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Abstract

Providing tools to understand the physical mechanisms governing magnetic proper-

ties in transition metal-based compounds is still of great interest. Here, the magnetic

exchange coupling in a series of heterodinuclear complexes is investigated by means of

the decomposition method. This work presents the first application of the decomposition

method to systems where magnetic centres may bear more than one unpaired electron.

By decomposing the coupling into three physical contributions (direct exchange, kinetic

exchange, and spin polarisation), we provide numerical arguments to confirm or infirm

the rationalisation allowed by the conceptual analysis of the magnetic d orbitals. We

also take advantage of the recently proposed generalisation of the method [David et

al., J. Chem. Theory Comput., 2023, 19, 157] to get more insights into the underlying

mechanisms by disentangling the coupling between centres into its electron-electron

interactions.
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1 Introduction

Magnetic exchange coupling J is a fundamental property resulting from the interaction be-

tween at least two unpaired electrons localised on different magnetic centres. Favouring the

parallel (ferromagnetic coupling) or antiparallel (antiferromagnetic coupling) alignment of

electrons, it may play a critical role in the design of molecules with predefined magnetic

properties.1 However, magnetic interactions are often very complicated to rationalise and

in this context, theoretical and computational chemistry have provided essential insights in

proposing either numerically accurate determination or conceptual interpretation of prop-

erties.2,3 In theoretical chemistry, the determination of J is mostly based on the energy

difference between the high spin (HS) state and a lower spin state. Hence, a proper and

consistent description of both states is fundamental.

Theoretical treatment of magnetic systems requires highly sophisticated approaches in

order to properly describe the multi-configurational character of the wave-function.2 In this

context, wave-function-based methods are the reference approaches where the static cor-

relation is taken into account mostly with CASSCF-type of calculations.4,5 Moreover, the

dynamical correlation effects may be critical too, being more often accounted on-top of a

CASSCF calculation through perturbation theory (CASPT26–8 or NEVPT2) or Configura-

tion Interaction9 (CI). For computing magnetic exchange couplings, this last strategy pro-

vided the most adapted strategy with the Difference Dedicated CI method.10 These methods

provide very accurate evaluations of small vertical energy differences as J . They may also be

greatly instructive thanks to the effective Hamiltonian theory and the quasi-degenerate per-

turbation theory,11–14 allowing to extract information from these complicated calculations

and wave-functions.3 However, in addition to certain expertise required to perform these

calculations, the computational cost of wave-function-based methods is most of the time

prohibitive for real life applications.

On the contrary, Kohn-Sham density functional theory15,16 (KS-DFT) has probably be-

come the most widely used approach in quantum chemistry by dint of its ability to describe
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correlation effects at the mean-field level. Despite this success, KS-DFT is based on the

description through one Slater determinant and fails to properly describe magnetic systems.

Indeed, open-shell low-spin states must be described by several configurations to properly

satisfy the spin and spatial symmetry requirements of the wave-function. Hence, whilst

the former may fairly be described in KS-DFT, the latter usually resorts to the use of a

broken symmetry (BS) determinant, where the low spin state is approximated by only one

configuration.17,18 The BS determinant being not an eigenfunction of Ŝ2, i.e. a pure spin

state, the energy difference between both determinants must be spin decontaminated and in

this framework, the use of the Yamaguchi formula is certainly the most common spin de-

contamination scheme.17–26 Other approaches have been proposed in DFT to overcome the

use of a BS determinant such as based on the spin-flip,27–32 non-collinear,33,34 fractionally-

occupied35–38 and multireference approaches39–41 or constrained DFT..42,43 Despite this, the

BS strategy has been widely used to compute magnetic exchange coupling over the last

decades, providing a valuable semi-quantitative evaluation of J in various compounds.2,44,45

