are selective, contrastive, and
social. First, explanations are selective as they involve only a few
causes in a large chain of causal events. Only a few causes address
the explainee’s question and are thus relevant. Then, explanations
are contrastive as they are thought in contrast to a specific foil.
People’s questions are almost always “why” questions implying a
foil: “why did P happened and not Q?” To assess the plausibility of
a factor as a cause of an event, people then need to perform mental
mutations, i.e. to cancel a factor which might have led to P and see
if Q happens, or to consider situations where Q happened instead of
P. This mental process is called the mutability of events and allows
the formation of contrastive explanations. Finally, explanations
are social because they are best understood in a conversation. The
structure of the dialogue allows people to get specific answers to
their “why” questions and corresponding foils, to ask follow-up
questions and progressively fill the gaps in their knowledge.

Our proposed interactivity groups reflect the degree to which the
interactive features enable these explanatory properties—selective,
mutable, social. The three categories are: select (interactive features
facilitate the selection of causes and the formulation of hypotheses),
mutate (interactive features allow users to compare or simulate
different configurations of the AI’s inputs, outputs or parameters),
and dialoguewith (interactivity allows users to engage in a conver-
sation with the XAI system). The resulting interactivity taxonomy
is outlined in Table 2.

Below we describe in detail the nine different categories of in-
teractive explanations, as well as three levels of interaction into
which they fall.

4.1 Select
The user may be able to select2 the information they wish to see
by clicking on hyperlinks to display explanations on demand, by
configuring the explanation space, or by filtering the explanation
conditionally on an input metric. These interactions can help users
formulate hypotheses and actively search for factors that may lead
to causal explanations. As such, they enable explanations to be
“selective”.

4.1.1 Clarify. This subset of interaction capabilities enables the
user to make on demand information appear, whether by clicking
on or by brushing explanation components. In this approach, the
user actively seeks answers to their questions, controlling what
explanation to display and when it should be displayed. This set
of interaction techniques is close to Yi et al.’s “elaborate” cate-
gory [128]. The analysis of our corpus revealed three main ways
for a user to get clarification on something. First, users can nav-
igate through a menu so as to choose the themes they want to
know more about. Sims [105] refers to this interaction technique
as “hierarchical interactivity”. Anik and Bunt [7] is an example
of this interactivity type. Second, explanations can be displayed
after a user clicks on a link, following Sims’ [105] “hyperlinked
interactivity”. One example is Sovrano and Vitali’s [109] explana-
tion system in which the user can click on a concept to get more
information about it. With each click, a new window with an expla-
nation appears, itself providing other hyperlinks about the notions
used in the explanation. Finally, tooltips are convenient interaction
techniques to provide clarifications and additional details on a vi-
sualisation in a non-overwhelming way [3, 51, 103, 104]. Clarify
interactions also allow the explanation interface to be less over-
whelming at first glance by disclosing explanations progressively.
In a study on the progressive disclosure of explanations, Springer
and Whittaker [111] note that “because transparency is provided
‘on demand’ this removes confusions and inefficiencies arising from
spurious, unwanted explanations, and adjusts explanations to the
users’ requirements.” They also observe that this on demand dis-
closure approach is able to adapt to the different reactions and
expectations of each individual user.

4.1.2 Arrange. Arrange interaction techniques provide the user
with the ability to organize the explanation space as desired by hid-
ing or collapsing explanations and selecting the type of explanation
to be displayed [65]. It is similar to the “rearrange” category in Yi et
al. [128]. Instead of interacting for more information, (which corre-
sponds to the Clarify category), here the user’s goal is to configure
the explanation space following their preferences. For example,
in [73], users can increase or decrease the number of highlighted
words in the saliency-based explanation. In [24], the user can chose

2A parallel can be drawn here with the “select” category from Yi et al. for the Infovis
domain, which is defined as “marking something as interesting”. Assuming we view
this level of interaction as “marking an explanation as interesting”, we found, however,
several subcategories of interaction types that could be used to support this. This
justifies why we refer to it as a whole interaction level instead of just one category.
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Table 2: Two-level taxonomy of interactivity techniques in XAI, including a first level reflecting the type of support interaction
techniques provide to the cognitive process of explaining, a second task-oriented level, and corresponding definitions.

Cognitive support Category Definition

Clarify Give additional information/explanations on demand
Select Arrange Choose and organize the explanation type(s), parameters and visual representation(s).

Filter/focus Filter the explanation according to an input/input metric.
Reconfigure Change the dataset, the AI model, AI model parameters and showme the corresponding

prediction and explanations.
Mutate Simulate Change the inputs, the output or the dataset distribution and showme the corresponding

prediction and explanations.
Compare Show me explanations of related or selected data inputs or outputs.
Progress Guide user through an explanation sequence.

Dialogue with Answer Give feedback, edit explanation components.
Ask Ask iterative questions and receive answers following a dialogue structure.

the surrogate model used in the explanation along with the other
parameters for that model.

4.1.3 Filter/focus. Inspired by Yi et al.’s “filter” category, the Fil-
ter/focus class regroups controls that let the user zoom either on
specific inputs of the AI model or subgroups in the the training or
testing dataset. The user can therefore focus their attention on the
explanation built from a restricted input space. The explanation in-
terface presented in Jacobs et al. [48] is an example of a Filter/focus
interaction technique where users (doctors) can filter explanations
based on the presence of a specific symptom. In Cheng et al. [22],
users can create and delete subgroups in the model’s input data
to see the corresponding explanations for each subgroup. VBridge
[20] and ExplainExplore [24] provide the ability for users to select
a subset of features to be used in an explanation. We also put in the
Filter/focus class sorting functions, such as the one in Gamut [47]
which lets the user sort input features according to several feature
metrics.

4.2 Mutate
Interactive explanations can allow the user to “mutate” causes,
i.e. to test their hypotheses by simulating or comparing different
situations. The resulting explanations are cumulatively selective
and contrastive.

