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Keywords: 

The first Blechert-type ruthenium complexes containing cyclic(alkyl)(amino)carbene (CAAC) ligands are reported. These catalysts demonstrate remarkable thermal stability in solution and excellent catalytic performances at low catalytic loading (up to 0.005 mol%) in ring-closing metathesis (RCM), macro-RCM, ring-closing enyne metathesis (RCEYM), cross-metathesis (CM), ethenolysis and ring-opening cross metathesis (ROCM). Moreover, up to 95% ee was obtained in asymmetric ring-opening cross metathesis (AROCM) and 57% ee asymmetric cross-metathesis (ACM)

INTRODUCTION

Olefin metathesis represents a highly versatile synthetic tool to build a plethora of valuable building blocks and organic compounds. [START_REF]Handbook of Metathesis[END_REF][START_REF] Grela | Olefin Metathesis-Theory and Practice[END_REF] Thanks to the development of bench stable and well-defined ruthenium-arylidene complexes, this catalytic reaction is intensively used in polymer chemistry [START_REF] Slugovc | Olefin Metathesis: Theory and Practice[END_REF][START_REF] Kovačič | Ring-Opening Metathesis Polymerisation Derived Poly(Dicyclopentadiene) Based Materials[END_REF] and fine chemistry [START_REF]Metathesis in Natural Product Synthesis: Strategies, Substrates, and Catalysts[END_REF] , and has also found applications in the valorisation of biomasses [START_REF] Bruneau | Alkene Metathesis for Transformations of Renewables in Organometallics for Green Catalysis[END_REF] and the depolymerisation of polyethylene. [START_REF] Wang | Chemical Recycling of Polyethylene by Tandem Catalytic Conversion to Propylene[END_REF] Despite these remarkable achievements, the quest for more efficient Ru-complexes remains a very active research topic across academia and industry. [START_REF]Handbook of Metathesis[END_REF][START_REF] Grela | Olefin Metathesis-Theory and Practice[END_REF] A significant breakthrough was accomplished in 2007 when it was reported that the use of cyclic(alkyl)(amino)carbene (CAAC) ligands [START_REF] Lavallo | Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference[END_REF][START_REF] Jazzar | Hydroiminiumation" of Alkenes: Application to the Synthesis of Conjugate Acids of Cyclic Alkyl Amino Carbenes (CAACs)[END_REF][START_REF] Vermersch | Cyclic (Alkyl)(Amino)Carbenes: Synthesis of Iminium Precursors and Structural Properties[END_REF][START_REF] Soleilhavoup | Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise[END_REF][START_REF] Melaimi | Cyclic (Alkyl)(Amino)Carbenes (CAACs): Recent Developments[END_REF][START_REF] Philipp | Radius, U. N-Heterocyclic Carbene and Cyclic (Alkyl)(Amino)Carbene Adducts of Antimony(III)[END_REF][START_REF] Jazzar | Cyclic (Alkyl)-And (Aryl)-(Amino)Carbene Coinage Metal Complexes and Their Applications[END_REF][START_REF] Singh | CAACs as Efficient Ancillary Ligands for the Synthesis of Robust Catalysts[END_REF] could provide very active catalysts for the ethenolysis of vegetable oils (0.0001 mol% Ru-1; TON up to 390.000). [START_REF] Anderson | Synthesis and Reactivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes[END_REF][START_REF] Marx | Cyclic Alkyl Amino Carbene (Caac) Ruthenium Complexes as Remarkably Active Catalysts for Ethenolysis[END_REF] This peculiar behaviour, surpassing state-of-the art N-heterocyclic carbene (NHC) analogues, [START_REF] Ogba | Recent Advances in Ruthenium-Based Olefin Metathesis[END_REF] was shown to result from the improved stability of the corresponding Ru-methylidene intermediate; imparting resilience toward bimolecular decomposition. [START_REF] Nascimento | Origin of the Breakthrough Productivity of Ruthenium-Cyclic Alkyl Amino Carbene Catalysts in Olefin Metathesis[END_REF][START_REF] Nascimento | Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium-Carbene Catalysts[END_REF][START_REF] Occhipinti | The Janus Face of High Trans-Effect Carbenes in Olefin Metathesis: Gateway to Both Productivity and Decomposition[END_REF] Obviously, structural modifications of the CAAC ligand framework was thoroughly investigated which led to a number of new CAAC Ru-complexes (Ru-2-7; Figure 1,A), [START_REF] Gawin | Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis[END_REF][START_REF] Gawin | Cyclic Alkyl Amino Ruthenium Complexes -Efficient Catalysts for Macrocyclization and Acrylonitrile Cross Metathesis[END_REF][START_REF] Nascimento | Integrating Activity with Accessibility in Olefin Metathesis: An Unprecedentedly Reactive Ruthenium-Indenylidene Catalyst[END_REF][START_REF] Samkian | Synthesis and Activity of Six-Membered Cyclic Alkyl Amino Carbene-Ruthenium Olefin Metathesis Catalysts[END_REF][START_REF] Eivgi | Photoactivation of Ruthenium Phosphite Complexes for Olefin Metathesis[END_REF][START_REF] Nagyházi | Catalytic Decomposition of Long-Chain Olefins to Propylene via Isomerization-Metathesis Using Latent Bicyclic (Alkyl)(Amino)Carbene-Ruthenium Olefin Metathesis Catalysts[END_REF][START_REF] Morvan | Cyclic (Alkyl)(Amino)Carbenes (CAACs) in Ruthenium Olefin Metathesis[END_REF] including optically pure congeners Ru*-8 recently developed by our groups. 29- 31 Based on a benchmark reaction (i.e. RCM of diallyldiethylmalonate 1a; DEDAM, see table 1) a map of structural-activity relationship (SAR) allowed to highlight two key features: i) bulky ortho-N-aryl substituents such as 2,6-diisopropylphenyl (DIPP) have a detrimental effect on the catalyst activity; ii) introduction of NO2 on the labile styrenylether ligand improves reaction times. 