From the work of de Loth et al.46 and Calzado et al.11–13 using the quasi-degenerate

perturbation theory, the magnetic exchange coupling may be rationalised as the competition

between several physical contributions; the reader should refer to Ref. 11 for a deeper discus-

sion in the wave-function theory framework. Among them, the three main competing contri-

butions are i) the direct exchange between both magnetic centres, ii) the anti-ferromagnetic

kinetic exchange contribution analogue to the Anderson superexchange contribution and iii)

the spin polarisation contribution, caused by the differential response of the non-magnetic

orbitals to the different fields created by the unpaired electrons in the HS and low spin

states.2,11 Whilst BS KS-DFT was supposed to provide only a numerical evaluation of J ,

Ferré et al. proposed the decomposition scheme based on selective relaxations of the orbitals

involved in the different mechanisms to extract these contributions.47,48 Initially developed

as a rationalisation tool, this method allowed getting insights into various situations such

as investigating J in dinuclear copper complexes,49 parametrising model Hamiltonians of
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a quantum spin liquid50 or analysing the symmetry breaking in disjoint diradicals.51 More

recently, some of the present authors took advantage of the decomposition scheme to pro-

pose a new paradigm to compute the magnetic exchange coupling in two magnetic centres

systems,52 overcoming some pathological consequences from the use of the traditional spin-

decontamination technique.53 Indeed, evaluating J by taking the sum of the three properly

extracted and spin-decontaminated contributions provides a more consistent determination

than through the Yamaguchi formula where the non-adapted treatment of the spin polarisa-

tion effects may result in strong over- or underestimation of couplings.52,54 This strategy has

very recently been generalised to any number of magnetic centres. It offers a new affordable

route to compute properly spin-decontaminated magnetic exchange couplings in systems fea-

turing more than two magnetic centres, a situation where the spin contamination is almost

all the time neglected.55 However, to date, the decomposition scheme has only been limited

to couplings involving one unpaired electron per magnetic centre.

This work presents the extension and first applications of the decomposition scheme to

dinuclear systems featuring more than one electron per magnetic centre. To stress the method

out, its application focuses on a series of heterodinuclear Cu(II)-M complexes (with M =

Cr(III), Mn(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II)), keeping a Cu(II) magnetic centre

with only one unpaired electron.56 This paper is organised as follows. Section 2 presents the

extraction of the different contributions in the context of two magnetic centres, of which one

of them bears several unpaired electrons. It follows the description of compounds studied

in section 3 and the computational details in section 4. Finally, section 5 discusses the

decomposition of the magnetic exchange coupling of the 8 systems in line with the orbital

analysis.
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2 General decomposition of J in systems with two mag-

netic centres

The magnetic exchange interaction between two magnetic centres A and B is usually de-

scribed by the Heisenberg-Dirac-van Vleck Hamiltonian,

ĤHDvV = −2JŜA · ŜB (1)

where J expresses the magnitude of the coupling between both magnetic centres with which

the local spin operators ŜA and ŜB are associated. In the context of the present work, the

magnetic centres may bear several unpaired electrons and are considered as local high spin

states according to the HDvV Hamiltonian, i.e. the spin of all unpaired electrons on a site

are parallelly aligned.

Let us take the example of a system featuring two magnetic centres, A and B, bearing nA

and 1 unpaired electrons, respectively. The decomposition of the magnetic exchange coupling

starts with the computation of the high spin S = (nA+1)/2 state in the restricted open-shell

formalism (RO). Once the nA + 1 singly occupied molecular orbitals (MOs) localised, this

determinant may be expressed as,

ΦHS,RO = ΦAB,RO = |
nc∏
i

īi

nA∏
α

aαb| (2)

with i the nc core (non-magnetic) doubly occupied orbitals, aα the nA magnetic orbitals

associated to the centre A and b the magnetic orbital associated to the centre B. Flipping

the spin of all electrons of one magnetic centre, without optimising any orbital, allows one

to generate a first BS determinant,

ΦBS,NO = ΦAB̄,NO = |
nc∏
i

īi

nA∏
α

aαb̄| (3)
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where NO stands for non-optimised. Using the energies of these two first determinants in

addition to the Yamaguchi formula, one may extract the direct exchange contribution as,

J0 =
E[ΦAB̄,NO]− E[ΦAB,RO]

〈Ŝ2〉ΦAB,RO − 〈Ŝ2〉ΦAB̄,NO

(4)

It may be worth noting that the spin decontamination factor has here the same effect as S

in the spin pure energy difference derived from Eq. (1),

J =
E(S − 1)− E(S)

2S
(5)

with S the spin quantum number of the HS state.