4.2.1 Reconfigure. This category includes a set of interactions that
offer the possibility to modify the parameters of the AI model such
as the dataset, the model type or the model parameters in order to
observe changes on the explanation. Users may want to evaluate
the impact of these factors on the model’s prediction and corre-
sponding explanation to make sense of how the model works. This
is especially true when explainability is used to assess the fairness
of the model such as in [127] or [68]. The Silva explanation interface
[127], similarly to IBM’s AIF360 tool [14], allows the user to modify
dataset attributes and sensitive inputs to see how it affects speci-
fied fairness measures. Various explanation components, including

causal graphs and measures of feature importance, change based
on the user’s chosen dataset settings.

4.2.2 Simulate (inputs). Interactive explanations can be useful for
users to test how changes in inputs affects local explanations and
the outcome of the model. Understanding of a model then comes
not only from static information about the AI algorithm, but also
from the learning experience provided by repeated simulations of
the model. Interactions in the Simulate category refer to mutations
of the inputs of the AI model. Many articles in our corpus (18/47)
have integrated this interactive feature, reflecting an appreciation
of the XAI community for “learning by doing” [97]. The simula-
tion functionality is usually activated by sliders or drop-down lists
and gives the user a local understanding of the model’s behavior.
Examples can be found in [4, 73, 81, 103].

4.2.3 Compare. This category gathers interaction techniques that
are used to compare either (1) explanations for different inputs or
group of inputs or (2) explanations for different predictions. In the
first case, the user can select the inputs or input groups to compare
so as to analyze differences in the explanation. Connections, sim-
ilarities and differences between the selected inputs or outcomes
can be highlighted in the comparative explanations. Compare in-
teraction methods would often use parallel coordinates graphs to
ease the comparison between explanations. Hohman et al. [47] give
an example of an explanation view in which the user can see local
explanations for two inputs they selected for analysis. The second
case occurs when the AI model predicts several possible outcomes
with varying levels of confidence. The user then usually wants to
compare the explanations for each of the probable outcomes to
assess their likelihood. Dodge et al.’s [30] and Jin et al.’s [51] sys-
tems are examples of this type of outcome comparison. In Dodge
et al. [30], the user can tap on a game board (representing a game
situation) to see its corresponding chance of winning and how it
compares to the chance of winning from other game boards. In
CarePre [51], doctors are users, and can explore in detail the records
of a patient, as well as compare it with similar patients; their focus
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is on sequences of “events” (a patient enters the medical facility, a
scan is performed, etc.). This allows the user to detect similar paths,
and adapt treatment accordingly. This interaction class is inspired
from Yi et al.’s “connect” category.

4.3 Dialogue with
Interactivity can support the user in engaging in a dialogue-like
structure. Information about the AI model is then given progres-
sively and/or iteratively. The user could ask the system a question
or give it feedback. These “dialogic” explanations are in line with
the properties expressed by Miller for human-like explanations.
However, there may be different degrees in which explanations
are truly social, depending on the range of questions a system can
actually answer.

4.3.1 Progress. The Progress interaction style is inspired by Sim’s
“linear interactivity” through which “the user is able to move for-
ward or backward in a pre-determined sequence of instruction
materials”. The explanation is designed in several steps, and the
user can click “next” or “previous” to navigate through the expla-
nation displays. It is generally progressive, with basic information
provided in the first few pages and more in-depth information pre-
sented in subsequent sections. This style of interactivity is reactive
[105] and does not provide specific feedback to the user but instead
lets them walk through the explanation at their own pace. The user
can only control when the explanation is provided. The Progress
interaction style can be seen as the lowest level of “dialogic” expla-
nations. It does not enable the user to ask nor answer questions
but it follows some of the rules of a conversation [40] by provid-
ing sparse information progressively (maxim of quantity), and by
predefining user questions that need to appear in the explanation
guide (maxim of quality). The “next” and “previous” commands can
be considered as the users’ options to punctuate the conversation
(compared to saying “ok tell me more” or “wait, what did you say”).

4.3.2 Answer. While information flow in interactive XAI systems
goes primarily from the machine to the user, like in Infovis systems
[128], it can also be reversed, with users providing the system with
feedback, corrections or information about the state of their mental
models. These interactions can serve to increase users cognitive
engagement (and activate their “System 2” [52]) by challenging
users. For example, in [75], users (in this case children) are asked to
click on the part of the image that they think had themost impact on
the algorithm’s prediction. This interaction type can also serve to
improve the AI system by building on human feedback. Examples
are [50, 104] in which users are asked to improve the semantic
meaning of the concepts learned by the algorithms, [21, 42] in
which users can create or edit explanations—such as adding a new
rule or correcting one, [121] in which users can indicate to the
system their personal preferences about model interpretability, or
[38, 39, 43, 110].

4.3.3 Ask. In Miller’s view [77], the ultimate level of interaction is
a conversation where the user can ask the AI system anything they
want. We can therefore view the Ask interactivity as the higher end
of the interactivity scale for XAI. The conversational XAI research
line has made some progress in achieving such interactivity. For

instance, [43, 44] present logical dialogue maps to deliver explana-
tions that answer users’ questions. The challenge is to cover as wide
a range of questions as possible. Note that this “dialogic” interaction
between user and machine does not necessarily have to take place
through natural language. As Miller stated [77], we could imagine
an XAI system that answers the user’s questions with images or
other communication means. An illustration of this can be found
in [55], where the user submits a query such as “create a graph
showing the predicted trend” and the XAI system responds with
the desired graph.

5 ANALYSIS
In this section, we present a qualitative analysis based on our con-
ceptual matrix to address our RQ2 (Section 5.1), RQ3 (Section 5.2),
and RQ4 (Section 5.3).

5.1 In what context, with what content, and in
what form were the interactive explanations
presented to users?

5.1.1 Context. The work in our corpus is well distributed across
the different domain categories constituted by [66] (cf. Figure 4 in
the Appendix). Notably, the corpus reflects a large number of studies
(32/48 papers) implemented in real-world applications rather than
in artificial or generic domains. Healthcare stands out as one of the
most studied domains in the corpus.

