Modélisation d'une colonne d'extraction à effet Taylor-Couette.

1

S. Gounand DEN/DM2S/SFME/LTMF CEA Saclay

J. Duhamet DEN/VRH/DRCP/STPI/LGCI CEA Valrhô-Marcoule

- 1. Description du dispositif ;
- 2. Modélisation fluide axisymétrique stationnaire monophasique : obtention des rouleaux de Taylor-Couette ;
- 3. Imposition d'un débit fluide traversant (axial) dans l'écoulement obtenu ;
- 4. Transport d'un colorant par le champ de vitesse obtenu à l'étape précédente ;

5. Perspectives.

Colonne d'extraction liquide-liquide à contre-courant.

- Création et maintien d'une émulsion (chimique, mécanique,...)
- Effets concurrents (taille des gouttes) :
 - augmentation de la surface d'échange : $S/V \propto 1/a$;

- vitesse de Stokes :
$$v = \frac{2g\delta\rho}{9\mu}a^2$$

Description : photo **PSfrag replacements** Phases immiscibles Échange (affinité chimique)

Colonne à effet Taylor-Couette.

Géométrie modélisée.

Modélisation fluide : équations

• Axisymétrique :

$$\frac{\partial}{\partial \theta} = 0$$
 pour les inconnues $\mathbf{v} = (v_r \ v_\theta \ v_z) \ P$

• Navier-Stokes stationnaire :

$$\begin{cases} \nabla \cdot \mathbf{v}^{n+1} = 0\\ (\mathbf{v}^n \cdot \nabla) \, \mathbf{v}^{n+1} = -\frac{\nabla P^{n+1}}{\rho} + \nu \Delta \mathbf{v}^{n+1}\\ \mathbf{v}^{n+1} \big|_{\text{bord}} = \mathbf{v}^0 \big|_{\text{bord}} \end{cases}$$

• Méthode d'éléments finis standard (éléments Q_2/Q_1).

Modélisation fluide : paramètres

• Paramètres géométriques :

Nom	Symbole	Unité	Valeur
Rayon moyen	R	mm	9,25
Intervalle entre les cylindres	a	mm	1,5
Allongement	b/a		8
Hauteur (allongement réel)	H, H/a	<i>mm</i> , —	750, 500
Vitesse de rotation	ω	$tr.min^{-1}$	1000

• Paramètres physiques :

Nom	Symbole	Unité	Valeur
Masse volumique	ρ	$kg.m^{-3}$	1000
Viscosité dynamique	ν	$m^2.s^{-1}$	1.10^{-6}
Nombre de Taylor	$Ta = \frac{\omega^2 a^3 R}{\nu^2}$		$3, 4.10^5$
Taylor critique	Ta_c		1712
Débit volumique	q	$ml.h^{-1}$	0 ou 200

SFME/LTMF

UR UZ U

Écoulement initial (v^0 , P^0) non déstabilisé (Couette).

UR UZ UT

Écoulement déstabilisé (Taylor-Couette) ($||v_r, v_z|| = 0, 17 m.s^{-1}$).

Modélisation fluide : résultats (III)

UR UZ UT

Écoulement de Poiseuille ($||v_z|| = 9, 4.10^{-4} m.s^{-1}$).

UR UZ UT

Écoulement déstabilisé + débit ($||v_r, v_z|| = 0, 17 m.s^{-1}$).

Modélisation fluide : résultats (V)

• Paramètres numériques :

Nom	Unité	Valeur
Nombre d'éléments	-	800
Nombre de d.d.l.	-	11034
Nombre d'itérations	-	260 + 700
Temps CPU par itération	S	2,5

• Paramètres physiques :

Nom	Unité	Valeur
Échelle de vitesse v_r	$m.s^{-1}$	0,15
Échelle de vitesse $v_{ heta}$	$m.s^{-1}$	0,89
Échelle de vitesse v_z	$m.s^{-1}$	0,14
Échelle de pression ΔP	Pa	20
Échelle de vitesse v_z (Poiseuille)	$m.s^{-1}$	1.10^{-3}
Échelle de pression ΔP (Poiseuille)	Pa	4.10^{-2}

Transport : équations

• Axisymétrique :

 $\frac{\partial}{\partial \theta} = 0$ pour l'inconnue c

$$\frac{\partial c}{\partial t} + \boldsymbol{\nabla} \cdot \left(\mathbf{v}_{\mathsf{Taylor-Couette}} c \right) = s$$

• Méthode d'éléments finis espace-temps moindres carrés (éléments Q₂).

SFME/LTMF

Masse de colorant dans la colonne en fonction du nombre d'itérations.

16

Concentration à l'itération 3200.

Transport : résultats (III)

• Paramètres numériques :

Nom	Unité	Valeur
Nombre d'éléments	-	2352
Nombre de d.d.l.	-	28899
Nombre d'itérations	-	6000
Temps CPU par itération	s	0,3

• Paramètres physiques :

Nom	Unité	Valeur
Nombre de cfl	-	0,9
Pas de temps dt	s	$3, 5.10^{-4}$
Temps final	S	2,11

Conclusion

- modélisation stationnaire axisymétrique monophasique d'un écoulement dans une colonne d'extraction
 ;
- méthode précise de transport passif d'un colorant.

Perspectives

- comparaison avec l'expérience ;
- modélisation diphasique ;
- conditions aux limites ;
- stabilité de la méthode de transport.