A. State of the art CAAC-ruthenium olefin metathesis complexes

B. Blechert-type CAAC-Ru catalysts (this work)

Ru-1 (Bertrand/Grubbs, 2007) [START_REF] Anderson | Synthesis and Reactivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes[END_REF][START_REF] Marx | Cyclic Alkyl Amino Carbene (Caac) Ruthenium Complexes as Remarkably Active Catalysts for Ethenolysis[END_REF] Ru
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Ru-3 (Skowerski, 2017) [START_REF] Gawin | Cyclic Alkyl Amino Ruthenium Complexes -Efficient Catalysts for Macrocyclization and Acrylonitrile Cross Metathesis[END_REF] Ru
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(Bertrand/Jazzar/Mauduit, 2020&2022) [START_REF] Morvan | Optically Pure C1-Symmetric Cyclic(Alkyl)(Amino)Carbene Ruthenium Complexes for Asymmetric Olefin Metathesis[END_REF][START_REF] Morvan | Cyclic(Alkyl)(Amino)Carbene Ruthenium Complexes for Z-Stereoselective (Asymmetric) Olefin Metathesis[END_REF] Ru Thus, CAAC-catalysts featuring a 2,6-diethylphenyl (DEP) N-substituent ( DEP CAAC) and a NO2 activating group were shown to be very effective across a broad range of olefin metathesis. transformations (Ru-2,3,4; TON of 68.000 for RCM of 1a). [START_REF] Gawin | Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis[END_REF][START_REF] Gawin | Cyclic Alkyl Amino Ruthenium Complexes -Efficient Catalysts for Macrocyclization and Acrylonitrile Cross Metathesis[END_REF][START_REF] Nascimento | Integrating Activity with Accessibility in Olefin Metathesis: An Unprecedentedly Reactive Ruthenium-Indenylidene Catalyst[END_REF] Notwithstanding these advancements, a few drawbacks in the preparation of these catalysts deserve to be considered. In marked contrast with bulkier 2,6-diisopropylphenyl Nsubstituted CAAC ligands ( DIPP CAAC) which are readily accessible in good to excellent yield from 1 st generation Hoveyda precursors (70-91%), DEP CAAC appears to be more challenging with yields (when reported) range from 15 to 45%. [START_REF] Morvan | Cyclic (Alkyl)(Amino)Carbenes (CAACs) in Ruthenium Olefin Metathesis[END_REF] This problem extends to nitro-Grela derivatives which are isolated in poor to moderate yields (14 to 50%). [START_REF] Morvan | Cyclic (Alkyl)(Amino)Carbenes (CAACs) in Ruthenium Olefin Metathesis[END_REF] Given importance of CAAC-Ru complexes for the industrial sector, we investigated the preparation of Blechert-type Ru-complexes Ru-9 (Figure 1,B). [START_REF] Wakamatsu | A New Highly Efficient Ruthenium Metathesis Catalyst[END_REF][START_REF] Wakamatsu | A Highly Active and Air-Stable Ruthenium Complex for Olefin Metathesis[END_REF] Herein we disclose a new class of CAAC catalysts readily accessible from the commercially available Grubbs 1 st generation complex GI [START_REF] Schwab | A Series of Well-Defined Metathesis Catalysts-Synthesis of [RuCI,( = CHR')(PR,),] and Its Reactions[END_REF] in good yields (Scheme 1, Eq. 2). These catalysts demonstrate remarkable catalytic activity (as low as 0.001 mol%) towards a wide range of metathesis transformations. Moreover, up to 95% enantioselectivity could be obtained in asymmetric olefin metathesis with only 0.05 mol% of optically pure Ru-9.
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RESULTS AND DISCUSSION