Some work [16, 22] expressed concern that too few studies fo-
cused on making explanations understandable to novices and that
most current XAI techniques were only comprehensible to AI-
educated users. Cheng et al. [22] also argues that the majority
of studies providing explanations to novices have been conducted
in the context of generic tasks [66], i.e. computer science problems,
and are therefore not generalizable to real-world applications. In
contrast to the first concern, we found that the majority of articles
included in the corpus (27/48) were aimed at a general audience of
non-expert users. This at least reflects an awareness of the field to
design explanations with this user group in mind. In addition, 15/27
of these studies are in real-world application areas, including areas
that may be considered sensitive—4 in legal and civil, 2 in health-
care, and 3 in business and finance. However, it is possible that
the empirical studies included in our corpus targeted non-expert
users for practical reasons, such as to solicit platform workers like
those on Amazon MTurk [22, 38, 42, 44, 93, 94, 98, 124]. Never-
theless, some of these studies are primarily aimed at making the
XAI systems more transparent and more accessible to a non-expert
audience [7, 111, 116, 119, 127].
Regarding the data type used in our corpus, tabular and text data are
predominant (79% of the studied papers). This points to an opportu-
nity for the XAI field to empirically study interactive explanations
using audio (only one paper discussed audio data [7]), images, and
video data.

5.1.2 Content. The interactive explanations in the corpus focused
heavily on the “why?” user question recurring 37 times, and which
can be answered by local feature explanations, the most commonly
used explanation method in the corpus (26/48). We can see in Fig-
ure 2a how some interaction techniques were favored for specific
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types of user question. For example, quite logically, explanations
addressing “what is the difference with?” were implemented with
Compare, but also frequently with Filter/focus interactions. Context
and raw data can be elaborated through Clarify interaction. “How
to?” and “What if?” were facilitated through Simulate interactions.
Model limitations were rarely presented in the studies (only twice).
But perhaps a bigger opportunity for interactive explanations is the
small numbers of papers addressing “how to?” questions. One ex-
ample is [94] in which the user can change input “concept features”
to see the adjusted output in real time and better understand the
meaning of each “concept feature”. However, we found only two
studies enabling direct interventions on the model output [30, 51].
Such interventions (which would fall in the Simulate category cf.
Table 2) could help the user characterize what kinds of contexts
and situations are emblematic of a particular outcome, thereby
addressing “how to?” questions. In addition, concept-based expla-
nations, which are considered promising in the field for their human
comprehensibility, were rarely used in the corpus [56, 59].

5.1.3 Communication. The most used interaction techniques were
Clarify and Simulate. These were frequently combined with com-
pare, Filter/focus and Arrange as illustrated in Figure 2b. The tech-
niques Progress and Ask were used in only three and four studies
respectively, illustrating a trend in the field of interactive XAI to-
wards complex, Infovis-type XAI interfaces rather than simpler
step-by-step or dialog box interfaces. The matrix in Figure 2b shows
this clear cut between the “Select” and “Mutate” interaction groups
on the one hand, and the “Dialogue with” group on the other. The
interactions techniques in the first two groups are frequently com-
bined with each other, while the interaction styles in the latter
group are less frequently used. In addition, these more “social” in-
teractions were rarely combined with other interactions from the
“Mutate” or “Select” levels. In particular, Progress was never used in
combination with other “Mutate” or “Select” interaction categories,
as shown in Figure 2b. It would be interesting for future research
to explore combining these as a way to take advantage of the social
nature of “progress” explanations while giving greater control to
the user with selections and mutations.

The representations used for the interactive explanations were
primarily charts and texts. As shown in Figure 2c, tables were
useful to support Filter/focus and Compare interactions. Textual
explanations often came with Clarify interactions. Rules, although
not appearing frequently in the corpus (5 times), where used to
support Clarify and Answer interactions. Indeed, rules are easy
objects for users to modify, create or delete, as exemplified in [42,
43, 78].

5.2 How were interactive explanations
evaluated?

To address our RQ4, we describe below the different user-based
evaluationmethods andmeasures that have been used in our corpus
to evaluate XAI systems and explanations. Below we provide brief
descriptions of the measures and highlight trends and challenges
in evaluating interactive explanations.

5.2.1 Few controlled experiments. Few empirical studies supported
a cross-sectional analysis of results on interactive XAI by using a

static explanation as a baseline. Most papers (20/48) did not use
any control condition (cf. Figure 4 in the Appendix). Even if the
measures in these articles are sometimes quantitative as in [44]
where the authors measured different constructs (system efficiency,
transparency...) on Likert scales from 1 to 5 points, these results are
hard to interpret in comparison with the rest of the XAI literature.

Nine of the 48 articles in our corpus compared interactive and
static explanations through between-subject experiments. These
comparisons were very informative for analyzing the added value of
interactivity in XAI. We provide in Section 5.3 a qualitative analysis
of the added value of interactive explanations based on this work.
To a lesser extent, comparisons between interactive explanations
and no explanation (13/48 items) are also useful for understanding
the benefit of interactive explanations. We also leveraged this body
of work in Section 5.3. Other context-specific comparisons were
made between an interactive explanation and other explanation
types [42, 98, 115, 124], other interactive systems [89, 127], other
AI models [94], other interactivity types [38] or random baselines
[50], among others. Some of these user-based evaluations were
within-subject experiments [30, 35, 111].

Much of the work that did not use a baseline provided valuable
qualitative assessments instead. This research often employs usage
scenario (or “use cases”) to study users’ reactions to XAI systems
in realistic settings [20, 50, 65, 78]. These qualitative insights of-
ten focused on capturing the user’s perceived ease of use and/or
usefulness of the XAI system (16/20 papers).