The second step consists in extracting the kinetic exchange contribution by relaxing the

magnetic orbitals obtained at the HS,RO stage. This is done through a selective relax-

ation of these involved orbitals while keeping the core orbitals frozen, resulting in a new BS

determinant such as,

ΦA′B̄′,FC = |
nc∏
i

īi

nA∏
α

a′αb̄
′| (6)

where FC stands for frozen core and the prime symbolises the relaxed orbitals. Using the

energy and the 〈Ŝ2〉 of this determinant in addition to the previous results, one may evaluate

the kinetic exchange contribution as,

∆JKE =
E[ΦA′B̄′,FC]− E[ΦAB,RO]

〈Ŝ2〉ΦAB,RO − 〈Ŝ2〉ΦA′B̄′,FC

− J0 (7)

Finally, the last contribution, corresponding to the spin polarisation effects, is obtained

by relaxing the core orbitals of both HS,RO and BS,NO determinants while keeping their

magnetic orbitals frozen. It results in two new determinants,

ΦAB,FM = |
nc∏
i

i′̄i′
nA∏
α

aαb| (8)
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for the HS and,

ΦAB̄,FM = |
nc∏
i

i′̄i′
nA∏
α

aαb̄| (9)

for the BS, where FM stands for frozen magnetic orbitals, the contribution may be then

extracted as,

∆JSP =
E[ΦAB̄,FM]− E[ΦAB,FM]

〈Ŝ2〉ΦAB,RO − 〈Ŝ2〉ΦAB̄,NO

− J0 (10)

The overall magnetic exchange coupling may be evaluated through the recomposition

method by taking the sum of these three contributions as52,55

JΣ = J0 + ∆JKE + ∆JSP. (11)

3 Molecular models

The presence of several unpaired electrons per magnetic centre may result in more subtle

magnetic interactions than the magnetic exchange coupling, such as the biquadratic exchange

occurring between two S = 1 magnetic centres.2 To restrict the present work to the study of

J only, we consider a series of heteronuclear Cu(II)-M complexes with M = Cr(III), Mn(III),

Mn(II), Fe(III), Co(II), Ni(II) and Cu(II), and labelled (1), (2), (3), (4)/(4a), (5a), (7a)

and (8), respectively, according to Ref 56 and presented in Table 1. All structures consist in

a Cu(II) centre encapsulated in a 3,9-dimethyl-4,8-diazaundeca-3,8-diene-2,10-dione dioxime

(Dopn) oximato-bridged to the M centre, capped in a tridentate cyclic amine 1,4,7-trimetyl-

1,4,7-triazacyclononane (L). Furthermore, (2), (3), (4a), (5a) and (7a) present another

bridging ligand with a carboxylato group. Only the crystal and molecular structures of (1)

and (2), referred to as HEWMAX and HEWMEB in the Cambridge Structural Database57

(CSD), respectively, have been established by X-ray diffraction. Hence, after having validated

the relevance of the optimised geometries with (1) and (2), the optimised structures of all

compounds have been used and are presented in Fig. 1.

All couplings of the present series of complexes have been experimentally determined
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Figure 1: Optimised molecular structure of all Cu(II)-M complexes studied with (1), (2),
(3), (4) from the left to the right of the first row and (4a), (5a), (7a) and (8) from the left to
the right of the second row. Brown = copper, blue slate = chromium, purple = manganese,
bronze = iron, pink slate = cobalt, dark green = Ni, blue = nitrogen, red = oxygen, grey =
carbon, white = hydrogen, green = chlorine.

through magnetic susceptibility measurements and are presented in Table 1. They go from

a weak ferromagnetic coupling for (1) at +19 cm to a strongly antiferromagnetic one at -298

cm−1 for (8), covering a large scope of different couplings. These values may be readily ratio-

nalised through orbital analysis56 and this set of molecules offers then a great opportunity to

stress the method out on some well-known examples whilst providing some numerical trend

to this rationalisation.