We initiated our study by attempting the preparation of DIPP CAAC Ru-9 complexes starting from the phosphine-based Blechert precursor BI (Scheme 1, Eq. 1). [START_REF] Van Veldhuizen | Chiral Ru-Based Complexes for Asymmetric Olefin Metathesis: Enhancement of Catalyst Activity through Steric and Electronic Modifications[END_REF] Unfortunately, in this case only trace amount of DIPP CAAC Ru-9a was observed (<3%) which we attributed to the relative instability of BI in solution. In contrast, deprotonation of C1a•BF4 with potassium hexamethyldisilazide (KHMDS) in presence of Pyr-GI, [START_REF] Anderson | Synthesis and Reactivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes[END_REF] afforded the expected DIPP CAAC Ru-9a in 45% yield (over two step) on gram-scale. Scheme 1 Synthesis of Blechert-type CAAC Ru-9a-c. a Isolated yield over 2 steps. It is worth mentioning that Pyr-GI is readily accessible from the first-generation GI complex in the presence of pyridine (>90% yield, Scheme 1, Eq. 2). [START_REF]For the Synthesis of Pyr-GI[END_REF] Similarly, DIPP CAAC-Blechert complexes, bearing a spirocyclohexyl (Ru-9b) and methyl/cyclohexyl (Ru-9c) at the quaternary centre were isolated in 34 and 70% yield, respectively. We confirmed the structure of Ru-9a,b,c by X-ray diffraction analysis (Figure 2). [START_REF] Nelson | Synergic Effects between N-Heterocyclic Carbene and Chelating Benzylidene-Ether Ligands toward the Initiation Step of Hoveyda-Grubbs Type Ru Complexes[END_REF]39 Blecherttype NHC-catalysts often lack stability in solution. [START_REF] Nelson | Synergic Effects between N-Heterocyclic Carbene and Chelating Benzylidene-Ether Ligands toward the Initiation Step of Hoveyda-Grubbs Type Ru Complexes[END_REF] As shown in Figure 3, DIPP CAAC-Blechert Ru-9a demonstrated a remarkable stability in presence of air at 80 °C in toluene-d8 (0.1 M), with up to 52% remaining complex after seven days and a complete decomposition over 28 days (see Figure 3 and Supporting Information (SI) for details). Of note is that the SIPr-Blechert analogue BII (vide infra, table 1, entry 8) showed a lower stability with only 80% remaining complex after 3.5 hours and a full decomposition after 3.5 days (see SI for details).