5.2.2 A wide toolbox. We identified 19 different metrics to eval-
uate XAI systems with users from our corpus. Fourteen of them
were used twice or more: perceived usability, perceived usefulness,
understanding, perceived explanation length/quantity, time, trust,
cognitive load, performance at task, learning, predicted accuracy,
perceived control, perceived fairness, perceived transparency and
overtrust (cf. Figure 4 in the Appendix). Other measures were used
such as perceived feedback quality and difficulty [42], explanation
persuasiveness and sufficiency [44], number of interactions (clicks,
etc.) with the explanations [84] and naturalness and humanness
of the explanations [91]. Table 3 provides the definitions used for
each of these metrics.

We recognized four of the five user-based measures for evaluat-
ing XAI systems outlined in [46]: user satisfaction, understanding,
trust (and overtrust) and human-XAI performance. Indeed, none of
the papers in our corpus measured participants’ curiosity, highlight-
ing a gap in the literature for making XAI systems more engaging
through users’ feedback. However, we actually foundmore than five
types of human-based metrics. Measures of the propensity of XAI
systems to enhance learning, perceived transparency and fairness,
humanness and naturalness of explanations, or cognitive workload,
provide additional nuances to the XAI researchers’ toolbox.

5.2.3 The many shades of user satisfaction. User satisfaction was
the most frequently used measure in the corpus. However, we found
many nuances of this concept. Some assessed whether users liked
the systems [50, 57], and/or found them useful [51, 55, 109], helpful
[48, 127], effective [44] and/or easy to use [65, 116], or preferred
the explanation or explanation system over another. In order to
capture some of these nuances while keeping the papers coding
manageable, we divided user satisfaction into two main clusters:
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(a) Percentage of studies focusing on a type
of user question per interaction category (e.g.
4% of studies focusing on raw data use the
Progress interaction). One study can feature
multiple interaction categories.

(b) Frequency of the interaction categories
used in the corpus and frequency of their com-
binations (e.g. 20 studies use the Clarify inter-
action and 7 use both Clarify and Arrange).

(c) Percentage of studies using an explanation
representation per interaction category (e.g.
48% of studies using charts use the Clarify in-
teraction).

Figure 2: Summaries of the corpus through different concept matrices.

ease of use (i.e., perceived usability) and perceived usefulness of
the XAI system.

Some articles already made distinctions between these two con-
structs [51, 116], but others did not, especially when using ques-
tionnaires such as the Explanation Satisfaction Scale [46], which
incorporates both usability and usefulness concepts [16, 42]. When
this was the case, we reported the measure under both “usability”
and “usefulness”. Under the “perceived usability” construct, we
included measures of usability, ease of use, likeability, i.e. whether
users expressed that they liked the interactive explanation (or the
XAI system)—typically through a one-item questionnaire [42] or
through a qualitative think-aloud study [51],—and user preference,
i.e. whether users preferred the system to a given baseline. Ques-
tionnaires such as the Post-Scenario Questionnaire [69] or the User
Engagement Scale [86] were often used to measure usability. In
the concept of usefulness, we reported the accounts of “usefulnes”
and “perceived effectiveness”, the latter being assessed through
Tintarev’s questionnaire [44, 117, 119].

5.2.4 Joint use of subjective and objective measures. Many self-
reported measures have an objective equivalent, and the papers
in our corpus have taken advantage of this. This was the case for
understanding, trust and cognitive load.

Understanding was most often measured subjectively by ask-
ing participants if they understood the system [16, 23]. However,
some also assessed understanding objectively by asking carefully
designed, often context-specific questions [16, 22, 78, 91]. Predicted
accuracy, referring to the ability of users to predict what the system
will output given certain entries, has been measured in [23, 85, 111]
and could be considered, as some argue [23], as an objective under-
standing of the system.

Participants’ trust in the system or explanations was mostly
assessed subjectively, by asking people to report their confidence in
the XAI tool. McKnight’s framework was used in three studies [38,
44, 124]. Other papers referred to Tintarev’s [117] measures of
trust [44, 119, 124]. [44] also used items from Kouki et al. [61] to
measure trust related to explanations rather than to the system.

However, trust was also measured objectively, by observing users’
ability to reject an incorrect AI suggestion [18, 57, 73, 93]. We
referred to this measure as “overtrust”, but [57] framed it more
positively as “user skepticism”, while others have called it “human-
AI agreement” [73].

Users’ cognitive workload when interacting with XAI systems
was reported in five studies. It was measured by the NASA-TLX
workload index, or a subset of its items. Closely related to cognitive
load are estimates of the time spent on the XAI system or explana-
tion, and the perceived length and/or complexity of the explanation.
The former is an objective, quantitative estimate, while the latter is
a self-reported measure [18, 62, 116].

The quality of self-reported measures can sometimes fall short
of researchers’ expectations, as some [30, 84, 122] argue. Objective
measures of understanding, trust and cognitive load may offer more
reliable observations, even though at present, their measures are
less standardized and more context-specific, making results more
difficult to compare across different studies. Dodge et al. [30] no-
tably proposed “the ranking task” as an alternative to self-reported
measures.

5.2.5 Task performance as the new benchmark. Some work [11, 17]
advance that subjective measures could be misleading to properly
assess the added value of explanations. Buçinca et al. [17] found that
an increase in user satisfaction did not necessarily lead to improved
performance, if not the opposite. Instead, Buçinca argues, measuring
task performance should be the standard benchmark as it comes
down to directly evaluating XAI systems against what they were
designed for: increasing humans’ autonomy and complementarity
with AI. While XAI may serve other purposes, such as increasing
user confidence and understanding, measuring task performance
has the advantage of being a metric that is both objective and easily
quantifiable. In fact, many empirical studies in the corpus have
adopted it (21/48). Some articles also measured other constructs
related to the task at hand, such as task complexity or time spent
performing the task [94].
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Table 3: Evaluation concepts used twice or more in the corpus with the corresponding definitions used in this review and the
corresponding evaluation methods used in the surveyed papers.