Finally, it may be worth noting that computing the coupling of (1) and (2) has been

used several times to test KS-DFT based methods.42,43,58–60

Table 1: Formula, electronic configuration of the M centre and experimental magnetic ex-
change coupling in cm−1 of the M-Cu(II) complexes.

Complex M Conf. Jexp
(1) [(Dopn)CuII(OH2)CrIII(OCH3)L]− CrIII d3 +19
(2) [(Dopn)CuII(µ-OOCH3)MnIIIL]2− MnIII d4 +54
(3) [(Dopn)CuII(µ-OOCH3)MnIIL]− MnII d5 -41
(4) [(Dopn)CuII(OH2)FeIII(Cl)L]− FeIII d5 -39
(4a) [(Dopn)CuII(µ-OOCH3)FeIIIL]2− FeIII d5 -45
(5a) [(Dopn)CuII(µ-OOCH3)CoIIL]− CoII d7 -54
(7a) [(Dopn)CuII(µ-OOCH3)NiIIL]− NiII d8 -99
(8) [(Dopn)CuII(OH2)CuII(OH2)L]2− CuII d9 -298
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4 Computational details

Among the eight studied complexes, only the structure of (1) and (2) have been experi-

mentally determined. The first part of this work consists in comparing the experimental

crystallographic structure, where the hydrogen atoms have been optimised, with the fully

optimised (1) and (2) structures. Once the relevance of the all-atom optimised geometries is

validated for (1) and (2), the other compounds has been optimised and used throughout this

work. All optimisations have been performed with Orca61 using the B3LYP functional62–65

and the def2-SVP basis set for all atoms except the transition metal ones, of which the

def2-QZVPP66 basis set have been employed.

The decomposition and computation of magnetic exchange couplings have been carried

out using the PBE0 functional67–69 with 30% of Hartree-Fock exchange whilst the same

combination of basis sets used for the geometry optimisations has been employed. The

amount of HF exchange is a key quantity when transition metal-based compounds are studied

and a balance of 30 to 35% has been several times advised.70,71 In this regard, PBE0 being

only built with two HF and GGA exchange functionals provides an unambiguous definition of

this mixing; for instance, compared to the very popular three parameters B3LYP functional

(where LDA exchange is also considered). The selective relaxation of the orbitals has been

done using the LSCF method72 present in Orca since version 4.2.0.61 All molecular structures

have been visualised using Jmol.73 Supplementary information gives all structures used in

this work and the details of all calculations (energies and expectation values of Ŝ2).

Table 2 presents the comparison between the experimentally and theoretically determined

magnetic exchange couplings as well as a comparison of the structural parameters for (1)

and (2) using the crystallographic structure and the fully optimised geometry. The couplings

of both compounds (1) and (2) have been experimentally determined as ferromagnetic at 19

and 54 cm−1, respectively.56 Using the crystallographic structure, the DFT determination

using the Yamguchi formula correctly represents the sign and the magnitude of the coupling

of both (1) and (2) compounds, with a very slight underestimation (JYamaguchi = 11 cm−1)
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Table 2: Experimental J value (Jexp) and J from the usual use of the Yamaguchi formula
(JYamaguchi) in cm−1 and details of the structural parameters (∠N-Cu-N (◦), ∠O-M-O (◦),
dCu-M (Å) and θCu-N-O-M (◦)) of the X-ray and optimised geometries for (1) et (2).

(1) (2)
Cu(II)-Cr(III) Cu(II)-Mn(III)

d9 − d3 d9 − d4

X-ray opt X-ray opt
Jexp 19 54
JYamaguchi 11 23 54 94
∠N-Cu-N (◦) 97.1 100.0 98.2 96.4
∠O-M-O (◦) 100.9 95.0 97.1 95.7
dCu-M (Å) 3.86 3.77 3.54 3.57
θCu-N-O-M (◦) -32.2 -39.4 26.8 20.3

and a good agreement (JYamaguchi = 54 cm−1), respectively. The computation of J from

the fully optimised structure yields stronger couplings with a slight overestimation for (1)

with JYamaguchi = 23 cm−1 and a larger difference for (2) with JYamaguchi = 94 cm−1. These

differences in the computed values of J may readily be related to the changes in the structural

parameters in the geometry optimisation. Indeed, even small changes of the ligand-metal-

ligand angles or the metal-metal distances may have a relative strong impact on J and these

dependances of J on the structure have been highlighted at the early stage of the molecular

magnetism.74 Nevertheless, the computation of J on the optimised structures are consistent

and ensure the relevance of their use throughout this work.

