ZnGa₂O₄ and ZnGa₂O₄:N thin films applied as sensors for detection of acetaldehyde in ethanol

Idio Alves de Sousa Filho^{1,2}, José Fernando Dagnone Figueiredo^{3,4,5}, Valerie Bouquet³, André Luiz Menezes de Oliveira^{3,6}, Ronan Lebullenger³, Ieda Maria Garcia Santos⁶, Maryline Guilloux-Viry³, Odile Merdrignac-Conanec³, Ingrid Tavora Weber^{2,4}.

¹Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil 23897-000

²Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil 70910-900 ³Univ Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France

⁴LIMC, Dept. de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil 50740-560

⁵Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho, PE, Brazil 52171-900

⁶NPE/LACOM, Dept. de Química, Universidade Federal da Paraíba, Campus I, João Pessoa, PB, Brazil 58059- 900

*Corresponding author: idiofilho@ufrrj.br

Figure S1. XRD pattern of the synthesized $ZnGa_2O_4$ target and the corresponding cubic *Fd3m* phase.

All the reflections peaks were assigned to the cubic spinel structure $ZnGa_2O_4$, with space group Fd3m (ICDD 38-1240). No other peak assigned to any related compounds was observed.

Figure S2. XRD patterns of the amorphous $ZaGa_2O_4$ film deposited at room temperature by PLD on Pt/alumina substrates.

Figure S3. (A) Sensitivity (R_0/R_{gas}), (B) response time and (C) recovery time to ethanol of ZnGa₂O₄ and "ZnGaON" sensors as a function of work temperature.

Figure S4. (A) Sensitivity (R_0/R_{gas}) , (B) response time and (C) recovery time to acetaldehyde of $ZnGa_2O_4$ and "ZnGaON" sensors as a function of work temperature.

Figure S5 shows results observed for the sensors prepared in the present work in presence of methanol. Differently from what observed for ethanol, there is a displacement of S_{max} for both sensors. Following the same discussed for ethanol, the difference maximum response temperature between $ZnGa_2O_4$ and ZnGaON for methanol may be related to the gas oxidation rate on sensor surface, that is, the higher the oxidation rate, the lower the maximum response temperature [1]. The t_{90} continuously decreased with increasing temperature. At 400 °C, the t_{90} is ~22 s for $ZnGa_2O_4$, decreasing to ~17 s at 450 °C. A similar trend in the curve of t_{90} as a function of temperature is observed for ZnGaON, but it starts at 400 °C with 20 s and decreases to $t_{90} = 15$ s at 450 °C (Figure S4B). At the studied temperatures, ZnGaON showed a reduction t_{90} , which can be correlated to the fact that this sample has a rougher and grainned and nanostructured surface morphology and is accessible to gas molecules, which may have favored the faster adsorption and desorption of the species than in ZnGa₂O₄ sensor.

Regarding the recovery time, one can be observed that at 250 °C, t_{90R} reaches maximum values of about 1100 s for ZnGaON sensor. In the case of ZnGa₂O₄ samples the time is ~950 s at both studied temperatures. The stability observed for ZnGa₂O₄ throughout the temperature range suggests greater sensor surface stability against methanol. In all cases, for both ethanol and methanol, a tendency to high surface recovery times is observed.

Figure S5. (A) Sensitivity (R_0/R_{gas}), (B) response time t and (C) recovery time t_{90R} towards methanol detection using ZnGa₂O₄ and "ZnGaON" sensors as a function of work temperature.

It is well known that sensors must have high sensitivity, short response time, long-term chemical, and thermal stability as well as good selectivity. In addition, the sensor must be able to maintain a stable signal in variable concentrations of humidity and temperature or even in aggressive atmospheres[2,3].