Evaluation concept Definition Main evaluation methods

Perceived usability User’s perception of how easy to use the explanation
user interface is.

Adapted question items from Explanation Satisfaction Scale
[46], Post-Scenario Questionnaire [69] or the User Engage-
ment Scale [86]; qualitative think-aloud study [51].

Perceived usefulness User’s perception of how useful, effective or helpful
the XAI system is for achieving their goals.

Question items from Tintarev’s questionnaire [117], Expla-
nation Satisfaction Scale [46] or [120]; qualitative think-
aloud study [127].

Understanding The extent to which the user understands a model
or its explanations.

"Objective understanding": Likert-type, context-specific
questionnaires [16, 22, 78, 91], "Subjective understanding":
qualitative think aloud or free-text analyses, e.g. [16, 23].

Perceived explanation
length/quantity

User’s perception of the length or quantity of the
explanation, often used as proxies for the complex-
ity of the explanation.

Direct questions about the quantity, length, or complexity
of the explanation, e.g. [18, 62, 116].

Time The time spent by the user interacting with the XAI
system to perform a task.

Direct measure of the interaction time, e.g. [94].

Trust User’s willingness to depend on an XAI system be-
cause of the characteristics of the system [74, 96].

Question items fromMcKnight’s framework [74], Tintarev’s
questionnaire [117] or Kouki et al. [61]’s measure of trust
towards explanations.

Cognitive load The amount of working memory resources used by
the user while interacting with the XAI system [79].

NASA-TLX workload index.

Performance at task The performance of the human+XAI team in per-
forming a specific task.

Measured through case-by-case metrics adapted to a
context-specific task, e.g. [18, 30, 35].

Learning How well explanations and/or XAI systems help
users learn about a specific topic.

Context-specific questions usually defined by the authors
themselves about a topic. See examples for learning about
gender bias ([75]) or self-care awareness ([119]).

Predicted accuracy User’s ability to correctly anticipate the AI’s behav-
ior.

Number of correct guesses of the AI’s prediction by the user
[23, 85, 111].

Perceived control User’s perception of their control over the XAI sys-
tem.

Adapted question items from the Knijnenburg et al. [58]
framework.

Perceived fairness The extent to which users perceive the XAI system
to be fair and transparent.

Fairness questionnaires from [15] or Lee et al. [68].

Perceived transparency User’s perceived understanding of the recommen-
dation rationale

Adapted question items from Millecamp et al. [76] or
Tintarev [117] frameworks.

Overtrust User’s ability to reject an incorrect AI suggestion. Precision and/or recall in correct rejections or acceptances
of a prediction, e.g. [18, 57, 73, 93].

5.2.6 Less frequent goal-specific metrics. Evaluation measures are
chosen in relation to the purpose that explanation serve. For ex-
ample, Lee et al. [68] and Anik et al. [7] aimed at increasing public
transparency and perceived fairness of an AI system. Therefore,
Anik et al. used the questionnaire from [15] to assess users’ percep-
tion of the fairness of the system and Lee et al. relied on their own
quantitative metrics by asking participants to indicate on a Likert
scale their agreement with the sentences “My assignment is fair”,
“This participant’s assignment is fair”, or “The overall group out-
come was fair”. Similarly, learning was a few times measured as a
separate concept from the understanding of the AI model. Measures

of “learning” focused on how well XAI explanations and systems
helped users learn about a topic such as gender bias ([75]) or self-
care awareness ([119]). In conversational interfaces, explanations
were evaluated according to their humanness and engagingness
[43, 102], to their persuasiveness [44], or their naturalness [91].

5.3 What are the effects of interactive
explanations on user-based measures?

Previous research has demonstrated uncertainty about the benefits,
if any, of interactivity in XAI. While theoretical work in education
and psychology outline the benefits of interaction for explanation
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Figure 3: Left: Summary of the effects of interactive expla-
nations compared to static ones, against various user-based
metrics, based on 9 different studies. Right: Summary of the
effects of interactive explanations compared no explanation
as a baseline, extracted from 13 different empirical studies.

and learning [77, 97], empirical results do not always align with
these statements. In [73] for example, they find that interactivity
could increase human biases and over-reliance on AI. In an attempt
to resolve this ambiguity, we present a summary of empirical evalu-
ations of interactive XAI below. We base our qualitative findings on
the summary presented in Figure 3, and on the qualitative analyses
of the effects of interactivity provided in the corpus. The results
presented here are not intended to clinically demonstrate evidence
for a hypothesis, but rather to identify the types of qualitative re-
sults that emerge in the interactive XAI field and help orientate
following systematic reviews.

5.3.1 Interactive explanations improve perceived usefulness but not
usability. Overall, there appears to be repeated evidence that inter-
activity does not significantly improve perceived usability [42, 68,
109] compared to static explanations, but it does improve perceived
usefulness [16, 18, 38]. However, when compared to a baseline of
no explanation, interactive explanations lead to an increase in per-
ceived ease of use [43, 57, 119]. This reinforces the hypothesis that
interactivity is not responsible for the improvement in perceived
usability, but the presence of explanations is. It is possible that in-
teractivity increases the complexity of the system, but at the same
time supports users in their task and exploration of the models. The
authors of the Gamut interface [47] state that “interactivity was so
fundamental for our participants’ understanding of the models, that
when we prompted them to comment on interactivity, people could
not conceive non-interactive means to answer both their hypothe-
ses and prepared questions”. This study illustrates the potential of
interactivity in terms of usefulness and as a factor in enabling users
to achieve their goals.