5 Results and discussions

Table 3 presents the experimental determination and both JYamaguchi and JΣ theoretical

evaluations of J as well as the decomposition for all heteronuclear compounds. First of all,

both DFT evaluations provide very close results whilst they agree with the experimental

values for the whole series.
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Table 3: Experimental J value (Jexp) and J from the usual use of the Yamaguchi formula
(JYamaguchi), recomposition (JΣ) and decomposition (J0, ∆JKE and ∆JSP) obtained for all
compounds in their optimised geometries in cm−1.

(1) (2) (3) (4) (4a) (5a) (7a) (8)
Cu(II)-M Cr(III) Mn(III) Mn(II) Fe(III) Fe(III) Co(II) Ni(II) Cu(II)

d3 d4 d5 d5 d5 d7 d8 d9

Jexp 19 54 -41 -39 -45 -54 -99 -298
JYamaguchi 23 94 -37 -29 -48 -60 -93 -275
JΣ 28 121 -31 -23 -41 -52 -83 -240
J0 26 63 16 39 35 27 45 131
∆JKE -1 -2 -45 -55 -77 -79 -131 -388
∆JSP 2 60 -2 -7 1 -1 3 18

5.1 Decomposition in the (5a), (7a) and (8) complexes

Let us now focus on the decomposition by considering the simplest case of the Cu(II)-

Cu(II(II)) compound (8). Both copper atoms are coordinated in a square pyramidal ar-

rangement, yielding two singly occupied dx2−y2-like orbitals of which the lobes point towards

the ligands as presented in Fig. 2. As expected and already discussed by Birkelbach et al.,56

this situation results in an important direct exchange contribution and a stronger kinetic

exchange contribution through a σ exchange pathway. This is numerically confirmed by the

decomposition where the ferromagnetic J0 is equal to 131 cm−1 and ∆JKE is almost three

times larger at -388 cm−1, resulting in an overall strong antiferromagnetic coupling. As

expected for couplings between transition metals, the spin polarisation contribution is here

negligible compared to the magnitude of the other terms. Taking now a step to the left in

the periodic table, compound (7a) corresponds to a situation where M bears two unpaired

Figure 2: Localised magnetic orbitals obtained from the ΦHS,RO determinant for (8). Isovalue
= 0.05 a.u..
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electrons occupying a dz2 and dx2−y2-like orbitals due to the nearly octahedral environment

of the Ni(II) ion (Fig. 3). This new interaction between the dx2−y2 orbital of the Cu(II)

and the dz2 orbital of the Ni(II) mainly results in a ferromagnetic contribution due to the

orientation of the latter. However, the drastic reduction in the magnitude of the coupling

between (8) and (7a), going experimentally from -298 to -99 cm−1, respectively, cannot be

attributed to this additional ferromagnetic contribution only. Indeed, the decomposition

shows an important decrease in the strength of both J0 and ∆JKE contributions, whilst the

latter is still dominating. Similar conclusions may be drawn by looking at the Cu(II)-Co(II)

complex (5a). Indeed, the d7 configuration corresponds to 3 unpaired electrons where an

additional t2g-like orbital is occupied as shown in Fig. 4. This new interaction with the

dx2−y2 orbital of the Cu(II) does not provide a new pathway for the kinetic exchange but

should correspond to a new ferromagnetic J0 contribution. Hence, it results in an even

weaker antiferromagnetic coupling experimentally evaluated at -54 cm−1 and as for (7a), the

strength of all contributions is smaller with a dominating ∆JKE at -79 cm−1 and J0 at 27

cm−1.

Figure 3: Localised magnetic orbitals obtained from the ΦHS,RO determinant for (7a). Iso-
value = 0.05 a.u..