Figure 3 Thermal stability of DIPP CAAC-Blechert Ru-9a (blue) and SIPr-Blechert BII (red) in toluene-d8 (0.1M) at 80 °C. Precatalyst decomposition was monitored by 1 H-NMR spectroscopy with 1,3,5-trimethoxybenzene as internal standard.

Having confirmed the stability of these catalysts, we next investigated their catalytic performances of Blechert-CAAC Ru-9a,b,c in the RCM of DEDAM 1a (Table 1). At 0.1 mol% catalyst loading DIPP CAAC Ru-9b,c showed a poor reactivity (5-10% conv., entries 3,5, after 2h) comparable to that of nitro-Grela DIPP CAAC Ru-3a,b (entries 1-2). [START_REF] Skowerski | Process for Producing Ruthenium Complexes and Intermediates Thereof and Their Use in Olefin Metathesis[END_REF] As expected, higher catalyst concentration led to nearly full conversions (entries 4,6). To our surprise Ru-9a displaying bearing Me/Ph substituents at the quaternary centre showed significantly higher Remaining complex (%)
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reactivity within 2 hours at 0.1 mol%, affording the desired cyclopentene 2a in 97% yield after 2 hours at 0.1 mol% loading, thus surpassing the SIPr-Blechert BII (entry 7 vs 8). More interestingly, Ru-9a remains active at lower catalyst concentrations reaching up to 17.000 TON with 0.005 mol% catalyst loading (entries 9-13). Note that under these conditions a 20-fold higher solvent concentration (2 M) was required to improve the mass transfer (entry 10 vs 11). [START_REF] Gatti | Impact of NHC Ligand Conformation and Solvent Concentration on the Ruthenium-Catalyzed Ring-Closing Metathesis Reaction[END_REF][START_REF] Kuhn | Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring-Closing Metathesis[END_REF] Table 1 Catalytic performances of Blechert-type CAAC Ru-9a-c in ring-closing metathesis of DEDAM 1a and comparison with nitro-Grela congeners Ru-3a,b and SIPr-Blechert BII.

a Determined by 1 H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard (see SI). b Toluene (2 M). c Reaction performed at 40 °C.

Having identified Blechert DIPP CAAC Ru-9a as the most efficient catalyst, we then investigated its performances in various olefin metathesis transformations at 0.1 to 0.5 mol%. In ring-closing metathesis (Scheme 2, a), full conversions and good to excellent yields (86-98%) were obtained for the formation of di-or tri-substituted cyclopentenes 2a,b,d,e. Unfortunately, no reaction was obtained with the more challenging tetrasubstituted cyclopentenes 2c and 2f. To our delight, sevenmembered rings were also formed in good yields (2g,h,i : 71-95%), while cyclic silanes 2j and 2k were obtained in low to moderate yields (17-38%). We also considered ring-closing enyne metathesis (RCEYM), in which DIPP CAAC Ru-9a showed good activity at 0.1-0.5 mol%, affording 4a,b in 93-98% yield respectively (Scheme 2, b). However, lower conversions (26-30%) were observed for products 4c,d despite the use of more drastic conditions. 
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Ru-9a (0.5 mol%) We next considered the ring-opening cross-metathesis (ROCM) of endo-norbornenes 5a,b and exo-norbornenes 7a,b with styrene which afforded the corresponding cis-cyclopentanes 6a,b and trans-cyclopentanes 8a,b in moderate to good yield (41-79%) and a 8:2 E:Z ratio (Scheme 2, c). In contrast, ROCM of endo-5b with allyl acetate gave the expected cis-cyclopentane 6c in 87% yield and a similar 8:2 E:Z ratio. Finally, the ROCM between cyclooctene 9 and cis-1,4-diacetoxy-2-butene 10 furnished the corresponding linear diene 11 with a modest 38% yield (Scheme 2, d). Fortunately, the latter can be improved reaching 84% with 1 mol% catalyst loading. It is worth mentioning that all ROCM transformations required thermal activation (80 °C).