5.3.2 Interactive explanations improve performances of the (hu-
man+AI) team, sometimes increasing time spent on explanations. Hu-
man+AI team performance was found to be improved in [18, 39, 68]
with interactive versus static explanations. However, in two other
studies [18, 22], the time spent to interact with the explanation
system was higher for interactive explanations compared to static
ones. The presence of interactive explanations compared to a “no
explanation” baseline also improved task performance. These re-
sults seem logical, as greater interactivity can help users dive deeper
into exploring a model and augment their cognitive engagement
in the process. However, increasing the number of interactions
with the system, as well as deeper analytical thinking, would un-
derstandably take more time. For example, interactivity can be
designed to elicit user cognitive engagement such as in [18], which
in turn can enhance task performance. Further, Buçinca et al. [18]
showed that on demand explanations—from the Clarify interaction
category—could significantly increase the performance of the hu-
man+AI team compared to static explanations. However, Naiseh
et al. [84] demonstrated that an interactive friction-based feature—
falling in the Answer category—could lead participants to interact
significantly more with the system, while having no impact on the
time spent using the system.

5.3.3 No clear indication of an interactivity effect on cognitive load
or over-reliance. Some concern has been expressed that interactiv-
ity could increase users’ cognitive load and their over-reliance on
AI [73]. We did not find many results to either confirm or refute
this. The results for user cognitive load were generally not directly
related to explanations alone, but to other external factors, either
with the static or no-explanation baseline. Buçinca et al. [18] and
Ghai et al. [38] highlighted the importance of the user’s individual
need for cognition, knowledge of the task to perform, or of the
model used [94]. Qualitative analyses suggest, however, that Simu-
late interactivity techniques can increase users’ perceived difficulty
of interacting with the system as we detail in the paragraph 5.3.7.

Compared to no explanation, interactive explanations did not
lead users to over-rely more on the AI. However, results were mixed
for the comparison of interactive explanations to static ones. On
the one hand, using Simulate interaction techniques, [73] found
that interactive explanations could increase users’ tendency to
blindly trust the AI. On the other hand, [18] found that their on
demand interactive features in the Clarify style could significantly
decrease over-reliance. The interactivity type therefore seems to
be instrumental in the development of over-reliance.

5.3.4 Higher perceived control leads to greater perceived fairness,
perceived transparency, and (less clearly) trust. A participant in [127]
said “I want to know why it is biased, not have the machine tell me
why”. This highlights the power of user controls and interactivity
to drive trust and support users’ autonomous exploration of the AI
model. Lee et al. [68] confirmed this with quantitative evidence, find-
ing that Reconfigure interactions significantly improved perceived
fairness. The authors mentioned that the Answer interaction—here
participants could correct the algorithmic allocation—caused users
to perceive the model as fairer.

We did not find a substantial trend in the effect of interactivity on
trust in the quantitative studies in the corpus. As indicated by the
right side of Figure 3, the results in [55] and [22] do not converge.
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Some studies described the link between trust and external factors
such as users’ prior experience with AI [38] or on users’ individual
propensity to trust [57].

5.3.5 Unclear role of interactivity on understanding and learning.
From Figure 3, it appears clearly that the presence of (interactive)
explanations compared to no explanation enhances user under-
standing of a model. Similarly, learning seems to be persistently
enhanced by the presence of interactive explanations [75, 119]. At
the same time, user understanding of a model was dependent on
other factors, including the order in which users saw weaknesses
in the system [85], or the stage of interaction with the system [23],
or the type of model that was explored [94]. In addition, [22] found
that interactive explanations led to higher objective and subjec-
tive understanding of the model compared to a static baseline, but
[16] could not find any statistically significant improvement of
interactive over static explanations for both objective and subjec-
tive understanding. More work is therefore needed to clarify the
added value of interactive explanations over static explanations for
understanding and learning.

5.3.6 Qualitative evidence of the added-value of a few interaction
techniques. Despite the unclear quantitative evidence, the qualita-
tive analysis of the corpus suggests that understanding is facilitated
by interactivity. For example, one participant reported that receiv-
ing feedback and interacting with the model helped him “learn from
my mistakes and expose my misconceptions” [30]. Sevastjanova
et al. [103], showed that participants appreciated the on demand
display of explanations as well as the ability to edit them. Morrison
et al. [81] emphasized the usability of Compare interactive features
to support human cognitive processes, finding that “comparison is
much easier than classification for a person”. Khurana et al. [98]
demonstrated qualitatively that linear interactivity was perceived
as useful. Furthermore, Springer and Whittaker [111] highlight the
need for progressive disclosure of model information in order to pre-
vent users from seeing their expectations violated and distrusting
the system when it is correct.

5.3.7 Simulate interactions can strain users’ memory and time. While
interactive explanations of the type Simulate have been evaluated
positively on many fronts, notably usability, usefulness and un-
derstanding, they also seem to take up more time as qualitative
analyses in [16, 38] show. Additionally, after using a simulation-
based interaction feature, a participant in [50] indicated that: “At the
end of the design process, I think my brain is stuck. I do not know
what I have specified before. When I want to add a new attribute, I
need to go back to check if I have specified it already”. This calls
for a careful consideration of the natural tendency of people to lose
track of previous simulations in the design of Simulate interactions.
Consistent with this observation, [94] found that user performance
in recreating an outcome through perturbations of concept-features
degraded as the dimensionality of the concept-features increased.
Future research should therefore design simulation explanations
taking into account the limitations of people’s memory.

5.3.8 Current dialogic explanations lack humanness. In [91], partic-
ipants rated the naturalness of conversational explanations more

harshly than the other measured aspects of the explanations. Also,
in [119], participants reported a similar lack of naturalness for the
questions that were asked by the system to the user. The authors de-
scribe: “our participants felt confused about the questions asked by
the [conversational agent] in terms of the sequence, quantity, and
relevance.” However, in [43] participants indicated they preferred
to be able to “recognize when they were talking to a human or to a
machine”, actually preferring that humanness levels of explanations
remain low. This questions the validity of aiming for more “dialogic”
explanations that replicate a human-like explanation process. We
provide more thoughts on this issue in the following section.

6 DISCUSSION
We discuss below two open issues in interactive XAI. First, in-
teractivity itself needs to be explained to users, adding another
layer of complexity to XAI systems. Second, it is unclear whether
dialogic/human-like explanations should be considered the ideal
form of explanation communication by XAI researchers.