Figure 4: Localised magnetic orbitals obtained from the ΦHS,RO determinant for (5a). Iso-
value = 0.05 a.u..
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Let us now take the decomposition scheme a step further to get more insights into the

couplings of the (5a), (7a) and (8) compounds and to investigate the effect of the presence of

more unpaired electrons. Some of the present authors recently generalised the decomposition

scheme to the context of systems featuring several couplings with one unpaired electron per

magnetic centre.55 We use this strategy here to provide a thinner description of the coupling

in extracting the individual electron-electron interactions, considering each magnetic orbital

as a site. This allows us to decompose these different electron-electron interactions into their

direct and kinetic exchange contributions presented in Table 4.

Let us start with the first part of Table 4 by considering the J0 contribution from the

interaction between the dx2−y2 orbital of the Cu(II) and the different singly occupied magnetic

orbitals of the M centre in (5a), (7a) and (8), their sum and the overall J0; which differs

from the sum by the application of the spin decontamination factor. For compound (8) the

M centre only bears one unpaired and the dx2−y2-dx2−y2 interaction obviously concentrates

all the interaction with a direct exchange contribution at 131 cm−1. Going now to (7a), the

direct exchange contribution coming from the dx2−y2-dx2−y2 interaction drastically decreases

with strength at 75 cm−1 compared to (8). The new interaction occurring with the singly

occupied dz2 orbital on the Ni(II) centre yields a weak direct exchange contribution at 15

cm−1. Both results in an overall sum much weaker than for (8) at 90 cm−1, whilst the

direct exchange contribution to the coupling is finally 45 cm−1. In (5a), the contribution

coming from the interaction between the dx2−y2 orbitals and between the dx2−y2 and the dz2

orbitals are of the same magnitude but slightly smaller, at 62 and 12 cm−1, respectively.

The dx2−y2-t2g interaction provides a very weak contribution at 7 cm−1. Finally, the sum is

of the same order of magnitude as for (7a) at 81 cm−1 but results in a small direct exchange

contribution at 27 cm−1.

The right part of Table 4 shows the contribution to the kinetic exchange of the inter-

actions between the dx2−y2 orbital of the Cu(II) and the different singly occupied magnetic

orbitals of the M centre in (5a), (7a) and (8), their sum and the overall ∆JKE. As for the
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Table 4: Individual contribution from each dCu-dM interaction, their sum and the final
contribution to the magnetic exchange coupling for the direct and kinetic exchange terms of
(5a), (7a) and (8) in cm−1. The sum and the final contribution to the coupling differ by the
application of the spin decontamination factor in the latter.

(5a) (7a) (8) (5a) (7a) (8)
dCu dM Co(II) Ni(II) Cu(II) Co(II) Ni(II) Cu(II)

dx2−y2

dx2−y2

Jd-d
0

62 75 131
−2t2/U

-239 -263 -395
dz2 12 15 0 None
t2g 7 None∑

Jd-d
0 81 90 131

∑
−2t2/U -239 -263 -395

J0 27 45 131 ∆JKE -79 -131 -388

direct exchange, the last two differ by the application of the spin decontamination factor. In

addition, while ∆JKE is calculated from Eq (7), the sum comes from the use of the Hubbard

Hamiltonian parameters t and U and both evaluations may slightly differ.52 This explains

the tiny difference for (8) between
∑
−2t2/U = −395 cm−1 and ∆JKE = −388 cm−1. For

the complex (7a), there is a critical decrease in the magnitude of the kinetic exchange con-

tribution coming from the interaction between the dx2−y2 orbitals, with a contribution 1.5

times smaller at -263 cm−1. Furthermore, the interaction between the electron occupying

the dx2−y2 of the Cu(II) and the dz2 of the Ni(II) does not provide any contribution and is

labelled as "None" since absolutely no relaxation effects occur. The final kinetic exchange

contribution for (7a) is equal to -131 cm−1 and entirely comes from the dx2−y2-dx2−y2 inter-

action. Finally, for the complex (5a), the observations are in line with the remarks drawn for

the direct exchange. The dx2−y2-dx2−y2 interaction contributes to the kinetic exchange with

a magnitude similar to (7a) at -239 cm−1. For the dx2−y2-dz2 interaction, tiny relaxations

occur but yield negligible contribution, below the cm−1, whilst nothing happens between the

dx2−y2-t2g orbitals. Finally, the kinetic exchange entirely comes from the interaction between

the dx2−y2 orbitals and results in a kinetic exchange contribution to the overall coupling at