Toluene (0.1 M) 80 °C, 4 h R or cis 6a trans 8a O O O trans 8b N Ph O O cis 6b N Ph O O cis 6c N Ph O O O O O X O O X O O Ru-9a (0.1 mol%) Toluene (0.1 M) 30 °C, 4 h 1a-j 2a-j >99% conv. a (41%) b 8:2 E:Z ratio d >99% conv. a (76%) b 8:2 E:Z ratio d >99% conv. a (78%) b 8:2 E:Z ratio d >99% conv. a (79%) b 8:2 E:Z ratio d >99% conv. a (87%) b 8:2 E:Z ratio d X Y R 1 R 2 X Y R 2 R 1 2a >99% conv. a (97%) b
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Shifting our investigation to cross-metathesis (CM) with various cross-olefin partners (Scheme 3), we found that the reaction between allyl acetate 12 and 1nonene or 1-dodecene led to the expected linear alkenes 13a,b in 43 and 58% isolated yield with a 75:25 and 8:2 E:Z ratio, respectively (Scheme 3). A similar 52% yield and E:Z ratio was observed for product 13c resulting from the CM with homoallyl benzene. Replacing allyl acetate 12 with cis-1,4-diacetoxy-2-butene 10 slightly improved the isolated yields irrespectively of cross-olefin partners (62-75%). Scheme 3 Scope of CM catalyzed by Blechert-CAAC Ru-9a complex. a Isolated yield. b E/Z ratio were monitored by 1 H NMR analysis. c 1 mol% of catalyst was used.

We also the cross-metathesis between the methyl ester of oleic acid 14 and ethylene (also called ethenolysis;). The reaction was performed under 1 bar of ethylene in presence of 0.1-0.0005 mol% of Ru-9a (Table 2). We were delighted to obtain a 97% yield for the expected methyl 1-decenoate 15 and 1-decene 16 after 3 hours at 80 °C in toluene (entry 1). Importantly, despite the use of low pressure of ethylene gas, no trace of self-metathesis products was detected by GC (see SI for details), showcasing once again the remarkable selectivity of CAAC-based Ru catalysts for this transformation. [START_REF] Marx | Cyclic Alkyl Amino Carbene (Caac) Ruthenium Complexes as Remarkably Active Catalysts for Ethenolysis[END_REF] In order to increase the TON, we performed the reaction at lower catalyst loading (0.01 mol%) but a poor 7 % yield was observed (entry 2). a Determined by 1 H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard (see SI). b Reaction performed at 10 bar, 40 °C.

In neat conditions, the reactivity was improved affording 15 and 16 in 36% yield (TON 3600, entry 3). Noteworthy, a large amount of methyl elaidate -the E isomer of the starting material resulting from the reverse cross-metathesis -was also detected (see SI for details). Finally, the best TON (16000) was achieved at 0.0005 mol% (without any detection of methyl elaidate). The use of higher pressure (10 bar) did not lead to any improvement (entry 5 vs 6).

At last, we focused our attention toward macrocyclic ring-closing metathesis (macro-RCM) which is used in the production of macrocyclic odorant molecules frequently used in perfumery for their strong musk fragrance. [START_REF] Williams | The Synthesis of Macrocyclic Musks[END_REF][START_REF] Kraft | Odds and Trends: Recent Developments in the Chemistry of Odorants[END_REF] Table 3 Catalytic performances of Blechert-CAAC Ru-9a in macro-RCM of hex-5-enyl undec-10-enoate 17a furnishing 16-membered Exaltolide precursor 18a.

a Conversions and yields were determined by 1 H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard. b E/Z ratio: 7/3 (determined by GC analysis). c Determined by GC analysis (see SI for details). d Isolated yield after SiO2 purification.