To the best of our knowledge about SnO_2 sensors, it is assumed that surface interaction with water vapor leads to adsorption of molecular water and hydroxyl groups. Above 200 °C, the water molecules adsorbed by physisorption are no longer present on the surface, however the hydroxyl groups remain chemisorbed [4]. Upon heating, the desorption of hydroxyl groups should only occur from 450 °C [5,6]. Considering this, a preliminary test was initially performed to evaluate the effect of humidity on sensor performance as shown in **Figure S6**. The presence of H₂O vapor does not cause a large signal variation in ZnGa₂O₄ showing a small decrease in resistance at 400 °C, and above this temperature the signal seems to be only a change related to flux fluctuation. For ZnGaON, the electrical resistance varies more sharply throughout the studied temperature range, showing a greater change on surface states due to the presence of H₂O. Furthermore, an inversion in resistance behavior due to the presence of H_2O is observed. This suggests that in ZnGaON, H_2O is adsorbing on surface capturing electrons due to surface-adsorbate charge transfer. From 450 °C, the sensor resistance starts to decrease when H_2O vapor is introduced into the chamber. This may be associated with the desorption of hydroxyl groups, which would leave only oxygen acting as the adsorption site [7].

It is important mentioning that the ZnGaON film was not tested at 500 °C to avoid thermal oxidation of the surface. Still, it is possible to work safely to preserve the stability of the sensor at temperatures of 450 °C, as a possible thermal oxidation should only effectively occur from 750 °C [8,9], which would compromise not only the sensor's operation but also the interpretation of the data.

Figure S6. (A) Sensitivity of $ZnGa_2O_4$ and "ZnGaON" sensors towards humidity as a function of work temperature.

References

- [1] J. Watson, K. Ihokura, G.S.V. Coles, The tin dioxide gas sensor, Meas. Sci. Technol. 4 (1993) 711–719. https://doi.org/10.1088/0957-0233/4/7/001.
- K.O. Rocha, S.M. Zanetti, Structural and properties of nanocrystalline WO₃/TiO 2-based humidity sensors elements prepared by high energy activation, Sensors Actuators, B Chem. 157 (2011) 654–661. https://doi.org/10.1016/j.snb.2011.05.048.
- [3] T. Islam, H. Saha, Hysteresis compensation of a porous silicon relative humidity sensor using ANN technique, Sensors Actuators, B Chem. 114 (2006) 334–343. https://doi.org/10.1016/j.snb.2005.05.022.
- [4] M. Kerlau, O. Merdrignac-conanec, P. Reichel, N. B[^], U. Weimar, Preparation and characterization of gallium (oxy) nitride powders Preliminary investigation as new gas sensor materials, Sensors Actuators, B Chem. 115 (2006) 4–11. https://doi.org/10.1016/j.snb.2005.07.068.
- [5] M. Li, U. Tumuluri, Z. Wu, S. Dai, Effect of dopants on the adsorption of carbon dioxide on ceria surfaces, ChemSusChem. 8 (2015) 3651–3660. https://doi.org/10.1002/cssc.201500899.
- [6] D.X. Ju, H.Y. Xu, Z.W. Qiu, Z.C. Zhang, Q. Xu, J. Zhang, J.Q. Wang, B.Q. Cao, Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates, ACS Appl. Mater. Interfaces. 7 (2015) 19163–19171. https://doi.org/10.1021/acsami.5b04904.
- [7] D.H. Lee, S.K. Kang, Y. Pak, N. Lim, R. Lee, Y. Kumaresan, S. Lee, C. Lee, M.H. Ham, G.Y. Jung, Transfer of preheat-treated SnO2via a sacrificial bridgetype ZnO layer for ethanol gas sensor, Sensors Actuators, B Chem. 255 (2018) 70–77. https://doi.org/10.1016/j.snb.2017.08.025.
- [8] M.R. Wu, W.Z. Li, C.Y. Tung, C.Y. Huang, Y.H. Chiang, P.L. Liu, R.H. Horng, NO gas sensor based on ZnGa₂O₄ epilayer grown by metalorganic chemical vapor deposition, Sci. Rep. 9 (2019) 1–9. https://doi.org/10.1038/s41598-019-43752-z.
- [9] J. Tung, Y. Chiang, D. Wang, P. Liu, Adsorption of NO 2 and H 2 S on ZnGa₂O₄ (111) Thin Films: A First-Principles Density Functional Theory Study, Appl. Sci. 4 (2020).