6.1 Interactivity calls for meta explanations
Interactivity itself requires some learning by the user [97]. In addi-
tion to learning about the model, users must learn how to use the
controls of the interface.

Hepenstal et al. [43] observed that participants had many ques-
tions about how to use the interface and control it—“Can I click
on that ?”. With Answer interactions, Tsai et al. [119] also found
that some participants felt confused by the questions asked by
the system. They suggest that it would be helpful to provide addi-
tional explanations answering questions like “why does the system
ask these questions?”, or “how many questions would be asked or
needed?” [119]. These observations align with Sun et al.’s categori-
sation of user questions. One of them is called “Control”, and is
defined as “Questions about options for customizing or specifying
preferences for how the model should work”. Therefore, interactiv-
ity adds a layer of explanation in addition to model explanations.

We can make a parallel with the concept of meta-explanation
introduced in [26]. Dazeley et al. point to a major issue in XAI
research, which is the user’s need to knowwhere explanations come
from in order to be able to trust the model and its explanations. As
the authors put it: “if we cannot trust the agent’s original decision,
how can we trust the agent’s explanation of that decision?”. They
call “meta-explanations” the explanations about the explanations
themselves. Meta-explanations introduce a paradox whereby more
explanations calls for more explanations, leading to unsustainable
complexity. Similarly, explanations on the control of the interface
could lead to cognitive overload and effects such as users ignoring
explanations and AI predictions, as described in [119].

Our corpus highlighted diverging results on whether interac-
tivity has an effect on cognitive load. Our analysis highlighted,
however, the role of individual factors to drive cognitive workload.
There is therefore a need for future research to investigate how
to tackle the meta explanation paradox in the context of interac-
tive XAI, and how to find the right level of explanation for each
user [18, 26].
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6.2 Are dialogic explanations really the grail?
According to Miller [77] and Graaf and Malle [27], people expect
explanations to follow the conceptual framework of a social interac-
tion. One reason for this is that people attribute human traits to XAI
agents and therefore expect them to follow social conventions [27].
Therefore, a good explanation would be provided through a social
conversation. In fact, at least two studies from our corpus provided
quantitative evidence that explanations communicated through Ask
interactions improved perceived usability and understanding.

However, the participants in Hepenstal et al.’s study [43] were
bothered by the humanness of the XAI agent and preferred to have it
made clear that they were not talking to a real person. Instead, they
preferred robot-like explanations with “logical and clear responses”.
Indeed, while explainability should bring trust, anthropomorphism
through human-like conversations can diminish trust by giving
people the feeling of being manipulated. Hepenstal et al. suggest
that different evaluation metrics could be applied to assess conver-
sational XAI, such as understanding and bias mitigation, which are
more representative of explainability’s purpose.

If we take Miller’s [77] depicted ideal of an AI agent’s explana-
tion3, perhaps a more important criteria than the social structure
of the explanation would be the range of questions the explaining
agent is able able to answer. Overall, further theoretical work may
be needed to clarify what “social interaction” means, whether it
refers to its dialogue structure or to the social rules it abides by,
such as Grice’s [40] maxims. Future work could also examine the
extent to which a “social” interaction with an AI agent can resemble
human conversations, or even if this comparison makes sense.

7 LIMITATIONS
One of the main limitations of scoping reviews is that they do not
formally appraise the quality of the included studies [8] through the
means of, for example, the Cochrane Risk of Bias or other quality
assessment tools.While this is compatible with the objectives of this
paper—to identify, map and discuss evidence on empirical results
in interactive XAI—we remind the reader again of this limitation.

Furthermore, although we applied a standardized methodology
to identify articles, it is possible that relevant papers were missed
because they were not published in peer-reviewed conferences
or journals, because they were not present in the databases we
surveyed or because they did not match our keyword search. This
was the case for [106], which was published in a workshop and was
therefore excluded during the eligibility phase, or for [126] which
did not appear in the databases we searched. Indeed, as mentioned
earlier, we chose to focus on HCI-oriented databases (ACM DL and
IEEE Explore) rather purely AI ones, which may have led us to
leave out relevant work in CS-focused venues. Since our interest
is in interactivity and user studies, it seemed reasonable to limit
ourselves to academic venues in HCI. Other work like [63] and [64]
were not included in our study because the authors use the terms
“interpreting” or “explanatory” in their title/abstract as references
to the “explainability” notion. However, we believe that it would
have been difficult to define the verbs interpret or explain and their
conjugations as keywords because of their ubiquity. To remedy
3Miller presents it as a conversation, not necessarily in natural language, where the
user asks a first request and follow-up questions.

the limitation of a keyword search for the interactivity dimension,
we searched for papers presenting an interactive XAI system in
the eligibility phase instead of the identification phase [80]. This
enabled us to include papers presenting interactive XAI solutions
even though they did not expressed or emphasized in the abstract
their contributions to the interactive XAI field.

In addition, we acknowledge that there may be a positive out-
come bias [19] in the results on interactivity because we searched
published articles.We hope that by highlighting areas of uncertainty
where it is unclear whether interactivity has positive or negative
effects, this work will encourage others, including publishers, to
consider all types of outcomes, including neutral or negative.

Then, although steps were taken to ensure consistency in our
coding—including a final review of all the codings by one researcher—
the final matrix may reflect each reviewer’s own way of thinking.

Finally, it is possible that the summary of the papers’ findings in
Section 5.2 may not capture the nuance of each context in which
the results were found. However, it does provide a high-level, qual-
itative view of the results of empirical studies, and that was our
goal.

8 CONCLUSION
This paper presented a review of the literature on interactive ex-
planations evaluated with human users. We provided a qualitative
analysis of 48 papers shedding light on (1) the types of interactivity
techniques that have been used so far in XAI, (2) the context in
which interactive explanations were implemented, (3) the metrics
used to evaluate interactive explanations with human users, and
(4) the effects of interactivity on user satisfaction, understanding,
trust, performance at task and other user-based metrics.