Ru-9a (0. We first investigated the catalytic performance of Blechert DIPP CAAC Ru-9a (0.1 mol%, 5 mM in toluene, Table 3, entry 1) in the cyclisation of hex-5-enyl undec-10-enoate 17a. In this case, the resulting 16-membered macrocycle 18a -a precursor of Exaltolide 45 -was obtained in a E/Z mixture (7/3 ratio) and 87% isolated yield after silica gel purification. Noteworthy, 21b showed an excellent purity (>99%) with no by-products (i.e. ring-contraction resulting from isomerisation of starting material) [START_REF] Trnka | Synthesis and Activity of Ruthenium Alkylidene Complexes Coordinated with Phosphine and N-Heterocyclic Carbene Ligands[END_REF][START_REF] Hong | Decomposition of a Key Intermediate in Ruthenium-Catalyzed Olefin Metathesis Reactions[END_REF][START_REF] Beach | Reactions of Grubbs Catalysts with Excess Methoxide: Formation of Novel Methoxyhydride Complexes[END_REF][START_REF] Dumas | Highly Selective Macrocyclic Ring-Closing Metathesis of Terminal Olefins in Non-Chlorinated Solvents at Low Dilution[END_REF] detected by GC. Interestingly, a similar 87% yield and >99% purity was obtained at lower dilution (10 mM) and catalyst loading (0.05 mol%; entry 2). Attempts to decrease the latter to 0.01 mol% resulted in a significant drop of conversion/yield (55%; entry 3), meanwhile increasing reaction concentration (up to 100 mM) improve the yield significantly (entries 5-6). [START_REF]Some amounts of oligomers (25%) were also formed[END_REF] To extend the scope of mRCM, we also considered a range of macrocyclic lactones and ketones (Scheme 4). Under optimal conditions (5 to 10 mM, 0.5 mol% of Ru-9a, 80 °C, 6 h), we were delighted to observe that the 15-membered lactone 18b could be formed in high 88% NMR yield with an excellent >99% purity and a 4/6 E/Z ratio. Unexpectedly, purification of 18b by chromatography separation proved challenging and resulted in a lower yield than anticipated (63%). Similarly, 17-membered lactone 18c (namely iso-ambrettolide) 51 was also isolated in lower yield (isolated: 46%; NMR: 84%). Scheme 4 Scope of macrocyclic RCM of dienic substrates 17be catalyzed by Blechert-CAAC Ru-9a complex leading to the corresponding macrocyclic 21b-e. a Determined by 1 H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard. b Isolated yields after SiO2 purification. c Determined by GC analysis (see SI for details). d E/Z ratio: 4/6. e E/Z ratio: 8/2. f E/Z ratio: 7/3. g ratio: 7/3.

Here also, no trace of by-products was detected (purity >99%). Using the 17-membered macrocyclic ketone 18d (namely Civetone), [START_REF] Callejo | Fluorinated Musk Fragrances: The CF2Group as a Conformational Bias Influencing the Odour of Civetone and (R)-Muscone[END_REF][53][START_REF] Morvan | Continuous Flow Z-Stereoselective Olefin Metathesis: Development and Applications in the Synthesis of Pheromones and Macrocyclic Odorant Molecules[END_REF] up to 81% NMR yield was obtained (61% isolated yield) while its 18-membered analogue 18e [START_REF] Blomquist | Many-Membered Carbon Rings. XI. Civetone Homologs[END_REF] was formed in lower yield (isolated: 47%; NMR: 65%). Of note, Blechert DIPP CAAC Ru-9a did not afford the 13-membered lactone and 15-membered macrocyclic carbamate under these conditions.