-79 cm−1.
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5.2 Decomposition in the (3), (4) and (4a) complexes

The series of hetereodinuclear compounds is constituted of three complexes with a d5 M

ion, (4) and (4a) featuring Fe(III) ions and (3) an Mn(II) ion. All of them present rather

similar couplings experimentally at -41, -39 and -45 cm−1 for (3), (4) and (4a), respectively.

However, the difference between the couplings of the three compounds is more marked the-

oretically, with JΣ at -31, -23 and -41 cm−1 for (3), (4) and (4a), respectively. Comparing

the Fe(III) complexes (4) and (4a), both couplings present similar direct exchange contribu-

tions at 39 and 35 cm−1, respectively. Hence, the difference in the overall couplings results

from different ∆JKE, at -55 cm−1 for (4) and -77 cm−1 for (4a). Both compounds differ in

the presence of an additional carboxylato bridging ligand between both metal ions in (4a).

In addition to a possible new pathway for the kinetic exchange, it induces strong structural

changes such as the dihedral θCu-N-O-M angle which is equal to 40 ◦ in (4) and 20 ◦ in (4a). The

last compound of the d5 series features an Mn(II) metal centre, with a coupling of strength

between both Fe(III) complexes at -31 cm−1 for JΣ. However, this compound presents a

different decomposition. Indeed, in complex (3) a weaker direct exchange contribution at

16 cm−1 occurs, which can be related to the shape of the d orbitals. Shown Fig. 5, the

dx2−y2-like orbital of the Mn(II) centre of (3) appears less diffused than the same orbital on

the Fe(III) centre in (4a) and would result in a weaker J0 contribution. In line with J0, the

kinetic exchange contribution is smaller than in (4) or (4a), but the competition between

both contributions yields a coupling of the same magnitude.

5.3 Decomposition in the (1) and (2) complexes

Finally, the discussion ends with the two last compounds (1) and (2), the only complexes of

the series exhibiting a ferromagnetic coupling. Indeed, according to the decomposition the

kinetic exchange contribution in both compounds is almost null whilst the J0 contribution

is important (Table 3). This coincides with the d3 and d4 configurations of the M ion in

(1) and (2), respectively: since the dx2−y2-like of the M centre is empty, no kinetic exchange
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Figure 5: dx2−y2-like localised magnetic orbital of the M centre obtained from the ΦHS,RO

determinant for the complexes (3) (M=Mn(II), left) and (4a) (M=Fe(III), right). Isovalue
= 0.05 a.u..

mechanism may occur. However, whilst compound (1) shows a rather expected coupling and

decomposition according to the previous discussions, compound (2) is strongly ferromagnetic

due to both strong ferromagnetic J0 and ∆JSP.

Whilst according to an orbital analysis, complex (2) is well expected to exhibit a fer-

romagnetic coupling, the decomposition scheme sheds light on a different story. Indeed, in

addition to a significantly strong direct exchange contribution at 63 cm−1, the complex ex-

hibits a strong ferromagnetic spin polarisation contribution at 60 cm−1 whilst this quantity

is negligible for all other compounds of the series. Furthermore, both JYamaguchi and JΣ

evaluations show a rather large discrepancy for (2) compared to all other compounds.