We provided a classification of XAI-specific interactivity tech-
niques which can serve as a basis for explainability system designers
to navigate the interactivity spectrum in XAI.

Our analysis showed that attention has been focused on inter-
activity that allows for input modification, but less attention has
been paid to output perturbations and to more dialogic interac-
tions. Combinations of dialogic interactions with interactions that
allow mutation or selection is an under-explored area. The evalu-
ation metrics we observed provide a wide range of ideas for XAI
researchers to evaluate their systems against what they were de-
signed for. Finally, we found converging results regarding the effect
of interactive explanations on users. The main empirical results
we identified were that interactivity increases perceived usefulness
and the performance of the human+AI team compared to static
explanations, but it does not improve usability. In addition, it in-
creases time spent by users on XAI systems. The empirical studies
gathered in our corpus also demonstrated conflicting results on the
role that interactivity has on over-reliance, cognitive load, learning
and understanding. This highlights grey areas to be addressed in
future empirical research. Finally, we hope that this work will help
future research to share a common vocabulary on interactive XAI.
Also, we hope it will facilitate future systematic reviews to identify
best practices in interactive XAI design, as more empirical research
is conducted in this area.
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Figure 4: The concept matrix [123] resulting from our survey of 48 empirical studies evaluating interactive explainability
systems. Our analysis focused on four dimensions: the context in which the explanations were found, their content, how they
were communicated to users, including the interaction technique used, and the effects they had on users. The last row at the
bottom of the matrix shows the total number of items for each sub-dimension. The design of this concept matrix was inspired
from [10].
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Table 4: Example references of the interactivity categories with corresponding description of the interactive feature.

Level Category Reference Description of the interactive feature

Clarify Fig. 3, Sovrano and Vitali et al. [109] Users can click on the concepts present in an explanation to see definitions. Here, users
could click on “Months since most recent credit inquiry not within the last 7 days” to
see a pop-up window appear with the definition of the concept. The definition itself
includes links towards definitions of other terms, like “inquiry”.

Fig. 1, Anik and Bunt [7] Users see a menu with categories about the AI system “[Data] Collection”, “Demo-
graphics”, “Recommended Usage”, Potential Issues” and “General Information” and
can explore these categories at their pace to learn more about them.

Select Arrange Fig. 1B “Instance view”, DECE by
Cheng et al. [21]

Users can choose the number of counterfactuals, the number of features used in
explanations and the type of constraints used to generate counterfactuals.

Fig. 1, top-left, GAMUT by Hohman
et al. [47]

Users can choose to normalize the axes of the graphs presented as explanations, hide
all histograms in the explanation interface, or hide the dashed zeroline appearing in
the presented graphs.

Filter/focus Fig. 2A “Feature Sidebar”, GAMUT
by Hohman et al. [47]

Users can sort or choose to hide or show the different input features appearing in
feature importance explanations.

Fig. 1, “Controls”, RULEMATRIX by
Ming et al. [78]

Users can filter rule-based explanations by the level of minimal evidence they present
or by the level of fidelity to the original model.

Reconfigure Fig. 1, “Controls”, RULEMATRIX by
Ming et al. [78]

Users can choose the dataset used: “train, test, sample test or sample train”

Fig. 4A “Configuration view”, Ex-
plainExplore by Collaris and van
Wijk [24]

Users can choose the dataset and AI model used through drop-down lists in a control
pane on the left of the interface.

Mutate Compare Fig. 1, TribalGram by Ahn et al. [4] In the different explanations presented in the interface, users can see and compare the
“blue camp” and the “red camp”’ data groups, each represented respectively in blue or
red.’

Fig. 2C “Instance explanation”,
GAMUT by Hohman et al. [47]

The interface presents twowaterfall charts stacked on top of each other, each explaining
the price prediction for two different houses. The waterfall charts show the importance
of various features on the prediction—most important features on the right. The stacked
charts share the same x-axis with those features. The user can then easily compare the
feature importance for each house instance.

Simulate Fig. 3, Ross et al. [94] Users can vary the value of six input concepts that parametrize the shape of an output
image representing a handwritten number using sliders or radio buttons, and see the
effect on the output image in real time.

Fig. 1a, Cheng et al. [22] Users can vary the value of the inputs of a school admission decision-making algorithm.
Quantitative inputs can be changed through sliders (GRE scores, GPA...) and Qualitative
inputs through drop-downs (weak, medium or strong letter of recommendation).

Progress Fig. 4a, Melsión et al. [75] Users can browse through example images. The most “important” image portions for
the algorithm’s prediction (here the gender of the person in the image) are highlighted
in red.

Fig. 1, ChatrEx by Khurana et al.
[55]

Users can navigate through a three-step explanation about the presented system using
next and previous buttons.

Dialogue
with

Answer Fig. 4b, Melsión et al. [75] Users can select what they think is the most important part of an image by clicking
directly on circled areas of the image (in this case, either a surfer, a surfboard or the
beach).

Fig. 3, Guo et al. [42] Users are asked to enter their prediction about the outcome of a Tic-Tac-Toe game
board (either click on “X wins” or “O wins”). Users are also asked how they would like
to change the proposed rule for the AI’s predicted outcome, by picking a cell on the
board game and rule operations (!= or =).

Ask Fig. 4, bottom right, Hepenstal et al.
[43]

Users can ask the criminal investigation system questions like “what do you know
about susan leech”, and the system answers with suggestions like “IDSusan Leech
(Person)” or “Susan Leech (Information Object)”.

Fig. 3, Hernandez-Bocanegra and
Ziegler [44]

Users can chat with a “recommendation explainer” chatbot that explains hotel recom-
mendations, ask questions like “why is hotel julian in a good location” and get answers
in natural language.
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Figure 5: Examples of the interactivity categories through selected screenshots from the corpus. All images are copyrighted to
their authors.
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