Having recently disclosed the catalytic activity of chiral CAACs (ChiCAACs) in asymmetric olefin metathesis, [START_REF] Morvan | Optically Pure C1-Symmetric Cyclic(Alkyl)(Amino)Carbene Ruthenium Complexes for Asymmetric Olefin Metathesis[END_REF][START_REF] Morvan | Cyclic(Alkyl)(Amino)Carbene Ruthenium Complexes for Z-Stereoselective (Asymmetric) Olefin Metathesis[END_REF][START_REF] Pichon | The Debut of Chiral Cyclic (Alkyl)(Amino)Carbenes (CAACs) in Enantioselective Catalysis[END_REF][START_REF] Stenne | Enantioselective Olefin Metathesis in Olefin Metathesis: Theory and Practice[END_REF] we also considered the enantiopure variant of DIPP CAAC Ru-9a for the same. Both enantiomers were isolated in good yields and excellent enantiomeric purity (up to >99.5 ee%) by preparative HPLC resolution (see SI for details). In the AROCM [START_REF] Van Veldhuizen | Chiral Ru-Based Complexes for Asymmetric Olefin Metathesis: Enhancement of Catalyst Activity through Steric and Electronic Modifications[END_REF][START_REF] Berlin | Highly Active Chiral Ruthenium Catalysts for Asymmetric Cross-and Ring-Opening Cross-Metathesis[END_REF][START_REF] Giudici | Directed Catalytic Asymmetric Olefin Metathesis. Selectivity Control by Enoate and Ynoate Groups in Ru-Catalyzed Asymmetric Ring-Opening/Cross-Metathesis[END_REF][START_REF] Keitz | Ruthenium Olefin Metathesis Catalysts Bearing Carbohydrate-Based N-Heterocyclic Carbenes[END_REF][START_REF] Kannenberg | A Novel Ligand for the Enantioselective Ruthenium-Catalyzed Olefin Metathesis[END_REF][START_REF] Paradiso | Ruthenium Olefin Metathesis Catalysts Featuring Unsymmetrical N-Heterocyclic Carbenes[END_REF] between endonorbornene 5a and styrene (Scheme 5, a), the expected cis-cyclopentane 6a was isolated in 44% yield and an excellent 95% ee using 2 mol% of (R)-(+)-Ru-9a. In contrast, larger catalyst loading (5 mol%), longer reaction time (48h) and higher temperature were required to reach similar nitro-DIPP CAAC (R)-(+)-Ru-1a. To our delight, the chiral Blechert catalyst remained highly performant even at lower catalyst loading (0.5 mol%), affording 6a in 86% ee. More interestingly, (R)-(+)-Ru-9a catalysed the AROCM of exo-norbornene 7b with only 0.05 mol% leading to the corresponding trans-cyclopentane 8b in 51% yield and up to 93% ee (Scheme 5, b). This impressive reactivity and selectivity were also demonstrated in the challenging asymmetric cross-metathesis (ACM) transformation, [START_REF] Hartung | Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes[END_REF] for which the best ee reported so far is <54%. [START_REF] Kraft | Odds and Trends: Recent Developments in the Chemistry of Odorants[END_REF] (R)-(+)-Ru-9a (1 mol%) efficiently catalysed the CM between the prochiral skipped 1,4-diene 19 and allyl acetate 12, affording 20 in 42% yield and up to 57% ee (Scheme 5, c). It is worth mentioning that these results also surpass those of nitro-DIPP CAAC (S)-(+)-Ru-1a both in terms of efficiency and selectivity (5 mol%, 50 % ee). [START_REF] Morvan | Optically Pure C1-Symmetric Cyclic(Alkyl)(Amino)Carbene Ruthenium Complexes for Asymmetric Olefin Metathesis[END_REF] 