The strong direct exchange contribution may be readily explained by plotting the dx2−y2-

like orbitals on the Cu(II) centre coming from the localisation of the SOMOs of the ΦHS,RO

determinant. Fig. 6 shows these orbitals for complexes (1), (2) and (3). Whilst for (1)

and (3) the orbitals look very well localised on the copper atom, this orbital exhibits a

Figure 6: dx2−y2-like localised magnetic orbital of the Cu centre obtained from the ΦHS,RO

determinant for complexes (1) (M=Cr(III), top left), (2) (M=Mn(III), top right) and (3)
(M=Mn(II), bottom). Isovalue = 0.05 a.u..
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non-negligible delocalisation tail over the Mn centre for (2). Hence, one may easily think

that this spreading over the other centre would result in a greater exchange term between

this orbital and the orbitals localised on the Mn centre. This explains the extravagant spin

polarisation contribution since this contribution directly results from the spin distribution

of the magnetic electrons. As a reminder, the spin polarisation contribution results from the

differential response of the core orbitals due to the different fields created by the unpaired

electrons in the HS and BS situation. Let us take now the example of the BS determinant

with a β electron populating the dx2−y2 orbital of the Cu(II) ion. It may readily be thought

that the delocalisation tail of this β electron over an α spin centre will reduce the spin

density (ρα(r)− ρβ(r)) on this site. On a contrary, it will increase this spin density for the

HS state and one can easily imagine why this situation results in a large spin polarisation

contribution.

This delocalisation tail gives us a beginning of explanation to the discrepancy between

JYamaguchi and JΣ as well. Indeed, whilst in the HS the electron on the Cu can slightly move

to the empty Mn orbital, this situation would not be favourable in the BS determinant and

one may imagine that a fully optimised, i.e. unrestricted, calculation would lead to a reor-

ganisation of the electronic distribution. In the decomposition, one fixes the first situation by

using the orbitals of the HS.RO determinant as a common description which results in exag-

gerated J0 and ∆JSP contributions. However, the decomposition scheme relies on the HDvV

Hamiltonian where one considers well-localised spin centres. Complex (2) slightly deviates

from this model and, whilst fully optimised calculations can still deal with the situation, the

decomposition is more sensitive to this deviation. This opens the way to future development

for the treatment of mixed valence compounds. However, it is worth mentioning that even

though the decomposition overestimates the J0 and ∆JSP contributions, these terms are not

an artefact of the decomposition. Indeed, both HS and BS unrestricted determinants present

very large spin contamination of 0.097 and 0.084, respectively, translating the strong effects

of spin polarisation (see SI).
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6 Conclusion

In this work, we have presented the extension and the first application of the decomposition

scheme of magnetic exchange coupling to systems featuring two magnetic centres, of which

one may bear several unpaired electrons. Following the previous works of some of the au-

thors, the extraction is based on successive calculations of high-spin and broken-symmetry

determinants, with selective relaxations of the orbitals involved in the different mechanisms.

We applied the methodology to a series of heterodinuclear compounds based on a Cu-M

pattern with M = Cr(III), Mn(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II). This allowed

to stress the method out on well-known complexes exhibiting different occupation and con-

figuration of the magnetic d orbitals. This work has confirmed and even refined the orbital

analysis usually done for these transition metal-based complexes by providing numerical

evaluations of the different contributions. However, the decomposition scheme also shed

light on the physical mechanism governing the magnetic coupling in the Cu-Mn(III) com-

pound (2), impossible to guess with a sole orbital analysis. Indeed, unlike all others this

coupling exhibits a strong direct exchange as well as an unexpectedly strong ferromagnetic

spin polarisation contribution.

We have also taken the rationalisation a step further by decomposing the coupling into its

electron-electron interaction, benefiting from the recent developments of some of the authors

on the multicentre systems. This allowed us to discuss and disentangle the real impact of the

presence of new singly occupied d orbitals on the M centre, properly quantifying the orbital

analysis.

In addition to the rationalisation, the decomposition scheme allows us to compute mag-

netic exchange couplings as the sum of the three main contributions, following our previous

works on this aspect to a very consistent evaluation of J . Whilst the present compounds do

not require a thinner treatment than the use of the Yamaguchi formula, it may be the case

for systems presenting very strong spin polarisation effects.52–54

Future works will focus on the computation and decomposition of magnetic exchange
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couplings in systems with several coupling paths and where magnetic centres bear several

unpaired electrons. Furthermore, this work opened the discussion on the treatment of mixed-

valence compounds and future works will be dedicated to this task.
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