CONCLUSIONS

In summary, we have developed the first Blechert-type ruthenium complexes containing a cyclic(alkyl)(amino)carbene ligand. DIPP CAAC Ru-9a featuring a quaternary centre bearing phenyl/methyl substituents proved to be the most robust and efficient catalyst across a wide range of metathesis transformations and in most cases under very low catalyst loadings (ranging from 0.5 to 0.005 mol%). Moderate to good yields were obtained in various RCM, ROCM, CM and ethenolysis reactions. Blechert-CAAC Ru-9a also demonstrated high productivity toward challenging olefin macrocyclization, which delivers valuable odorant molecules with high >99% purity. Used in asymmetric olefin metathesis, chiral (R)-(+)-Ru-9a successfully furnished AROCM and ACM products at low catalyst loadings (from 1 to 0.05 mol%) in 93% and 57% ee, respectively. Future work will focus on the use of Ru-9a in continuous flow conditions [START_REF] Del Vecchio | Challenges Arising from Continuous-Flow Olefin Metathesis[END_REF] as well as in relevant enantioselective metathesis transformations, more specifically toward the highly challenging asymmetric ring-closing enyne metathesis (ARCEYM). [START_REF] Lee | Endo-Selective Enyne Ring-Closing Metathesis Promoted by Stereogenic-at-Mo Monoalkoxide and Monoaryloxide Complexes. Efficient Synthesis of Cyclic Dienes Not Accessible through Reactions with Ru Carbenes[END_REF][START_REF] Zhao | Endo-Selective Enyne Ring-Closing Metathesis Promoted by Stereogenic-at-W Mono-Pyrrolide Complexes[END_REF] ASSOCIATED CONTENT
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Figure 1 (

 1 Figure 1 (A) Previously developed CAAC-Ru complexes. (B) Blechert-type CAAC-Ru complexes (this work).

  as 0.005 mol%) RCM & macro RCM CM & RCEYM 95% ee in AROCM 57% ee in ACM activity

Figure 2

 2 Figure 2 Solid-state structure of complexes Ru-9a,b,c from single crystal X-ray diffraction. Displacement ellipsoids are drawn at 30% probability. Hydrogen atoms have been omitted for clarity.

Scheme 2

 2 Scheme 2 Scope of RCM (a), RCEYM (b) and ROCM (c,d) catalyzed by Blechert-CAAC Ru-9a complex. a Conversions were determined by 1 H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard. b NMR yield. c Reaction performed at 80 °C. d E/Z ratio were monitored by 1 H NMR analysis.

11 [

 11 on 1 mol% (84%) b ] 98% conv. a (38%) b 8:2 E:Z ratio d (0.1-0.5 mol%) Conditions A: CH 2 Cl 2 (0.1 M) 30 or 50 °C, 2 h Conditions B: toluene (0.1 M) 80 °C, 4 h

  5 mol% (conditions A) 98% conv. a (93%) b 99% conv. a (98%) b on 0.5 mol% (conditions B) 26% conv. a 30% conv. a N Ts 2g c >99% conv. a (95%) b on 0.1 mol% (conditions A)

  E:Z ratio b 70% a 8:2 E:Z ratio b 62% a (75%) a 8:2 E:Z ratio b

Scheme 5

 5 Scheme 5 Asymmetric olefin metathesis catalyzed by optically pure Blechert-CAAC (R)-(+)-Ru-9a complex. a Determined by 1 H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard. b Isolated yields after SiO2 purification. c Determined by GC-MS analysis. d Determined by HPLC or GC analysis on chiral phase (see ESI for details).

  18d (Civetone) 93% conv. a 81% yield a,f (61%) b Selectivity >99% c 18e (Civetone analog) 93% conv. a 65% yield a,g (47%) b Selectivity >99% c a (44%) b 85:15 E:Z ratio c 95% ee (E) d )-(+)-Ru-1a on 5 mol%, 35 °C, 2 days (ref. 29) @ 2 mol%, rt, 18 h 70% conv. a (x%) b 85:15 E:Z ratio c 86% ee (E) d @ 0.5 mol%, 50 °C, 6 h >99% conv. (58%) 85:15 E:Z ratio 92% ee (E) >99% conv. a (51%) b 80:20 E:Z ratio c 93% ee (E) d E:Z ratio c 57% ee (E) d with (S)-(+)-Ru-1a on 5 mol%, 50 °C, 6 h (ref. 29) 42% isolated yield 90:10 E:Z ratio 50% ee (E)

Table 2

 2 Low-pressure ethenolysis of methyloleate 14 catalyzed by Blechert-CAAC Ru-9a complex.
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